Elementos de Máquinas - Guias de Esferas

download Elementos de Máquinas - Guias de Esferas

of 32

Transcript of Elementos de Máquinas - Guias de Esferas

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    1/32

    4.1.

    Flowchart

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    2/32

    4.1 Flowchart

    A-66

    4. Selecting the Correct Type of LM Guide

    Type and size changed

    Span, No. of blocks, and No. of rails changed

    Set the conditions for the design of loads on the LM Guide.- Space available for the guide part- Dimensions (span, No. of blocks, No. of rails, and thrust)- Installation direction (horizontal, vertical, tilted, wall-hung, or suspended)- Magnitude of the applied load, direction, and location- Frequency of use (duty cycle)

    Select the correct type for the operating conditions and assume an approximate size.

    SSR, SR, SHS, HSR, JR, CSR, SNR, NR, HRW, GSR, RSR, and HCR

    Calculate the load that an LM block exerts on the LM Guide.

    Convert the load that an LM block exerts in each direction into an equivalent load.

    Verify the value of the static safety factor for the basic static-load rating and maximum applied load.

    Average the applied loads which fluctuate during operation, and convert them into a mean load.

    Calculate the running distance using the service-life equation.

    Convert the running distance obtained into the service life in hours.

    Determine the lubricants (grease, oil, special lubrication, etc.) to be used.Determine the lubrication method (periodic greasing, forced lubrication, etc.) to be used.Determine the material (standard, stainless steel, etc.) to be used.

    Determine the surface treatment (anticorrosion, appearance protection, etc.) to be provided.Design contaminant protection (bellows, telescopic cover, etc.).

    Is the static safetyfactor verified?

    Does the valueobtained satisfy the required

    service life?

    Select the correct type.

    Calculate the applied load.

    Calculate the equivalent load.

    Calculate the static safety

    factor.

    Calculate the mean load.

    Calculate the nominal life.

    Calculate the service life in

    hours.

    Safety design.

    Completion of selection.

    1

    2

    3

    4

    5

    6

    7

    8

    11

    YES

    YES

    NO

    NO

    Set the operating conditions.

    - Velocity (acceleration)- Stroke length- Required service life- Motion precision- Service environment

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    3/32A-67

    A-II

    Determine the redial clearance to be used. Determine the fastening methods to be used. Determine the rigidity at the fastened areas.

    Determine the accuracygrade to be applied.

    Determine the mounting-surface precision to be used.

    Forecast the rigidity. Set the precision.9 10

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    4/32

    4.2 Applied Load Direction andLoad Rating

    The LM Guide can bear loads and moments in all

    directions resulting from the installation direction and

    location of the guide system, the location of the center

    of gravity of a moving object thereon, the location at

    which thrust occurs, the acceleration, the machiningresistance, and the like.

    A-68

    Fig. 30 Applied Load Direction

    Reverse-radial load Radial load

    Lateral load Lateral load

    Moment

    Moment

    Moment

    Yawing

    Rolling

    Pitching

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    5/32

    4.2.1 LM-Guide Load Ratings inVarious Directions

    The LM Guide can be divided into two major types: the

    four-way equal-load type, which has the same load

    rating for all radial, reverse-radial, and lateral loads;

    and the radial type, which has a high load rating in the

    radial direction. With the radial type, load ratings inthe radial, reverse-radial, and lateral directions differ.

    If a radial type is used under a load in one of these

    directions, multiply the relevant basic load rating

    provided in the corresponding dimension table by the

    factor specified in the respective section.

    A-69

    A-II

    Load Rating in Each Direction

    Four-way equal-load type

    Radial type

    Load distribution curveType

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    6/32

    4.2.2 Calculating the Load Usingthe Moment-EquivalentFactor

    Where a sufficient installation space is not available,

    you may be obliged to use just one LM block or two

    LM blocks laid over one another for the LM Guide. In

    such a setting, the load distribution cannot be uniformand, as a result, an excessive load is exerted in

    localized areas (e.g., rail ends). Continued use under

    such conditions may result in flaking in those areas,

    consequently shortening the service life. In such a

    case, calculate true load by multiplying the moment

    value by any one of the moment -equivalent factors

    specified in Tables 6 through 10.

    An equivalent-load equation applicable when a moment

    acts on an LM Guide is shown below.

    P = KM

    where P : equivalent load per LM Guide

    K : equivalent moment factor

    M : developed moment (Nmm)

    KA, KB, and KC represent the equivalent moment factors

    in directions MA, MB, and MC, respectively.

    Calculation Examples One LM block is used

    Model No.: HSR25A1

    P = MCKC+MAKA+mg= 98 x 100 x 0.087 + 98 x 200 x 0.13 + 98 = 3500 N

    Two LM blocks are used laid over one another.

    Model No.: SR20V2

    P1 = MC/2 x KC+MAxKA+mg/2

    = 49x150/2x0.109+49x200x0.0378+49/2=795.5 N

    P1L = MC/2xKC+MAxKA+mg/2

    = 49x150/2x0.109+49x200x0.0378+49/2= 5.6 N

    P2

    = MC

    /2xKC

    MA

    xKA

    +mg/2

    = 49x150/2x0.10949x200x0.0378+49/2=54.6 N

    P2L = MC/2xKC-MAxKA+mg/2

    = 49x150/2x0.10949x200x0.0378+49/2=746.5 N

    Notes

    1. Since an LM Guide in a vertical position receives

    only a moment load, there is no need to apply other

    loads (mg).

    2. In some models, load ratings differ depending on

    the direction of the applied load. With such a

    model, calculate an equivalent load in a direction inwh ich co nd it io ns ar e co mp arab ly ba d (i. e. a

    direction in which a larger moment is applied).

    A-70

    Fig. 31 Ball Load Effected by a Moment

    Moment load

    Moment load

    LM rail

    Ball loadcurve

    Ball displacementline

    Balldisplacementline Ball load curve

    Rows of ballsunder a load

    Rows of ballsunder a load

    Maximuma

    pplied

    loadonaball

    Maximumb

    alldisplacement

    Fig. 32 Equivalent Load Calculation for aSystem Using One LM Block

    Gravitational acceleration g = 9.8 m/s2

    Mass m = 10 kg

    Gravitational acceleration g = 9.8 m/s2

    Mass m = 5 kg

    Fig. 33 Equivalent Load Calculation for aSystem Using Two LM Blocks Laid Over

    One Another

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    7/32A-71

    A-II

    Table 6 Equivalent Factors (Types SSR, SNR, SNS, and SHS)

    KA: Equivalent moment factor in the pitching direction

    KB: Equivalent moment factor in the yawing direction

    KC: Equivalent moment factor in the rolling direction

    Model No.

    SSR15W (TB)

    SSR15V

    SSR20W (TB)

    SSR20V

    SSR25W (TB)

    SSR25V

    SSR30W

    SSR35W

    SNR25 SNS25

    SNR25L SNS25L

    SNR30 SNS30

    SNR30L SNS30L

    SNR35 SNS35

    SNR35L SNS35L

    SNR45 SNS45

    SNR45L SNS45L

    SNR55 SNS55

    SNR55L SNS55L

    SNR65 SNS65

    SNR65L SNS65L

    SHS15

    SHS20

    SHS20L

    SHS25

    SHS25L

    SHS30

    SHS30L

    SHS35

    SHS35L

    SHS45

    SHS45L

    SHS55

    SHS55L

    SHS65

    SHS65L

    KA,, KB

    1.93x101 3.40x102

    3.27x101 4.36x102

    1.67x101 2.91x102

    2.55x101 3.86x102

    1.31x101 2.34x102

    1.99x101 3.08x102

    1.10x101 2.01x102

    1.01x101 1.74x102

    1.25x101 2.36x102

    9.94x102 1.95x102

    1.10x101 1.98x102

    8.62x102 1.64x102

    9.63x102 1.78x102

    7.56x102 1.47x102

    7.47x102 1.43x102

    5.74x102 1.17x102

    6.31x102 1.21x102

    4.91x102 1.00x102

    5.48x10

    2

    1.06x10

    2

    4.02x102 8.17x103

    1.68x101 3.04x102

    1.32x101 2.49x102

    1.01x101 2.05x102

    1.12x101 2.15x102

    9.14x102 1.84x102

    9.74x102 1.86x102

    7.48x102 1.53x102

    8.47x102 1.62x102

    6.50x102 1.32x102

    7.47x102 1.41x102

    5.74x102 1.15x102

    6.05x102 1.15x102

    4.65x102 9.41x103

    4.44x102 9.02x103

    3.50x102 7.42x103

    KC

    1.45x101

    1.45x101

    1.10x101

    1.10x101

    9.34x102

    9.34x102

    7.85x102

    6.49x102

    8.91x102

    8.91x102

    7.97x102

    7.97x102

    6.66x102

    6.66x102

    4.99x102

    4.99x102

    4.28x102

    4.28x102

    3.62x10

    2

    3.62x102

    1.39x101

    9.91x102

    9.91x102

    8.63x102

    8.63x102

    7.15x102

    7.15x102

    5.85x102

    5.85x102

    4.38x102

    4.38x102

    3.75x102

    3.75x102

    3.18x102

    3.18x102

    Equivalent Load Calculation for aSystem Using One LM Block

    Equivalent Load Calculation for a System UsingTwo LM Blocks Laid Over One Another

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    8/32A-72

    KA: Equivalent moment factor in the pitching direction

    KB: Equivalent moment factor in the yawing direction

    KC: Equivalent moment factor in the rolling direction

    Table 7 Equivalent Factors (Types SR, NR, and NRS)

    Model No.

    SR15W (TB)

    SR15V (SB)

    SR20W (TB)

    SR20V (SB)

    SR25W (TB)

    SR25V (SB)

    SR30W (TB)

    SR30V (SB)

    SR35W (TB)

    SR35V (SB)

    SR45W (TB)

    SR55W (TB)

    SR70T

    SR85T

    SR100T

    SR120T

    SR150T

    NR25X NRS25X

    NR25LX NRS25LX

    NR30 NRS30

    NR30L NRS30L

    NR35 NRS35

    NR35L NRS35L

    NR45 NRS45

    NR45L NRS45L

    NR55 NRS55

    NR55L NRS55L

    NR65 NRS65

    NR65L NRS65L

    NR75 NRS75

    NR75L NRS75L

    NR85 NRS85

    NR85L NRS85L

    NR100 NRS100

    NR100L NRS100L

    KA, KB

    1.95x101 3.41x102

    3.17x101 4.44x102

    1.70x101 2.92x102

    2.77x101 3.78x102

    1.36x101 2.34x102

    2.22x101 3.02x102

    1.14x101 2.01x102

    1.85x101 2.69x102

    9.74x102 1.76x102

    1.58x101 2.35x102

    8.52x102 1.55x102

    6.81x102 1.25x102

    5.24x102 1.01x102

    6.27x102 1.05x102

    5.09x102 9.62x103

    4.59x102 8.13x103

    3.82x102 6.83x103

    1.28x101 2.37x102

    9.83x102 1.96x102

    1.07x101 2.01x102

    8.19x102 1.66x102

    9.74x102 1.79x102

    7.37x102 1.48x102

    7.55x102 1.42x102

    5.87x102 1.17x102

    6.35x102 1.22x102

    5.00x102 1.00x102

    5.49x102 1.06x102

    4.09x102 8.17x103

    4.64x102 9.09x103

    3.61x102 7.33x103

    4.08x102 8.05x103

    3.21x102 6.65x103

    3.55x102 6.72x103

    2.89x102 6.02x103

    KC

    1.44x101

    1.44x101

    1.09x101

    1.09x101

    9.31x102

    9.31x102

    7.82x102

    7.82x102

    6.47x102

    6.47x102

    4.81x102

    4.59x102

    3.21x102

    2.77x102

    2.35x102

    1.95x102

    1.57x102

    9.04x102

    9.04x102

    8.14x102

    8.14x102

    6.79x102

    6.79x102

    5.06x102

    5.06x102

    4.34x102

    4.34x102

    3.66x102

    3.66x102

    3.07x102

    3.07x102

    2.73x102

    2.73x102

    2.32x102

    2.32x102

    Equivalent Load Calculation for aSystem Using One LM Block

    Equivalent Load Calculation for a System UsingTwo LM Blocks Laid Over One Another

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    9/32A-73

    A-II

    KA: Equivalent moment factor in the pitching direction

    KB: Equivalent moment factor in the yawing direction

    KC: Equivalent moment factor in the rolling direction

    Table 8 Equivalent Factors (Types HSR, CSR, JR, and HRW)

    Model No.

    HSR8

    HSR10

    HSR12

    HSR15 CSR15

    HSR20 CSR20S

    HSR20L CSR20

    HSR25 CSR25S

    HSR25L CSR25

    HSR30 CSR30S

    HSR30L CSR30

    HSR35 JR35

    HSR35L CSR35

    HSR45 JR45

    HSR45L CSR45

    HSR55

    HSR55L

    HSR65

    HSR65L

    HSR85

    HSR85L

    HSR100

    HSR120

    HSR150

    HRW12

    HRW14

    HRW17

    HRW21

    HRW27

    HRW35

    HRW50

    HRW60

    KA, KB

    5.17x101 7.89x102

    3.91x101 6.14x102

    2.61x101 4.25x102

    2.07x101 3.39x102

    1.56x101 2.59x102

    1.21x101 2.18x102

    1.30x101 2.33x102

    1.01x101 1.93x102

    1.12x101 1.97x102

    8.63x102 1.64x102

    9.77x102 1.77x102

    7.55x102 1.47x102

    7.82x102 1.39x102

    6.04x102 1.16x102

    6.52x102 1.19x102

    5.03x102 9.86x103

    5.21x102 1.05x102

    4.03x102 8.07x103

    4.34x102 7.84x103

    3.35x102 6.54x103

    3.02x102 5.93x103

    2.74x102 5.43x103

    2.52x102 5.01x103

    3.01x101 5.29x102

    2.40x101 4.43x102

    2.40x101 3.79x102

    2.01x101 3.29x102

    1.51x101 2.69x102

    1.01x101 1.84x102

    7.55x102 1.40x102

    6.71x102 1.24x102

    KC

    2.47x101

    1.96x101

    1.65x101

    1.33x101

    1.00x101

    1.00x101

    8.70x102

    8.70x102

    7.14x102

    7.14x102

    5.88x102

    5.88x102

    4.44x102

    4.44x102

    3.77x102

    3.77x102

    3.17x102

    3.17x102

    2.35x102

    2.35x102

    2.00x102

    1.75x102

    1.39x102

    1.22x101

    8.86x102

    6.06x102

    5.41x102

    4.76x102

    2.90x102

    2.22x102

    1.67x102

    Equivalent Load Calculation for aSystem Using One LM Block

    Equivalent Load Calculation for a System UsingTwo LM Blocks Laid Over One Another

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    10/32A-74

    KA: Equivalent moment factor in the pitching direction

    KB: Equivalent moment factor in the yawing direction

    KC: Equivalent moment factor in the rolling direction

    Table 9 Equivalent Factors (Type GSR)

    Model No.

    GSR15T

    GSR15V

    GSR20T

    GSR20V

    GSR25T

    GSR25V

    GSR30T

    GSR35T

    KA, KB

    1.95x101 3.19x102

    2.77x101 3.87x102

    1.56x101 2.59x102

    2.22x101 3.14x102

    1.30x101 2.18x102

    1.85x101 2.65x102

    1.12x101 1.86x102

    9.77x102 1.64x102

    Note: With type GSR, these values apply to cases in which two LM Guides are used.

    KC

    Equivalent Load Calculation for aSystem Using One LM Block

    Equivalent Load Calculation for a System UsingTwo LM Blocks Laid Over One Another

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    11/32A-75

    A-II

    Table 10 Equivalent Factors (Types RSR, RSH, and NSR-TBC)

    Model No.

    RSR3W

    RSR3WN

    RSR5

    RSR5N

    RSR5W

    RSR5WN

    RSR7M RSH7

    RSR7N

    RSR7W

    RSR7WN

    RSR9K RSH9K

    RSR9N

    RSR9WV

    RSR9WN

    RSR12V RSH12V

    RSR12N

    RSR12WV

    RSR12WN

    RSR15V

    RSR15N

    RSR15WV

    RSR15WN

    RSR20V

    RSR20N

    NSR20TBC

    NSR25TBC

    NSR30TBC

    NSR40TBC

    NSR50TBC

    NSR70TBC

    KA, KB

    9.10x101 1.23x101

    5.99x101 9.69x102

    8.80x101 1.04x101

    5.78x101 9.63x102

    5.78x101 8.62x102

    4.09x101 7.02x102

    5.54x101 8.18x102

    3.41x101 5.89x102

    3.91x101 6.02x102

    2.58x101 4.85x102

    4.40x101 6.05x102

    2.54x101 4.75x102

    2.89x101 5.03x102

    2.05x101 3.90x102

    3.52x101 5.42x102

    2.31x101 4.08x102

    2.48x101 4.45x102

    1.72x101 3.34x102

    2.77x101 4.42x102

    1.82x101 3.18x102

    1.95x101 3.58x102

    1.36x101 2.67x102

    1.83x101 2.90x102

    1.21x101 2.28x102

    2.29x101 2.68x102

    2.01x101 2.27x102

    1.85x101 1.93x102

    1.39x101 1.60x102

    1.24x101 1.42x102

    9.99x102 1.15x102

    KC

    3.17x101

    3.17x101

    3.85x101

    3.85x101

    1.96x101

    1.96x101

    2.74x101

    2.74x101

    1.40x101

    1.40x101

    2.15x101

    2.48x101

    1.09x101

    1.18x101

    1.74x101

    1.93x101

    8.51x102

    8.95x102

    1.41x101

    1.52x101

    4.85x102

    4.98x102

    1.09x101

    1.18x101

    Equivalent Load Calculation for aSystem Using One LM Block

    Equivalent Load Calculation for a System UsingTwo LM Blocks Laid Over One Another

    KA: Equivalent moment factor in the pitching direction

    KB: Equivalent moment factor in the yawing direction

    KC: Equivalent moment factor in the rolling direction

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    12/32

    4.3 Calculating the Applied Load

    4.3.1 Setting Operating Conditions

    To obtain the magnitude of an applied load and the

    service life in hours, the operating conditions of the

    LM system in question must first be set.

    The operating conditions should include:1) Mass : m (kg)

    2) Direction of the acting load

    3) Location of the action point

    (e.g., center of gravity) : r2,r3, h1 (mm)

    4) Location of the thrust developed :

    r4, h2 (mm)

    5) LM system arrangement : r0,r1 (mm)

    (No. of systems and axes)

    6) Velocity diagram

    Velocity : V (mm/s)

    Time constant : tn (s)

    Acceleration : n (mm/s2)

    7) Duty cycle

    No. of reciprocating cycles per min

    : N1 (min-1)

    8) Stroke length :rs (mm)

    9) Mean velocity : V m (m/s)

    10)Required service life in hours : Lh (h)

    Vtn

    (an = )

    A-76

    Gravitational acceleration: g = 9.8 m/s2

    Fig. 34 Operating Conditions

    Velocity

    Duty cycle

    Velocity diagram

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    13/32

    4.3.2 Calculating the Applied Load

    The load applied to the LM Guide varies with the

    external force exerted thereon, such as the location of

    the center of gravity of an object being moved, the

    location of the thrust developed, inertia due to

    acceleration and deceleration during starting and

    stopping, and the machining resistance.

    To select the correct type of LM Guide, the magnitude

    of applied loads must be determined in consideration

    of the above conditions.

    Using the following examples 1 through 10, we will

    now calculate the loads applied to the LM Guide.

    m : Mass (kg)

    rn : Distance (mm)

    Fn : External force (N)

    Pn : Applied load (N)

    (radial and reverse-radial directions)

    PnT : Applied load (horizontal direction) (N)

    g : Gravitational acceleration (m/s2)

    (g = 9.8 m/s2)

    V : Velocity

    tn : Time constant

    n : Acceleration (m/s2)

    Vtn

    (an = )

    A-77

    A-II

    1

    2

    Operating conditions Equation for calculating applied load

    P1

    P2

    P3

    P4

    mg

    4

    mgR2

    2R0

    mgR3

    2R1

    mg

    4

    mgR2

    2R0

    mgR3

    2R

    mg

    4

    mgR2

    2R0

    mgR3

    2R1

    mg4

    mgR22R0

    mgR32R1

    P1

    P2

    P3

    P4

    mg

    4

    mgR2

    2R0

    mgR3

    2R1

    mg4

    mgR22R0

    mgR32R1

    mg

    4

    mgR2

    2R0

    mgR3

    2R1

    mg

    4

    mgR2

    2R0

    mgR3

    2R1

    Install in a horizontal position.

    (Move the block.)

    Measure in uniform motion or at rest.

    Install in an overhung horizontal position.

    (Move the block.)

    Measure in uniform motion or at rest.

    Ex-ample

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    14/32A-78

    3

    4

    Operating conditions Equation for calculating applied load

    P1P4

    P1TP4T

    mgR2

    2R0

    mgR3

    2R0

    P1P4

    P1TP4T

    P2TP3T

    mgR32R1

    mg

    4

    mgR2

    2R0

    mg

    4

    mgR2

    2R0

    Install in a vertical position.

    Measure in uniform motion or at rest.

    Install on a wall.Measure in uniform motion or at rest.

    [Ex.] On the vertical axis of industrial robots

    In automatic painting machines and

    lifters.

    [Ex.] On cross railsLoader travel axis

    Ex-ample

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    15/32A-79

    A-II

    5

    6

    Operating conditions Equation for calculating applied load

    P1P4max

    P1P4 min

    mg

    4

    mgR1

    2R0

    mg

    4

    mgR1

    2R0

    P1

    P1T

    P2

    P2T

    P3

    P3T

    P4

    P4T

    mgcos

    4

    mgcosR2

    2R0

    mgcos

    4

    mgcosR2

    2R0

    mgsin

    4

    mgsinR2

    2R0

    mgsinh1

    2R1

    mgcosR3

    2R1

    mgsin

    4

    mgsinR2

    2R0

    mgsinh1

    2R1

    mgcosR3

    2R1

    mgcos

    4

    mgcosR2

    2R0

    mgcos

    4

    mgcosR2

    2R

    0

    mgsin

    4

    mgsinR2

    2R0

    mgsinh1

    2R1

    mgcosR3

    2R1

    mgsin

    4

    mgsinR2

    2R0

    mgsinh1

    2R1

    mgcosR3

    2R1

    Move on the LM rail.

    Install in a horizontal position.

    Install in a laterally tilted position.

    [Ex.] XY table

    Sliding fork

    [Ex.] NC lathe

    Carriage (for the lathe)

    Ex-ample

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    16/32A-80

    7

    8

    Operating conditions Equation for calculating applied load

    P1

    P1T

    P2

    P2T

    P3

    P3T

    P4

    P4T

    mgcos

    4

    mgcosR2

    2R0

    mgcos

    4

    mgcosR2

    2R0

    mgsin

    R

    32R0

    mgsinh1

    2R0

    mgcosR3

    2R1

    mgsinR3

    2R0

    mgsinh1

    2R0

    mgcosR3

    2R1

    mgcos

    4

    mgcosR2

    2R0

    mgcos

    4

    mgcosR2

    2R0

    mgsinR3

    2R0

    mgsinh1

    2R0

    mgcosR3

    2R1

    mgsinR3

    2R0

    mgsinh1

    2R0

    mgcosR3

    2R1

    During acceleration

    P1P4

    P2P3

    P1TP4T

    In uniform motion

    P1P4

    During deceleration

    P1P4

    P2P3

    P1TP4T

    mg

    4

    m1R2

    2R0

    m1R2

    2R0

    m1R3

    2R0

    m3R2

    2R0

    m3R2

    2R0

    m3R3

    2R0

    mg

    4

    mg

    4

    mg

    4

    mg

    4

    Install in a longitudinally tilted position.

    Install in a horizontal position

    subjected to inertia.

    [Ex.] NC latheTool rest (for the lathe)

    Vtn

    n =

    Ex-ample

    Velocity

    Velocity diagram

    Time (s)

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    17/32A-81

    A-II

    Under force F1

    P1P4

    P1TP4T

    Under force F2

    P1 P4

    P2 P3

    Under force F3

    P1P4

    P1T P4T

    P2T P3T

    F1R5

    2R0

    F1R

    42R0

    F2R2

    2R0

    F2R2

    2R0

    F3R32R1

    F3R2

    2R0

    F3R2

    2R0

    F2

    4

    F2

    4

    F3

    4

    F3

    4

    9

    10

    Operating conditions Equation for calculating applied load

    During acceleration

    P1P4

    P1TP4T

    In uniform motion

    P1P4

    P1TP4T

    During deceleration

    P1P4

    P1TP4T

    m(g1)R2

    2R0

    m(g1)R

    3

    2R0

    m(g

    3)R

    22R0

    m(g3)R3

    2R0

    mgR2

    2R0

    mgR3

    2R0

    Install in a vertical position subjected to

    inertia.

    Install in a horizontal position subjected to

    external force.

    [Ex.] Drill unit

    Milling machine

    Lathe

    Machining center and similar

    cutting machine

    Vtn

    n =

    Ex-ample

    Velocity

    Time

    Velocity diagram

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    18/32

    4.4 Calculating the Equivalent LoadThe LM Guide can bear loads and moments in four

    directions, including a radial load (PR), reverse-radial

    load (PL), and lateral load (PT), simultaneously.

    Applied loads include the following:

    A-82

    PR : Radial load

    PL : Reverse-radial load

    PT : Lateral load

    MA : Moment in the pitching direction

    MB : Moment in the yawing direction

    MC : Moment in the rolling direction

    Calculation example for LM Guide type HSR

    The equivalent load when a radial load (PR) and a

    lateral load (PT) are applied simultaneously can

    be obtained using the following equation:

    PE (equivalent load ) = PR + PT

    PR : Radial load

    PT : Lateral load

    Fig. 35 Directions of the Load and Moment Exerted on the LM Guide

    Fig. 36 LM-Guide Equivalent Load

    Equivalent load PEWhen more than one load (e.g. , radial and lateral

    loads) is exerted on the LM Guide simultaneously, the

    service life and static safety factors should be

    calculated using equivalent load values obtained by

    converting all loads involved into radial, lateral, and

    other loads involved.

    Equivalent-load equationThe equivalent-load equations for the LM Guide differ

    by guide type. For details, see the relevant sections.

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    19/32

    4.5 Static Safety FactorTo calculate a load exerted on the LM Guide, the mean

    load necessary for calculating the service life and the

    maximum load necessary for calculating the static

    safety factor must be obtained in advance. In a system

    that is subjected to frequent starts and stops and is

    placed under machining loads, and one upon which amoment due to an overhang load is forcefully exerted,

    an excessive load greater than expected may develop.

    When selecting the correct type of LM Guide for your

    purpose, be sure that the type you are considering can

    bear the maximum possible load, both when stopped

    and when in operation. The table below specifies the

    standard values for the static safety factor.

    fs : Static safety factor

    C0 : Basic static-load rating (radial) (N)

    C0L : Basic static-load rating (reverse-radial) (N)

    C0R : Basic static-load rating (lateral) (N)

    PR : Calculated load (radial) (N)

    PL : Calculated load (reverse-radial) (N)

    PT : Calculated load (lateral) (N)

    fH : Hardness factor (see Fig. 37, page A-86)

    fT : Temperature factor (see Fig. 38, page A-86)

    fC : Contact factor (see Table 13, page A-87)

    A-83

    A-II

    Machine used Loading conditionsfs lower

    limit

    Ordinaryindustrialmachine

    Machine tool

    Receives no vibration or impact

    Receives vibration and impact

    Receives no vibration or impact

    Receives vibration and impact

    1.0~1.3

    2.0~3.0

    1.0~1.5

    2.5~7.0

    Table 11 Standard Values for

    the Static Safety Factor (fs)

    For large radial loads f S

    f S

    f S

    fHf TfCC 0

    PR

    fH

    f T

    fC

    C 0LP L

    fHf TfCC 0T

    PTFor large lateral loads

    For large reverse-radialloads

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    20/32

    4.6 Calculating the Mean LoadAn industrial robot grasps a workpiece using its arm as

    it advances, moving further under the load. When it

    returns, the arm has no load other than its tare. In a

    machine tool, LM blocks receive varying loads

    depending on the host-system operating conditions.

    The service life of the LM Guide, therefore, should becalculated in consideration of such fluctuations in load.

    The mean load (Pm) is the load under which the service

    life of the LM Guide becomes equivalent to that under

    the varying loads exerted on the LM blocks.

    The basic equation for calculating the mean load is as

    follows:

    where

    Pm : mean load (N)

    Pn : varying load (N)

    L : total running distance (mm)

    Ln : running distance under load Pn (mm)

    Note: This equation and equation (1) below

    apply in cases in which the rolling

    elements are balls.

    A-84

    Pm (Pn3Ln)1L3 n

    n=1

    1) For loads that change stepwise

    (1)

    where

    Pm : mean load (N)

    Pn : varying load (N)

    L : total running distance (mm)

    Ln : running distance under load Pn (mm)

    Pm P13L1P23L2 Pn3Ln1L

    3

    Load

    P

    Total running distance L

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    21/32A-85

    A-II

    2) For loads that change monotonously

    (2)

    where

    Pmin : minimum load (N)

    Pmax : maximum load (N)

    Pm Pmin 2Pmax1

    3

    3) For loads that change sinusoidally

    a) Pm 0.65Pmax (3) b) Pm 0.75Pmax (4)

    Load

    P

    Total running distance L

    Total running distance L

    Load

    P

    Total running distance L

    Load

    P

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    22/32

    1. Operating conditions

    A-86

    1 (m/s2)

    vt1

    P1

    P2

    P3

    P4

    mg

    4

    mg

    4

    mg

    4mg

    4

    Pa1 P1

    Pa2 P2

    Pa3 P3

    Pa4 P4

    m1R2

    2 R0m1R2

    2 R0m1R2

    2 R0m1R2

    2 R0

    Pd1 P1

    Pd2 P2

    Pd3 P3

    Pd4 P4

    m1R2

    2 R0m1R2

    2 R0m1R2

    2 R0m1R2

    2 R0

    2. Load applied to the LM block

    1) In uniform motion 2) During acceleration 3) During deceleration

    3. Mean load

    Pm1 Pa13s1P1

    3s2Pd1

    3s3

    Pm2 Pa23s1P2

    3s2Pd2

    3s3

    Pm3 Pa33

    s1P33

    s2Pd33

    s3

    Pm4 Pa43s1P4

    3s2Pd4

    3s3

    1

    RS

    3

    1

    RS

    3

    1

    RS

    3

    1

    RS

    3

    Note: Pan and Pdn represent loads exerted on the

    LM block. The suffix n indicates the block

    number in the diagram above.

    Mean Load Calculation Example (1) Horizontal Installations Subjected toAcceleration and Deceleration

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    23/32A-87

    A-II

    3. Mean load

    Pm1 2PR1Pr1

    Pm2 2 PR2Pr2

    Pm3 2 PR3Pr3

    Pm4 2PR4Pr4

    1

    3

    1

    3

    1

    3

    1

    3

    Note: PRn and Prn represent loads exerted on the

    LM block. The suffix n indicates the block

    number in the diagram above.

    2. Load applied to the LM block

    1) At the left of the arm 2) At the right of the arm

    PR1

    PR2

    PR3

    PR4

    mg

    4

    mgR1

    2 R0mg

    4

    mgR1

    2 R0mg

    4

    mgR1

    2 R0mg

    4

    mgR1

    2 R0

    Pr1

    Pr2

    Pr3

    Pr4

    mg

    4

    mgR2

    2 R0mg

    4

    mgR2

    2 R0mg

    4

    mgR2

    2 R0mg

    4

    mgR2

    2 R0

    Mean Load Calculation Example (2) Installations on Rails

    1. Operating conditions

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    24/32

    4.7 Service-Life EquationThe service life of the LM Guide can be obtained using

    the following equation:

    whereL : nominal life (km)

    (total distance that can be traveled by at least

    90% of a group of LM Guides operated under

    the same conditions)

    C : basic dynamic-load rating (N)

    PC : calculated load (N)

    fH : hardness factor (see Fig. 37, page A-86)

    fT : temperature factor (see Fig. 38, page A-86)

    fC : contact factor (see Table 12, page A-87)

    fW : load factor (see Table 13, page A-87)

    Once nominal life L is obtained using this equation, the

    LM-Guide service life can be calculated using the

    following equation, if the stroke length and the number

    of reciprocating cycles are constant:

    where

    Lh : service life in hours (h)

    rs: stroke length (mm)

    n1 : No. of reciprocating cycles per min (min-1)

    fH: Hardness factorTo ensure achievement of the optimum load-bearing

    capacity of the LM Guide, the raceway hardness must

    be 58 to 64 HRC.

    At a hardness below this range, the basic dynamic- and

    static-load ratings decrease. The ratings must

    therefore be multiplied by the respective hardness

    factors (fH).

    As the LM Guide has sufficient hardness, fH for the LM

    Guide is 1.0 unless otherwise specified.

    fT: Temperature factorFor LM Guides used at ambient temperatures over

    100C, a temperature factor corresponding to the

    ambient temperature, selected from the diagram

    below, must be taken into consideration.

    In addition, please note that the selected LM Guide

    itself must be a model with high-temperature

    specifications.

    Note: When used at ambient temperatures higherthan 80C, the seals, end plates, and ball

    cages used must be changed to those with

    high-temperature specifications.

    A-88

    L 3 50

    C

    PC

    fHfTfCfW

    Lh L10

    6

    2RSn160

    Fig. 37 Hardness Factor (fH)

    Fig. 38 Temperature Factor (fT)

    Raceway hardness (HRC)

    HardnessfactorfH

    Raceway temperature

    TemperaturefactorfT

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    25/32

    fC: Contact factorWhen mult iple LM blocks are used laid over one

    another, moments and mounting-surface precision will

    affect operation, making it difficult to achieve uniform

    load distribution. For LM blocks used laid over one

    another, multiply the basic load rating (C or C0) by a

    contact factor selected from the table below.

    Note: When the non-uniform load distribution can

    be predicted, as in a large system, consider

    using a contact factor.

    fW: Load factorIn general, machines in reciprocal motion are likely to

    cause vibration and impact during operation, and it is

    particularly difficult to determine the magnitude of

    vibration that develops during high-speed operation, as

    well as that of impact during repeated starting and

    stopping in normal use. Therefore, where the effects

    of speed and vibration are estimated to be significant,

    divide the basic dynamic-load rating (C) by a load

    factor selected from the table below, which was

    compiled based on THKs extensive experience.

    A-89

    A-II

    No. of blocks used

    2

    3

    4

    5

    6 or more

    In normal use

    0.81

    0.72

    0.66

    0.61

    0.6

    1.0

    Contact factor fC

    Table 12 Contact Factor (fC)

    Vibration and impact fWVelocity (V)

    Very slight

    Slight

    Moderate

    Strong

    1~1.2

    1.2~1.5

    1.5~2.0

    2.0~3.5

    Very lowV0.25m/s

    Low

    0.25

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    26/32

    4.8 Calculation Examples

    4.8.1 Example 1 (Horizontal installationssubjected to high acceleration anddeceleration)

    1. Operating conditions

    Model number: HSR35LA2SS + 2500LP-II

    (Basic dynamic-load rating : C = 50.2 kN)

    (Basic static-load rating : C0 = 81.4 kN)

    Mass : m1 = 800 kg Distance :r0 = 600 mm

    m2 = 500 kg r1 = 400 mm

    Velocity : V = 0.5 m/s r2 = 120 mm

    Time : t1 = 0.05 s r3 = 50 mm

    t2

    = 2.8 s r4

    = 200 mm

    t3 = 0.15 s r5 = 350 mm

    Acceleration :

    1 = 10 m/s2

    3 = 3.333 m/s2

    Stroke : rs = 1450 mm

    A-90

    Fig. 39 Operating Conditions

    Gravitational acceleration: g = 9.8 (m/s2)

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    27/32

    2. Load Exerted on the LM Guide by the LM BlockCalculate the load that each LM block exerts.

    1) In uniform motionLoad applied in radial direction Pn

    2) During acceleration to the leftLoad applied in radial direction Pran

    Load applied in lateral direction Ptran

    3) During deceleration to the leftLoad applied in radial direction Prdn

    Load applied in lateral direction Ptrdn

    A-91

    A-II

    2891 N

    4459 N

    3479 N

    1911 N

    P1

    P2

    P3

    P4

    m1g

    4

    m1gR2

    2 R0

    m2g

    4

    m1gR3

    2 R1

    m1g

    4

    m1gR2

    2 R0

    m2g

    4

    m1gR3

    2 R1

    m1g

    4

    m1gR2

    2 R0

    m2g

    4

    m1gR3

    2 R1

    m1g

    4

    m1gR2

    2 R0

    m2g

    4

    m1gR3

    2 R1

    P1

    275.6 N

    P2

    7625.6 N

    P3

    6645.6 N

    P4

    1255.6 N

    PRa1

    PRa2

    PRa3

    PRa4

    m11R5

    2R0

    m21 4

    2R0

    m11R5

    2R0

    m21R4

    2R0

    m11R5

    2R0

    m21R4

    2R0

    m11R5

    2R0

    m21R4

    2R0

    333.3 N

    333.3 N

    333.3 N

    333.3 N

    PtRa1

    PtRa2

    PtRa3

    PtRa4

    m11 3

    2 R0m11R3

    2 R0m11R3

    2 R0m11R3

    2 R0

    P1

    3946.6 N

    P2

    3403.4 N

    P3

    2423.4 N

    P4

    2966.6 N

    PRd1

    PRd2

    PRd3

    PRd4

    m13R5

    2 R0

    m23R4

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    111.1 N

    111.1 N

    111.1 N

    111.1 N

    PtRd1

    PtRd2

    PtRd3

    PtRd4

    m13R3

    2 R0m13R3

    2 R0m13R3

    2 R0m13R3

    2 R0

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    28/32

    4) During acceleration to the rightLoad applied in radial direction Pran

    Load applied in lateral direction Ptran

    5) During deceleration to the rightLoad applied in radial direction Prdn

    Load applied in lateral direction Ptrdn

    3. Combined radial and thrust load

    1) In uniform motion

    PE1 P12891 N

    PE2 P24459 N

    PE3 P33479 N

    PE4 P41911 N

    2) During acceleration to the left

    PERa1PRa1PtRa1 608.9 N

    PERa2PRa2PtRa27958.9 N

    PERa3PRa3PtRa36978.9 N

    PERa4PRa4PtRa41588.9 N

    3) During deceleration to the left

    PERd1PRd1PtRd14057.7 NPERd2PRd2PtRd23514.5 N

    PERd3PRd3PtRd32534.5 N

    PERd4PRd4PtRd43077.7 N

    4) During acceleration to the right

    PEra1Pra1Ptra16390.9 N

    PEra2Pra2Ptra21625.7 N

    PEra3Pra3Ptra3 645.7 N

    PEra4Pra4Ptra45410.9 N

    5) During deceleration to the right

    PErd1Prd1Ptrd11946.5 N

    PErd2Prd2Ptrd25625.7 N

    PErd3Prd3Ptrd34645.7 N

    PErd4Prd4Ptrd4 966.5 N

    A-92

    P3

    312.4 N

    P4

    5077.6 N

    Pra3

    Pra4

    P1

    6057.6 N

    P2

    1292.4 N

    Pra1

    Pra2

    m11R5

    2 R0

    m21R4

    2 R0

    m11R52 R0

    m21R42 R0

    m11R5

    2 R0

    m21R4

    2 R0

    m11R5

    2 R0

    m21R4

    2 R0

    333.3 N

    333.3 N

    333.3 N

    333.3 N

    Ptra1

    Ptra2

    Ptra3

    Ptra4

    m11R3

    2 R0m11R3

    2 R0m11R3

    2 R0

    m11R32 R0

    P1

    1835.4 N

    P2

    5514.6 N

    P3

    4534.6 N

    P4

    855.4 N

    Prd1

    Prd2

    Prd3

    Prd4

    m13R5

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    m23R4

    2 R0

    m13R5

    2 R0

    m23R4

    2 R0

    111.1 N

    111.1 N

    111.1 N

    111.1 N

    Ptrd1

    Ptrd2

    Ptrd3

    Ptrd4

    m13 3

    2 R0m13R3

    2 R0m13R3

    2 R

    0

    m13R3

    2 R0

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    29/32

    4. Static Safety FactorAs shown above, it is during acceleration of the 2nd

    LM Guide to the left when the maximum load is

    exerted on the LM Guide. Therefore, the static safety

    factor (fS) becomes as follows:

    5. Mean Load PmnThe mean load on each LM block is as follows:

    6. Nominal life LnFrom these calculations, 20,600 km (the running

    distance of the 2nd LM block) is obtained as theservice life of the LM Guide used in a machine or

    system under the operating conditions specified below.

    From the service-life equation for the LM Guide:

    A-93

    A-II

    fS 10.2C0

    PERa2

    81.4103

    7958.9

    PERa13S1PE1

    3S2PERd1

    3S3PEra1

    3S1PE1

    3S2PErd1

    3S3

    608.9312.52891

    314004057.7

    337.56390.9

    312.52891

    314001946.5

    337.5

    2940.1 N

    PERa23S1PE23S2PERd23S3PEra23S1PE23S2PErd23S3

    7958.9312.54459

    314003514.5

    337.51625.7

    312.54459

    314005625.7

    337.5

    4492.2 N

    PERa33S1PE3

    3S2PERd3

    3S3PEra3

    3S1PE3

    3S2PErd3

    3S3

    6978.9312.53479

    314002534.5

    337.5645.7

    312.53479

    314004645.7

    337.5

    3520.4 N

    PERa43S1PE4

    3S2PERd4

    3S3PEra4

    3S1PE4

    3S2PErd4

    3S3

    1588.9312.51911

    314003077.7

    337.55410.9

    312.51911

    31400966.5

    337.5

    1985.5 N

    Pm1

    Pm2

    Pm3

    Pm4

    1

    2RS1

    21450

    12RS

    1

    21450

    1

    2RS1

    21450

    1

    2RS1

    21450

    3

    3

    3

    3

    3

    3

    3

    3

    L1 3 50 73700 km

    L2 3 50 20600 km

    L3 3 50 43000 km

    L4 3 50 239000 km

    fW 1.5

    C

    fW Pm1C

    fW Pm2C

    fW Pm3C

    fW Pm4

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    30/32

    4.8.2 Example 2 (Vertical installations)

    1. Operating conditions

    Model number: HSR25A2SS + 1500L-II

    (Basic dynamic-load rating : C = 19.9 kN)

    (Basic static-load rating : C0 = 34.4 kN)

    Mass : m0 = 100 kg Distance :r0 = 300 mm

    m1 = 200 kg r1 = 80 mm

    m2 = 100 kg r2 = 50 mm

    r3 = 280 mm

    r4 = 150 mm

    r5 = 250 mm

    Stroke : rS = 1000 mm

    The mass (m0) is applied during ascent only. It is

    removed during descent.

    A-94

    Fig. 40 Operating Conditions

    Gravitational acceleration: g = 9.8 (m/s2)

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    31/32

    2. Load Exerted on the LM Guide by theLM Block

    1) During ascentLoad exerted on the LM Guide in radialdirection Pun by the LM block

    Load exerted on the LM Guide in lateraldirection Ptun by the LM block

    2) During descentLoad exerted on the LM Guide in radialdirection Pdn by the LM block

    Load exerted on the LM Guide in lateraldirection Ptdn by the LM block

    3. Combined radial and thrust load

    1) During ascent

    PEu1Pu1Ptu11731.3 N

    PEu2Pu2Ptu21731.3 N

    PEu3Pu3Ptu31731.3 N

    PEu4Pu4Ptu41731.3 N

    2) During descent

    PEd1Pd1Ptd11143.3 N

    PEd2Pd2Ptd21143.3 N

    PEd3Pd3Ptd31143.3 N

    PEd4Pd4Ptd41143.3 N

    A-95

    A-II

    1355.6 N

    1355.6 N

    1355.6 N

    1355.6 N

    Pu1

    Pu2

    Pu3

    Pu4

    m1gR42 R0

    m2gR52 R0

    m0gR32 R0

    m0gR32 R0

    m1gR4

    2 R0

    m2gR5

    2 R0

    m0gR32 R0

    m1gR4

    2 R0

    m2gR5

    2 R0

    m0gR32 R0

    m1gR4

    2 R0

    m2gR5

    2 R0

    375.7 N

    375.7 N

    375.7 N

    375.7 N

    Ptu1

    Ptu2

    Ptu3

    Ptu4

    m1gR22 R0

    m2gR22 R0

    m0gR12 R0

    m1gR22 R0

    m2gR22 R0

    m0gR12 R0

    m1gR22 R0

    m2gR22 R0

    m0gR12 R0

    m1gR22 R0

    m2gR22 R0

    m0gR12 R0

    898.3 N

    898.3 N

    898.3 N

    898.3 N

    Pd1

    Pd2

    Pd3

    Pd4

    m1gR4

    2 R0

    m2gR5

    2 R0m1gR4

    2 R0

    m2gR5

    2 R0m1gR4

    2 R0

    m2gR5

    2 R0m1gR4

    2 R0

    m2gR5

    2 R0

    245 N

    245 N

    245 N

    245 N

    Ptd1

    Ptd2

    Ptd3

    Ptd4

    m1gR2

    2 R0

    m2gR2

    2 R0m1gR22 R0

    m2gR22 R0

    m1gR2

    2 R0

    m2gR2

    2 R0m1gR2

    2 R0

    m2gR2

    2 R0

  • 7/28/2019 Elementos de Mquinas - Guias de Esferas

    32/32

    4. Static Safety FactorThe static safety factor (fs) of a machine or system

    under the operating conditions shown above becomes

    the following:

    5. Mean LoadThe mean load on each LM block is as follows:

    6. Nominal life LnFrom the service-life equation for the LM Guide:

    From these calculations, 68,200 km is obtained as the

    service life of the LM Guide used in a machine or

    system under the operating conditions specified above.

    PEU13RSPEd1

    3RS 1495.1 N

    PEU23RSPEd2

    3RS 1495.1 N

    PEU33RSPEd3

    3RS 1495.1 N

    PEU43RSPEd4

    3RS 1495.1 N

    Pm1

    Pm2

    Pm3

    Pm4

    1

    2RS

    3

    1

    2RS

    3

    1

    2RS

    3

    12RS

    3

    L1 3 50 68200 km

    L2 3 50 68200 km

    L3 3 50 68200 km

    L4 3 50 68200 km

    fW1.2

    C

    fW Pm1C

    fW Pm2

    CfW Pm3

    C

    fW Pm4

    fS 19.9C0

    PEu2

    34.4103

    1731.3