Electrowetting - Wikipedia, The Free Encyclopedia

download Electrowetting - Wikipedia, The Free Encyclopedia

of 5

Transcript of Electrowetting - Wikipedia, The Free Encyclopedia

  • 7/28/2019 Electrowetting - Wikipedia, The Free Encyclopedia

    1/5

    05/04/2013 Electrowetting - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/Electrowetting 1/5

    ElectrowettingFrom Wikipedia, the free encyclopedia

    Electrowetting is the modification of the wetting properties of a surface (which is typically hydrophobic) withan applied electric field.

    Contents

    1 History2 Electrowetting theory3 Reverse electrowetting4 Photoelectrowetting5 Materials6 Applications

    7 See also8 References9 External links

    History

    The electrowetting behavior of mercury and other liquids on variably charged surfaces was probably firstexplained by Gabriel Lippmann in 1875 and was certainly observed much earlier. A.N. Frumkin used surface

    charge to change the shape of water drops in 1936. The term electrowetting was first introduced in 1981 todescribe an effect proposed for designing a new type of display device.[1] The "fluid transistor" for manipulatingchemical and biological fluids was first investigated by J. Brown in 1980 and later funded in 1984-1988 underNSF Grants 8760730 & 8822197,[2] employing insulating dielectric and hydrophobic layers, immiscible fluids,DC or RFpower; and mass arrays of miniature interleaved electrodes with large or matching Indium tin oxide(ITO) electrodes to digitally relocate nano droplets in linear, circular and directed paths, pump or mix fluids, fillreservoirs and control fluid flow electronically or optically.[3] Electrowetting using an insulating layer on top ofthe bare electrodes was later studied by Bruno Berge in 1993.[4] Electrowetting on this dielectric-coated surfaceis called electrowetting-on-dielectric (EWOD)[5] to distinguish it from the conventional electrowetting on the

    bare electrode. Microfluidic manipulation of liquids by electrowetting was demonstrated first with mercurydroplets in water[6] and later with water in air[5] and water in oil.[7] Manipulation of droplets on a two-dimensional path was demonstrated later.[8][9] If the liquid is discretized and programmably manipulated, theapproach is called "Digital Microfluidic Circuits"[10][11] or "Digital Microfluidics".[12] Discretization byelectrowetting was first demonstrated by Cho, Moon and Kim,[13] completing the four basic digital microfluidicfunctions of creating, transporting, dividing and merging droplets on chip by electrowetting

    Since then, a large number of applications based on electrowetting have been demonstrated. Currently fivecompanies are at the forefront in commercializing electrowetting-based applications based on Cytonix[14] andBerge's later research: Clinical diagnostics by Advanced Liquid Logic[15] which was spun out of DukeUniversity, electronic paper by both Gamma Dynamics,[16] which was spun out of the University of Cincinnati,and Liquavista[17] which was spun out of Philips Research, liquid lenses by Varioptic(http://www.varioptic.com) ,[18] and Digital PCR by Life Technologies and Sequenom. In some of theseapplications, electrowetting allows large numbers of droplets to be independently manipulated under direct

    http://www.varioptic.com/http://en.wikipedia.org/wiki/Digital_PCRhttp://en.wikipedia.org/wiki/Electrowetting#cite_note-6http://en.wikipedia.org/wiki/Electrowetting#External_linkshttp://en.wikipedia.org/wiki/Electrowetting#Referenceshttp://en.wikipedia.org/wiki/Electrowetting#See_alsohttp://en.wikipedia.org/wiki/Electrowetting#Applicationshttp://en.wikipedia.org/wiki/Electrowetting#Materialshttp://en.wikipedia.org/wiki/Electrowetting#Photoelectrowettinghttp://en.wikipedia.org/wiki/Electrowetting#Reverse_electrowettinghttp://en.wikipedia.org/wiki/Electrowetting#Electrowetting_theoryhttp://en.wikipedia.org/wiki/Electrowetting#Historyhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikipedia.org/wiki/Wettinghttp://en.wikipedia.org/wiki/Wettinghttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Sequenomhttp://en.wikipedia.org/wiki/Life_Technologieshttp://en.wikipedia.org/wiki/Digital_PCRhttp://en.wikipedia.org/wiki/Electrowetting#cite_note-18http://www.varioptic.com/http://en.wikipedia.org/wiki/Electrowetting#cite_note-17http://en.wikipedia.org/wiki/Liquavistahttp://en.wikipedia.org/wiki/Electrowetting#cite_note-16http://en.wikipedia.org/wiki/Electrowetting#cite_note-15http://en.wikipedia.org/wiki/Electrowetting#cite_note-14http://en.wikipedia.org/wiki/Cytonixhttp://en.wikipedia.org/wiki/Electrowetting#cite_note-13http://en.wikipedia.org/wiki/Electrowetting#cite_note-12http://en.wikipedia.org/wiki/Electrowetting#cite_note-11http://en.wikipedia.org/wiki/Electrowetting#cite_note-10http://en.wikipedia.org/wiki/Electrowetting#cite_note-9http://en.wikipedia.org/wiki/Electrowetting#cite_note-8http://en.wikipedia.org/wiki/Electrowetting#cite_note-7http://en.wikipedia.org/wiki/Electrowetting#cite_note-ReferenceA-5http://en.wikipedia.org/wiki/Electrowetting#cite_note-6http://en.wikipedia.org/wiki/Electrowetting#cite_note-ReferenceA-5http://en.wikipedia.org/wiki/Electrowetting#cite_note-4http://en.wikipedia.org/wiki/Electrowetting#cite_note-3http://en.wikipedia.org/wiki/Indium_tin_oxidehttp://en.wikipedia.org/wiki/Electrowetting#cite_note-2http://en.wikipedia.org/wiki/Electrowetting#cite_note-1http://en.wikipedia.org/wiki/Waterhttp://en.wikipedia.org/wiki/Alexander_Frumkinhttp://en.wikipedia.org/wiki/Gabriel_Lippmannhttp://en.wikipedia.org/wiki/Liquidhttp://en.wikipedia.org/wiki/Mercury_(element)http://en.wikipedia.org/wiki/Electrowetting#External_linkshttp://en.wikipedia.org/wiki/Electrowetting#Referenceshttp://en.wikipedia.org/wiki/Electrowetting#See_alsohttp://en.wikipedia.org/wiki/Electrowetting#Applicationshttp://en.wikipedia.org/wiki/Electrowetting#Materialshttp://en.wikipedia.org/wiki/Electrowetting#Photoelectrowettinghttp://en.wikipedia.org/wiki/Electrowetting#Reverse_electrowettinghttp://en.wikipedia.org/wiki/Electrowetting#Electrowetting_theoryhttp://en.wikipedia.org/wiki/Electrowetting#Historyhttp://en.wikipedia.org/wiki/Electric_fieldhttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Wetting
  • 7/28/2019 Electrowetting - Wikipedia, The Free Encyclopedia

    2/5

    05/04/2013 Electrowetting - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/Electrowetting 2/5

    Liquid, Isolator, Substrate

    electrical control without the use of external pumps, valves or even fixed channels. In e-paper and liquid lenses,droplets are manipulated in-place whereas in clinical diagnostics applications, droplets are moved around on theplatform.

    Electrowetting theory

    The electrowetting effect has been defined as "the

    change in solid-electrolyte contact angle due to anapplied potential difference between the solid and theelectrolyte". The phenomenon of electrowetting can beunderstood in terms of the forces that result from theapplied electric field.[19][20] The fringing field at thecorners of the electrolyte droplet tend to pull the droplet down onto the electrode, lowering the macroscopiccontact angle and increasing the droplet contact area. Alternatively, electrowetting can be viewed from athermodynamic perspective. Since the surface tension of an interface is defined as the Gibbs free energyrequired to create a certain area of that surface, it contains both chemical and electrical components, and chargebecomes a significant term in that equation. The chemical component is just the natural surface tension of thesolid/electrolyte interface with no electric field. The electrical component is the energy stored in the capacitorformed between the conductor and the electrolyte.

    The simplest derivation of electrowetting behavior is given by considering its thermodynamic model. While it ispossible to obtain a detailed numerical model of electrowetting by considering the precise shape of the electricalfringing field and how it affects the local droplet curvature, such solutions are mathematically and computationallycomplex. The thermodynamic derivation proceeds as follows. Defining the relevant surface tensions as:

    - The total, electrical and chemical, surface tension between the electrolyte and the conductor- The surface tension between the electrolyte and the conductor at zero electric field

    - The surface tension between the conductor and the external ambient- The surface tension between the electrolyte and the external ambient

    - The macroscopic contact angle between the electrolyte and the dielectric- The capacitance of the interface, r0/t, for a uniform dielectric of thickness t and permittivity r- The effective applied voltage, integral of the electric field from the electrolyte to the conductor

    Relating the total surface tension to its chemical and electrical components gives:

    The contact angle is given by the Young-Dupre equation, with the only complication being that the total surfaceenergy is used:

    Combining the two equations gives the dependence of on the effective applied voltage as:

    http://en.wikipedia.org/wiki/Contact_anglehttp://en.wikipedia.org/wiki/Capacitorhttp://en.wikipedia.org/wiki/Gibbs_free_energyhttp://en.wikipedia.org/wiki/Electrowetting#cite_note-Kirby-20http://en.wikipedia.org/wiki/Electrowetting#cite_note-Chang-19http://en.wikipedia.org/wiki/Potential_differencehttp://en.wikipedia.org/wiki/Contact_anglehttp://en.wikipedia.org/wiki/Electrolytehttp://en.wikipedia.org/wiki/File:Electrowetting.gif
  • 7/28/2019 Electrowetting - Wikipedia, The Free Encyclopedia

    3/5

    05/04/2013 Electrowetting - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/Electrowetting 3/5

    An additional complication is that liquids also exhibit a saturation phenomenon: after certain voltage, thesaturation voltage, the further increase of voltage will not change the contact angle, and with extreme voltagesthe interface will only show instabilities.

    However, surface charge is but one component of surface energy, and other components are certainly perturbedby induced charge. So, a complete explanation of electrowetting is unquantified, but it should not be surprisingthat these limits exist.

    It was recently shown[21] that contact angle saturation can be explained if electrowetting is observed as a globalphenomenon affected by the detailed geometry of the system. Within this framework it is predicted that reversedelectrowetting is also possible (contact angle grows with the voltage).

    It has also been experimentally shown by Chevaloitt [22] that contact angle saturation is invariant to all materialsparameters, thus revealing that a universal theory for saturation is still lacking, and that when good materials areutilized, most saturation theories are invalid. This same paper further suggests that electrohydrodynamicinstability may be the source of saturation, a theory that is unproven but being suggested by several other groupsas well.

    Reverse electrowetting

    Reverse electrowetting[23] can be used to harvest energy via a mechanical-to-electrical engineering scheme.

    Photoelectrowetting

    Photoelectrowetting[24] can be observed if the conductor in the liquid/insulator/conductor stack used forelectrowetting is replaced by a semiconductor. By optically modulating the number of carriers in space-charge

    region of the semiconductor, the contact angle of a liquid droplet can be altered in a continuous way. This effectcan be explained by a modification of the Young-Lippmann equation.

    Materials

    For reasons that are still under investigation, only a limited set of surfaces exhibit the theoretically predictedelectrowetting behavior. Amorphous fluoropolymers are by far the best electrowetting materials discovered sofar, and it has been found that their behaviour can be enhanced by the appropriate patterning. Three types ofsuch polymers are commercially available: FluoroPel hydrophobic and superhydrophobic V-series polymers are

    sold by Cytonix, CYTOP is sold by Asahi Glass Co., and Teflon AF is sold by DuPont.

    Applications

    Electrowetting is now used in a wide range of applications (http://www.varioptic.com/en/topmenu/liquid-lens-technology.html) from modular to adjustable lenses, electronic displays (e-paper) and switches for optical fibers.Electrowetting has recently been evoked for manipulating Soft Matter particularly, suppressing coffee staineffect.[25] Furthermore, filters with Electrowetting functionality has been suggested for cleaning oil spills andseparating oil-water mixtures.[26]

    See also

    Microfluidics

    http://en.wikipedia.org/wiki/Microfluidicshttp://en.wikipedia.org/wiki/Electrowetting#cite_note-ERAL2-26http://en.wikipedia.org/wiki/Electrowetting#cite_note-ERAL1-25http://en.wikipedia.org/wiki/Coffee_stainhttp://en.wikipedia.org/wiki/E-paperhttp://www.varioptic.com/en/topmenu/liquid-lens-technology.htmlhttp://en.wikipedia.org/wiki/DuPonthttp://en.wikipedia.org/wiki/Asahi_Glass_Co.http://en.wikipedia.org/wiki/Cytonixhttp://en.wikipedia.org/wiki/Fluoropolymershttp://en.wikipedia.org/wiki/Semiconductorhttp://en.wikipedia.org/wiki/Electrowetting#cite_note-24http://en.wikipedia.org/wiki/Photoelectrowettinghttp://en.wikipedia.org/wiki/Electrowetting#cite_note-23http://en.wikipedia.org/w/index.php?title=Reverse_electrowetting&action=edit&redlink=1http://en.wikipedia.org/wiki/Electrowetting#cite_note-22http://en.wikipedia.org/wiki/Electrowetting#cite_note-21
  • 7/28/2019 Electrowetting - Wikipedia, The Free Encyclopedia

    4/5

    05/04/2013 Electrowetting - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/Electrowetting 4/5

    References

    1. ^ G. Beni and S. Hackwood, Appl. Phys. Lett. 38, 4, pp.207-209, 19812. ^ [1] (http://www.nsf.gov/awardsearch/piSearch.do;jsessionid=D05E82394F781CBA17DB0C5AC8E3C0B8?

    SearchType=piSearch&page=1&QueryText=&PIFirstName=james&PILastName=brown&PIInstitution=cytonix&PIState=MD&PIZip=&PICountry=US&RestrictExpired=on&Search=Search#results)

    3. ^ [2] (http://www.cytonix.com/US%20Patent%206143496%20.pdf)

    4. ^ B. Berge, "lectrocapillarit et mouillage de films isolants par l'eau", C.R. Acad. Sci. Paris, t. 317, Srie II, p.157-163, 1993.5. ^ ab J. Lee, "Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication, and

    Demonstration," PhD Thesis, University of California, Los Angeles, 20006. ^ J. Lee and C.-J. Kim, "Liquid Micromotor Driven by Continuous Electrowetting", Proc. IEEE Micro Electro

    Mechanical Systems Workshop, Heidelberg, Germany, Jan. 1998, pp. 538-5437. ^ M.G. Pollack, R.B. Fair and A.D. Shenderov, "Electrowetting-based actuation of liquid droplets for

    microfluidic applications", Applied Physics Letters, vol. 77 (11), 20008. ^ S.-K. Fan, P.-P. de Guzman, and C.-J. Kim, "EWOD Driving of Droplet on NxM Grid Using Single-Layer

    Electrode Patterns, Tech. Dig., Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island,SC, June 2002, pp. 134-137

    9. ^ J. Gong and C.-J. Kim, "Two-Dimensional Digital Microfluidic System by Multi-Layer Printed Circuit Board",Proc. IEEE Conf. MEMS, Orlando, FL, Jan. 2005, pp. 726-729

    10. ^ C.-J. Kim, "Integrated Digital Microfluidic Circuits Operated by Electrowetting-on-Dielectrics (EWOD)Principle", granted in 2000 by Defense Advanced Research Projects Agency (DARPA), award numberN66001-0130-3664

    11. ^ C.-J. Kim, "Micropumping by Electrowetting", Proceedings of the ASME International MechanicalEngineering Congress and Exposition, November 2001, New York, NY, IMECE2001/HTD-24200.

    12. ^ M.G. Pollack, Electrowetting-Based Microactuation Of Droplets For Digital Microfluidics, PhD Thesis, DukeUniversity, 2001.

    13. ^ S. K. Cho, H. Moon, and C.-J Kim, "Creating, Transporting, Cutting, and Merging Liquid Droplets byElectrowetting-Based Actuation for Digital Microfluidic Circuits", J. Microelectromechanical Systems, Vol. 12,2003, pp. 70-80

    14. ^ [3] (http://www.cytonix.com/US%20Application%2020080169184.pdf)15. ^ Advanced Liquid Logic (http://www.liquid-logic.com)16. ^ Gamma Dynamics (http://www.gammadynamics.net)17. ^ LiquaVista (http://www.liquavista.com)18. ^ Varioptic (http://www.varioptic.com)19. ^ Chang, H.C., Yeo, L. (2009).Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge

    University Press.20. ^ Kirby, B.J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices.

    (http://www.kirbyresearch.com/textbook) . Cambridge University Press. ISBN 978-0-521-11903-0.

    21. ^ A Model of Electrowetting, Reversed Electrowetting and Contact Angle Saturation. Dan Klarman, DavidAndelman, Michael Urbakh (http://arxiv.org/abs/1102.0791)

    22. ^ Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation(http://www.ece.uc.edu/devices/Downloads/Documents/Publications/Experimental%20Validation%20of%20the%20Invariance%20of%20Electrowetting_New.pdf)

    23. ^ T. Krupenkin and J.A.Taylor , Nature Comms. Rep.2, 448, (2011).(http://www.nature.com/ncomms/journal/v2/n8/full/ncomms1454.html?WT.ec_id=NCOMMS-201108)

    24. ^ S. Arscott, Sci. Rep.1, 184, (2011). Scientific Reports: Nature Publishing Group.(http://www.nature.com/srep/2011/111207/srep00184/full/srep00184.html)

    25. ^ H.Burak Eral, D.Mampallil, F.Mugele "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting", Soft Matter, 2011, 7, 4954-4958,

    (http://pubs.rsc.org/en/content/articlelanding/2011/sm/c1sm05183k) doi:10.1039/C1SM05183K(http://dx.doi.org/10.1039%2FC1SM05183K)

    26. ^ H.Burak Eral, R.Ruiter, J.Ruiter, J.M.Oh, C.Semprebon, M.Brinkmann, F.Mugele, "Reversible morphologicaltransitions of a drop on a fiber", Soft Matter, 2011, 7 (11), 5138 - 5143,(http://pubs.rsc.org/en/Content/ArticleLanding/2011/SM/c0sm01403f) doi:10.1039/C0SM01403F

    http://dx.doi.org/10.1039%2FC0SM01403Fhttp://dx.doi.org/10.1039%2FC0SM01403Fhttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://pubs.rsc.org/en/Content/ArticleLanding/2011/SM/c0sm01403fhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-ERAL2_26-0http://dx.doi.org/10.1039%2FC1SM05183Khttp://en.wikipedia.org/wiki/Digital_object_identifierhttp://pubs.rsc.org/en/content/articlelanding/2011/sm/c1sm05183khttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-ERAL1_25-0http://www.nature.com/srep/2011/111207/srep00184/full/srep00184.htmlhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-24http://www.nature.com/ncomms/journal/v2/n8/full/ncomms1454.html?WT.ec_id=NCOMMS-201108http://en.wikipedia.org/wiki/Electrowetting#cite_ref-23http://www.ece.uc.edu/devices/Downloads/Documents/Publications/Experimental%20Validation%20of%20the%20Invariance%20of%20Electrowetting_New.pdfhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-22http://arxiv.org/abs/1102.0791http://en.wikipedia.org/wiki/Electrowetting#cite_ref-21http://en.wikipedia.org/wiki/Special:BookSources/978-0-521-11903-0http://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://www.kirbyresearch.com/textbookhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-Kirby_20-0http://en.wikipedia.org/wiki/Cambridge_University_Presshttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-Chang_19-0http://www.varioptic.com/http://en.wikipedia.org/wiki/Electrowetting#cite_ref-18http://www.liquavista.com/http://en.wikipedia.org/wiki/Electrowetting#cite_ref-17http://www.gammadynamics.net/http://en.wikipedia.org/wiki/Electrowetting#cite_ref-16http://www.liquid-logic.com/http://en.wikipedia.org/wiki/Electrowetting#cite_ref-15http://www.cytonix.com/US%20Application%2020080169184.pdfhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-14http://en.wikipedia.org/wiki/Electrowetting#cite_ref-13http://en.wikipedia.org/wiki/Electrowetting#cite_ref-12http://en.wikipedia.org/wiki/Electrowetting#cite_ref-11http://en.wikipedia.org/wiki/Electrowetting#cite_ref-10http://en.wikipedia.org/wiki/Electrowetting#cite_ref-9http://en.wikipedia.org/wiki/Electrowetting#cite_ref-8http://en.wikipedia.org/wiki/Electrowetting#cite_ref-7http://en.wikipedia.org/wiki/Electrowetting#cite_ref-6http://en.wikipedia.org/wiki/Electrowetting#cite_ref-ReferenceA_5-1http://en.wikipedia.org/wiki/Electrowetting#cite_ref-ReferenceA_5-0http://en.wikipedia.org/wiki/Electrowetting#cite_ref-4http://www.cytonix.com/US%20Patent%206143496%20.pdfhttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-3http://www.nsf.gov/awardsearch/piSearch.do;jsessionid=D05E82394F781CBA17DB0C5AC8E3C0B8?SearchType=piSearch&page=1&QueryText=&PIFirstName=james&PILastName=brown&PIInstitution=cytonix&PIState=MD&PIZip=&PICountry=US&RestrictExpired=on&Search=Search#resultshttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-2http://en.wikipedia.org/wiki/Susan_Hackwoodhttp://en.wikipedia.org/wiki/Gerardo_Benihttp://en.wikipedia.org/wiki/Electrowetting#cite_ref-1
  • 7/28/2019 Electrowetting - Wikipedia, The Free Encyclopedia

    5/5

    05/04/2013 Electrowetting - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/Electrowetting 5/5

    (http://dx.doi.org/10.1039%2FC0SM01403F)

    External links

    Fan-TASY Lab at National Taiwan University (http://fan-tasy.org/)Wheeler Digital Microfluidics Group (http://www.chem.utoronto.ca/staff/WHEELER/) at the Universityof Toronto

    Electrowetting at the University of Cincinnati. (http://www.ece.uc.edu/devices/)Digital Microfluidics at Duke University (http://www.ee.duke.edu/research/microfluidics/)Physics of Complex Fluids at University of Twente (http://pcf.tnw.utwente.nl/)Diagram explaining electrowetting (http://www.kruss.de/en/newsletter/newsletter-archives/2006/issue-12/news.html#c5087)Progress with electrowetting displays(http://www.printedelectronicsworld.com/articles/progress_with_electrowetting_displays_00001461.asp?sessionid=1)Electrowetting flexible display at UC NanoLab, University of Cincinnati (http://www.nanolab.uc.edu/)

    Liquidvista Low Frequency Electrowetting 6.2- inch Display (http://www.youtube.com/watch?v=mr5m3NVtZzg&feature=related)

    Retrieved from "http://en.wikipedia.org/w/index.php?title=Electrowetting&oldid=543525279"Categories: Display technology

    This page was last modified on 11 March 2013 at 23:41.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms mayapply. By using this site, you agree to the Terms of Use and Privacy Policy.

    Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

    http://dx.doi.org/10.1039%2FC0SM01403Fhttp://www.wikimediafoundation.org/http://wikimediafoundation.org/wiki/Privacy_policyhttp://wikimediafoundation.org/wiki/Terms_of_Usehttp://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_Licensehttp://en.wikipedia.org/wiki/Help:Categorieshttp://en.wikipedia.org/w/index.php?title=Electrowetting&oldid=543525279http://www.youtube.com/watch?v=mr5m3NVtZzg&feature=relatedhttp://www.nanolab.uc.edu/http://www.printedelectronicsworld.com/articles/progress_with_electrowetting_displays_00001461.asp?sessionid=1http://www.kruss.de/en/newsletter/newsletter-archives/2006/issue-12/news.html#c5087http://pcf.tnw.utwente.nl/http://www.ee.duke.edu/research/microfluidics/http://www.ece.uc.edu/devices/http://www.chem.utoronto.ca/staff/WHEELER/http://fan-tasy.org/http://dx.doi.org/10.1039%2FC0SM01403Fhttp://en.wikipedia.org/wiki/Category:Display_technology