Electroweak precision observables in the LHC epoch

22
Electroweak Electroweak precision precision observables in observables in the LHC epoch the LHC epoch A.Zaitsev, Protvino A.Zaitsev, Protvino Gomel, July 2007 Gomel, July 2007

description

Electroweak precision observables in the LHC epoch. A.Zaitsev, Protvino Gomel, July 2007. EWPO. High precision measurements of EW parameters give the way to probe new physics via virtual effects of additional objects. Most of EW precision data were obtained at LEP and SLD. - PowerPoint PPT Presentation

Transcript of Electroweak precision observables in the LHC epoch

Page 1: Electroweak precision observables in the LHC epoch

Electroweak Electroweak precision precision

observables in the observables in the LHC epochLHC epoch

A.Zaitsev, ProtvinoA.Zaitsev, Protvino

Gomel, July 2007Gomel, July 2007

Page 2: Electroweak precision observables in the LHC epoch

EWPOEWPO

High precision measurements of EW parameters give the way to probe new physics via virtual effects of additional objects.

Most of EW precision data were obtained at LEP and SLD.

The progress in accelerators and detectors gives the chance for construction of dedicated Z-factory.

It can provide us with information on new physics

complimentary to that at LHC.

Page 3: Electroweak precision observables in the LHC epoch

Examples of new physics discovered with Examples of new physics discovered with EWPOEWPO

• Nν =2.984 ± 0.008

• Mt=172 + 10.2 - 7.6 GeV

Page 4: Electroweak precision observables in the LHC epoch

Examples of new physics discovered with Examples of new physics discovered with EWPOEWPO

Page 5: Electroweak precision observables in the LHC epoch

Examples of new physics discovered with Examples of new physics discovered with EWPOEWPO

Page 6: Electroweak precision observables in the LHC epoch

Dedicated Z - factoryDedicated Z - factory

• Suggested parameters • E GeV 46+46 82+82• R=2,8 km (UNK tunnel C=20,7 km)• Beam-beam tune shift ξy 0,05 0,09• Beta function β*y= 0,02 m• Synchrotron power P=60 MW• Energy loss per turn GeV 0,14 1,4• Luminosity 1034 cm-2s-1 0,5 0,2

LEP D Brandt, H Burkhardt, M. Lamont, S Myers et al

e+e- COLLIDER IN THE VLHC TUNNEL

A.Barcikowski, G. Goeppner, J. Norem et al

A Z-factory in the VLLC tunnel E. Keil

ZF A.Skrinsky et al

Page 7: Electroweak precision observables in the LHC epoch

Transverse polarizationTransverse polarization

• Transverse polarization at MZ

can reach 55% with polarization time t<1h.

• It gives excellent possibilities for precise energy calibration

From R.Asmann

Polarization at LEP CERN 1988

Page 8: Electroweak precision observables in the LHC epoch

Longitudinal Longitudinal polarizationpolarization

• Transverse polarization can be transformed to longitudinal one

• Experiment has to be inclined by 10

• Some loss of luminosity: 5·1033 cm-2s-1 → 1·1033 cm-2s-1

Longitudinal polarization at LEP

D.Treille

C.Bovet, H.Burkhardt, F.Couchot et al

Page 9: Electroweak precision observables in the LHC epoch

StatisticsStatistics• Z peak

0∫5years

L dt = 2.5·1041cm-2

NZ=1010

• Longitudinal polarization in Z peak

0∫1year

L dt = 1·1040cm-2

NZ=4·108

• WW at threshold (164 GeV)

0∫2years

L dt = 4·1040cm-2

NWW = 2.5·105

From P.Wells

Page 10: Electroweak precision observables in the LHC epoch

Z peakZ peak

• MZ, ΓZ, σhad,

Rl, Rb, Rc,

AlFB, Ab

FB, AcFB, Al(Pτ)

• Energy calibration:

Page 11: Electroweak precision observables in the LHC epoch

Systematic errors in ESystematic errors in E

• n

ZF goal: δMZsyst< 1 MeV

Page 12: Electroweak precision observables in the LHC epoch

MonitoringMonitoring • ZF goal:

• Absolute error: δL ≈ 3·10-4

• Relative error: δL ≈ 1·10-4

Page 13: Electroweak precision observables in the LHC epoch

ZF at Z peakZF at Z peak• δMZ ≈ 1 MeV• δΓZ ≈ 1 MeV• δσhad /σhad ≈5·10-4

• δRl / Rl ≈ 5·10-4

• δRb ≈0,0002• δ Rc ≈0,001• δ Al

FB ≈0,0002• δ Ab ≈0,001• δ Ac ≈0,002• δ Al(Pτ) ≈0,001

• At ZF the precision in EW parameters can be improved significantly in comparison with LEP/SLD owing to:

• 3 orders of statistics• Advanced

technologies in detectors

(especially in vertex detectors)

and data analysis• Better energy

calibration

R. HawkingsK. M¨onig. P.RowsonM.Woods

Page 14: Electroweak precision observables in the LHC epoch

AALR LR with longitudinal polarizationwith longitudinal polarization

• N=4·108

• P=55%• δL/L= 1·10-4

• δP/P= 1·10-4

↓• δALR= 1,6·10-4 (compare: SLD δALR= 2·10-3 )

• δSin2θW = 1/8 δALR = 2 ·10-5

• ALR = 2(1 − 4 sin2 θeff)/(1 + (1 − 4 sin2 θeff)2)

Blondel scheme

Page 15: Electroweak precision observables in the LHC epoch

W massW mass

• A

The crossection of WW pair production near the threshold in the region of

2E=164 GeV is very sensitive to W mass:

dσ/dM / σ = 0,5 GeV-1

δMstat= 4 MeV

δMEbeam = 5 MeV

δ M other syst = 5 MeV

δ M W ≈ 8 MeV

Page 16: Electroweak precision observables in the LHC epoch

EWPO for new physics (1)EWPO for new physics (1)

S

T

J. Erler, S.Heinemeyer, W. Hollik, G.Weiglein, P.M. Zerwas

Page 17: Electroweak precision observables in the LHC epoch

EWPO for new physics (2)EWPO for new physics (2)

δsin2θW = 2 ·10-5 → δMH / MH = 5% It requires: δMt<0.4 GeV δΔαhad (MZ)< 0.0001

Page 18: Electroweak precision observables in the LHC epoch

EWPO for new physics (3)EWPO for new physics (3)

Page 19: Electroweak precision observables in the LHC epoch

EWPO for new physics (4)EWPO for new physics (4)

Page 20: Electroweak precision observables in the LHC epoch

DecaysDecays• Z →γγγ

• FCNC: Z →eμ, eτ, μτ, s[b

• Z →W f [f

• Z →Q̃]Q̃ γ, Pγ

• γγ →x

• Nb] b= 1.5·109

• Z` M> 200÷1400 GeV → θmix < 10-3 →

V.ObraztsovY.Khokhlov

Page 21: Electroweak precision observables in the LHC epoch

ZF vs GigaZZF vs GigaZ

ZF GigaZCost x << 10xLum [cm-2s-1] 5·1033 ≈ 5·1033

∫ Lum dt [cm-2] 5·1041 >> 5·1040

δ E [MeV] <1 << >10Beamstrahlung [MeV] <<1 << >10Events/bunch ≈10-6 << ≈10-3

Background x < y ↓ ZF !

Page 22: Electroweak precision observables in the LHC epoch

TunnelTunnel 20.8 km circumference ~50 m underground 5.1 m diameter