Electronic transport in topological...

32
Electronic transport in topological insulators Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati Trieste, November 2011

Transcript of Electronic transport in topological...

Page 1: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Electronic transport in

topological insulators

Reinhold Egger Institut für Theoretische Physik, Düsseldorf

Alex Zazunov, Alfredo Levy Yeyati

Trieste, November 2011

Page 2: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

To the memory of my dear friend…

Please don‘t ignore these signs…

Page 3: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Overview

Brief intro to Topological Insulators (TI) M.Z. Hasan & C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

Helical Luttinger liquid in TI nanowires

RE, A. Zazunov & A. Levy Yeyati, PRL 105, 136403 (2010)

Coulomb blockade of Majorana fermion

induced transport

A. Zazunov, A. Levy Yeyati & RE, PRB 84, 165440 (2011)

Page 4: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Topological Insulator Recently discovered new state of matter

Bulk band gap like ordinary insulator, but band inversion due to strong spin orbit coupling

Time reversal symmetry: topological protection of gapless modes at surface

2D „quantum spin Hall“ TI: helical edge states Close cousin of integer quantum Hall state

Initially predicted for graphene Kane & Mele, PRL 2005

observed in HgTe quantum wells König et al., Science 2007

Here: 3D „strong“ topological insulator Predicted independently by three groups Moore & Balents,

PRB 2007; Fu, Kane & Mele, PRL 2007; Roy, PRB 2009

First observed via ARPES, present reference material is Bi2Se3 Hasan & Kane, RMP 2010

Page 5: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Helical edge state of 2D TI

© Hasan & Kane, RMP 2010

… up and down spins propagate in different direction:

a peculiar new spin-filtered 1D liquid

Page 6: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

2D massless Dirac fermions as surface

states of 3D topological insulators

Map from Brillouin zone

to Hilbert space has

nontrivial topology

Avoid fermion doubling

theorem

Spin momentum locking

Mathematically

characterized by Z2

invariant

Observed by ARPES in

Bi2Se3 © Hasan & Kane, RMP 2010

Page 7: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Bi2Se3 nanowires: fabrication

Peng et al. (Stanford), Nature Materials 2010

Au catalysed VLS growth

Rhombohedral phase,

space group 5

3dD

Page 8: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Surface state in transport experiments

Clear evidence for the

surface state:

Aharonov-Bohm

oscillations of

conductance

Upper bound for

surface state width:

6 nm

Peng et al., Nat. Mat. 2010

Page 9: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

TI nanowires: theory

Consider strong TI material (e.g. Bi2Se3):

cylindrical nanowire of radius R

Bandstructure from kp approach

Zhang et al., Nature Phys. 2009

anisotropy axis || z: conserved momentum k

Rotational xy symmetry: total angular momentum

conservation, → half-integer j

Wave function vanishes at boundary r=R: expand

in orthonormal set of radial functions

2/zz iJ

2/1,2/1

2/1,2/12

jnj

jnj

njRJ

RrJ

ru

Egger, Zazunov & Levy Yeyati, PRL 2010

Page 10: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Bandstructure of TI nanowire

R=15 nm

Bulk gap ≈ 0.3 eV

Conduction and valence

bands: indexed by j surface states gapped…

Density

Spin density sϕ

Spin density sz

Page 11: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Properties of surface states

Kramers degeneracy:

Inversion symmetry:

Qualitatively same results from tight-binding

calculations

Spin-momentum locking: Local spin is always

oriented tangential to surface and perpendicular

to momentum

Large |k|: R-mover counterclockwise spin-polarized

L-mover clockwise spin-polarized

rz eeR

jeks ˆˆˆ

kEkE jj

kEkE jj

Page 12: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Surface gap

TB

kp

Dirac fermion

description yields

R

vs

Magnetic flux can

close the surface gap!

Page 13: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Analytical description

Surface states well described by 2D

massless Dirac fermions on cylinder surface

Zhang & Vishwanath PRL 2010

spin-momentum locking, spin direction tangential

to surface

Dirac Hamiltonian in curved space:

Covariant derivative:

Spin connection defined via relation involving

Christoffel symbols

22

1

1 DDviH F

iiiD

kj

ik

j

i

j

i ,

i

zi e,

Page 14: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Surface Dirac fermion theory

Take into account anisotropy & dim.less flux

… yields surface Hamiltonian

Now perform unitary transformation

Then: antiperiodic boundary conditions around

circumference, i.e., half-integer j

Dispersion relation: waveguide modes

2/

||

2/

zz i

zy

i

surf eiR

vkveH

2

2

||,

R

jvkvkE j

2/ zieU

Page 15: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Surface state properties

Spin-momentum locking changes dispersion compared to nanotubes!

Scattering of Kramers pair forbidden (zero overlap of eigenstates!)

Gap vanishes for half-integer flux and special band spin-conserving single-particle back-scattering

forbidden, protected against weak disorder

chemical potential near zero: precisely one gapless helical mode, effectively time reversal invariant … from now on we focus on this case!

j

kjkj ,,

Page 16: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Bosonization

Chiral fermions with opposite spin

Bosonize:

Spin momentum locking:

Particle density:

i

zik

i

zik

surfie

zLeie

zRez FF11

4

1,

iezLR2

1)/(

zJs z

1

z 1

surface layer width

dual boson fields

Page 17: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Interacting helical Luttinger liquid

Include Coulomb interaction

Helical liquid protected against weak disorder

Long-ranged Coulomb tail dominates

Hard-core interaction subdominant (marginal)

Single-mode helical Luttinger liquid

Interaction parameter K smaller than in HgTe:

Almost same expression in SWNT Egger & Gogolin, PRL 1997

212

2 zz KKdz

uH

Kv

u ||

5.0...4.02

ln51.02

1

2/1

||

2

R

L

v

eK

Page 18: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Physical properties of helical LL

Anisotropic spin correlations / RKKY

interaction: Slow z-K power law decay with

2kF oscillations in z direction

Formally: anisotropic SDW phase

Linear conductance G(T) very sensitive to

presence of magnetic impurities

Maciejko et al., PRL 2009

Proximity induced superconductivity:

Majorana fermion states are induced at ends

of TI nanowire Cook & Franz, arXiv:1105.1787

Page 19: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Majorana fermions: end states of

topological superconductors

BdG Hamiltonian has particle-hole symmetry

Quasiparticle operator for zero mode (E=0) state bound

to the end of the TSC must be Majorana fermion

Then: Quasiparticle is its own antiparticle

Never clearly observed so far in any system …

© Hasan & Kane, RMP 2010

Page 20: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Parity issues

Fermion parity (-)n of closed dot is conserved

Parity determines „dot“ occupation

Imposes constraint on Hilbert space

Equivalent but technically simpler:

number operator N for Cooper pairs, with

conjugate phase ϕ

Instantaneous charge state: (N,nd)

Parity only determined by nd, no constraint

Fu, PRL 2010

1)(122 n

dRL ni

1,0 ddnd

Page 21: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Coulomb blockade of Majorana fermion

induced transport

Low-energy transport through topological superconductor wire with decoupled Majorana end states & source/drain metallic contacts Assume all energy scales small against proximity-

induced gap, i.e., no quasiparticles on grain

Zero mode Majorana fermions:

Build auxiliary complex d fermion

Assume „floating“ island (not grounded): current must be conserved

Zazunov, Levy Yeyati & Egger,

PRB 84, 165440 (2011)

ijji , RLRL //

RL id 2

1

Page 22: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Schematic setup

Page 23: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Model

Wire has electrostatic charging energy

Offset gate charge is continuous

Full Hamiltonian: Tunnel Hamiltonian: source contact couples to

& drain only to

Fermi liquid leads: Wide band approximation & Fermi functions with chemical potential μL/R

Hybridizations

22 gatedCc nnNEH

leadstc HHHH

LR

..chdedcidedcHk

i

RkR

i

LkLt

2

/0/ ~ RLRL

Page 24: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Noninteracting solution: resonant Andreev

reflection

Solution for Ec=0:

Fermi functions: lead distribution

Majorana spectral function

Linear conductance @ T=0:

resonant Andreev reflection

Bolech & Demler, PRL 2007

Law, Lee & Ng, PRL 2009

jjjRLj AF

dI

2

)0(

/

T

F2

tanh

22

Imj

jret

jj GA

h

eIeG

j

j

RLj

2)0(

/

2

Page 25: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Strong Coulomb blockade: Electron

teleportation

Resonant case of half-integer ngate

Charging energy allows only two configurations

For ngate=1/2,5/2,…: fixed Cooper pair number N,

states nd=0,1 degenerate

For ngate=3/2,7/2,…: (N-1,1) and (N,0) degenerate

In both cases, model can be mapped to spinless

resonant tunneling Hamiltonian

Linear conductance (T=0):

Interpretation: Electron teleportation

heG RL /2/

Fu, PRL 2010

Page 26: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Crossover from resonant Andreev

reflection to electron teleportation

Arbitrary charging energy: Keldysh approach

with (Majorana-generalized) AES action

General expression: Zazunov, Levy Yeyati & Egger, PRB 2011

Here study weak Coulomb blockade regime:

interaction corrections to noninteracting result

Full crossover from resonant Andreev

reflection (Ec=0) to teleportation (large Ec)

can be captured as well (work in progress)

Page 27: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Weak Coulomb blockade regime

Phase fluctuations are small & allow for semiclassical expansion

Keldysh-AES functional is then equivalent to Langevin equation for „classical“ phase

Inverse RC time of effective circuit:

Dimensionless damping strength

(higher energy scales: damping retardation!)

Gaussian random force

tcc

CE

jjj

j

22

22

ttKEtt C 24

Page 28: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

How to obtain the current…

K has lengthy expression… in equilibrium satisfies fluctuation dissipation theorem

Current:

solution for given noise realization

Some algebra:

Interactions always decrease current!

eqeqT

K

2coth2

J

j

ret

jjj eFGdI

sin

02

1)(

2

ttttJ cc

tc

222

0

2 /1

cos11

KdJ

Page 29: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Nonlinear conductance

Symmetric system & T=0

Observable:

Noninteracting case (resonant Andreev reflection):

Analytical result for : universal power law

suppression of linear conductance with increasing

charging energy

hVe

VIVg

/

)()(

2

1tan 1)0(

eV

eVVg

2/

2/

RL

RL eV

CE

8/1

96.00

CEg

Page 30: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Linear conductance: numerics

analytical result

numerics

interaction induced suppression

Page 31: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Nonlinear conductance

Page 32: Electronic transport in topological insulatorsthphy.uni-duesseldorf.de/~ls4/pdfs/trieste2011.pdfElectronic transport in topological insulators Reinhold Egger Institut für Theoretische

Conclusions

Topological insulators provide interesting new

playground for transport through interacting

nanostructures

TI nanowire as realization of single-mode

helical Luttinger liquid with strong correlations

Egger, Zazunov & Levy Yeyati, PRL 105, 136403 (2010)

Coulomb blockade in Majorana fermion

induced transport: from resonant Andreev

reflection to electron teleportation

Zazunov, Levy Yeyati & Egger, PRB 84, 165440 (2011)