Electronic Power Conversion - TU Delft OCW · Electronic Power Conversion Review of Basic...

32
1 Challenge the future 1 Challenge the future Electronic Power Conversion Review of Basic Electrical and Magnetic Circuit Concepts

Transcript of Electronic Power Conversion - TU Delft OCW · Electronic Power Conversion Review of Basic...

  • 1

    Challenge the future 1 Challenge the future

    Electronic Power Conversion Review of Basic Electrical and Magnetic Circuit Concepts

  • 2 Basic Electrical and Magnetic Circuit Concepts

    3. Review of Basic Electrical and Magnetic Circuit Concepts

    • Notation •  Electric circuits

    •  Steady state – sinusoidal, non-sinusoidal •  Power – apparent, real, reactive •  Power factor, THD, harmonics

    • Magnetic circuits •  Ampere’s law, Faraday’s law •  Magnetic reluctance and magnetic circuits •  Inductor •  Transformer

  • 3 Basic Electrical and Magnetic Circuit Concepts

    Notation

    • Notation: •  Lowercase – instantaneous value e.g. vo (=v0(t) ) •  Uppercase – average or rms value e.g. Vo •  Bold – phasor, vector

    •  Steady state: •  State of operation where waveforms repeat with a period T that is

    specific for the system.

  • 4 Basic Electrical and Magnetic Circuit Concepts

    Instantaneous, Average Power and RMS current

    •  Instantaneous power

    •  Average power

    •  Power to resistive load

    •  I – RMS (Root-mean-square) T2

    0

    1I = i dtT ∫

    T2

    av,R0

    1P = R i dtT ∫

    p= vi

    T T

    av0 0

    1 1P = pdt = v i dtT T∫ ∫

    2 av,RP = R Ior

    1

    1

    2

    2

    3

    3

    4

    4

    5

    5

    6

    6

    D D

    C C

    B B

    A A

    Title

    Number RevisionSize

    B

    Date: 4-11-2008 Sheet of File: Sheet1.SchDoc Drawn By:

    R

    i

    v

    +

    -

    R

    2

    av,RVP =R

  • 5 Basic Electrical and Magnetic Circuit Concepts

    •  Example

    0 1 10 4−× 2 10 4−× 3 10 4−× 4 10 4−×0

    10

    20v t( )

    i t( )

    Vav

    Vrms

    p t( )

    Pav

    t

    10 5 sin(2 10 )v = V V kHz tπ+ ⋅ ⋅ ⋅1010.607

    1011.25

    av

    rms

    av

    V VV VRP W

    ==

    = Ω=

    0 1 10 4−× 2 10 4−× 3 10 4−× 4 10 4−×0

    10

    20v t( )

    i t( )

    Vav

    Vrms

    p t( )

    Pav

    t

  • 6 Basic Electrical and Magnetic Circuit Concepts

    Steady-State ac Sinusoidal Waveforms

    1( ) cos ( )i t = 2 I t - ω φ

    0 5 10 5−× 1 10 4−×3−

    2−

    1−

    0

    1

    2

    3

    v t( )

    i t( )

    ip t( )

    iq t( )

    t

    1cosv(t) = 2 V tω

    = j0V eV = -jI e φI

    •  Phasor representation

    φ

    0 5 10 5−× 1 10 4−×3−

    2−

    1−

    0

    1

    2

    3

    v t( )

    i t( )

    ip t( )

    iq t( )

    t

    = VV 0∠ °

    qjI−

    pI

    = I -φ∠I

    ω

    ip (t) = 2I p cosωt

    = ( 2I cosφ)cosωt

    iq (t) = 2Iq sinωt

    = ( 2I sinφ)sinωt

    ( ) ( ) ( )p qi t i t i t= +

    = jR+ j L= Ze φωZComplex impedance

    = ⋅V I Z

    • Resistive/inductive load

  • 7 Basic Electrical and Magnetic Circuit Concepts

    Complex, Real and Reactive Power

    • Complex power [VA] * = = S je φS VI

    • Apparent power S V I=

    • Real average power [W]

    [ ] = Re =VIcosP φS• Reactive power [VAr]

    [ ] = Im =VIsinQ φS

    P jQ= +S

    = VV 0∠ °

    qjI−

    pIω

    = I -φ∠I

    PjQ

    S

    • Only Ip is responsible for power transfer from source to load!

  • 8 Basic Electrical and Magnetic Circuit Concepts

    Complex, Real and Reactive Power

    •  Physical meaning •  Apparent power S influences cost and size:

    •  Insulation level and magnetic core size depend on V •  Conductor size depends on I

    •  Real power P – useful work and losses; •  Reactive power Q – preferably zero.

  • 9 Basic Electrical and Magnetic Circuit Concepts

    Power Factor (arbeidsfactor)

    •  Power factor •  How effectively is energy transferred between source and load

    •  For sinusoidal systems:

    PPFS

    @

    cos cosP V IPFS V I

    φ φ⋅ ⋅= = =⋅

  • 10 Basic Electrical and Magnetic Circuit Concepts

    Power Factor – Beer Mug Analogy

    • Glass (over)sized to hold beer and foam •  Power wires (over)sized for Watts and VArs

    Active Power

    Reactive Power

    Apparent Power

    Source: Wikimedia Commons CC-BY-SA

  • 11 Basic Electrical and Magnetic Circuit Concepts

    3 3 cos 3 cosph LLP VI V Iϕ ϕ= =

    cosphP VI ϕ=

    3LLV V=

    phS VI=

    3 3 3ph LLS VI V I= =

    cosPF φ=

    Three Phase Circuits

  • 12 Basic Electrical and Magnetic Circuit Concepts

    Steady-State Non-Sinusoidal Waveforms

    •  Periodic non-sinusoidal waveform •  Represented as sum of its harmonics

    0 0.05 0.1 0.15 0.210−

    5−

    0

    5

    10

    i1h t( )

    i3h t( )

    i5h t( )

    i7h t( )

    t

    0 0.05 0.1 0.15 0.230−

    20−

    10−

    0

    10

    20

    30

    i t( )

    t

    1st 3rd

    5th

    7th

    i t( ) 10A sin ω1 t⋅( ) 7 A⋅ sin 3ω1 t⋅ π2−⎛⎜⎝

    ⎞⎟⎠⋅+ 4 A⋅ sin 5ω1 t⋅( )⋅− 2 A⋅ sin 7ω1 t⋅( )+:=

  • 13 Basic Electrical and Magnetic Circuit Concepts

    Fourier Analysis of Non-Sinusoidal Waveforms

    • Non-sinusoidal periodic waveform f(t)

    where {0 0

    1 1

    1( ) ( ) cos( ) sin( )}2h h hh h

    f t = F + f t a a h t b h tω ω∞ ∞

    = =

    = ⋅ + ⋅ + ⋅∑ ∑

    2

    0

    1 ( ) cos( ) ( )ha f t h t d tπ

    ω ωπ

    = ∫2

    0

    1 ( )sin( ) ( )hb f t h t d tπ

    ω ωπ

    = ∫

    1,...,h = ∞

    1,...,h = ∞

    2

    0 00 0

    1 1 1( ) ( ) ( ) ( )2 2

    T

    F a f t d t f t d tT

    π

    ωπ

    = = =∫ ∫

  • 14 Basic Electrical and Magnetic Circuit Concepts

    Line Current Distortion

    1( ) sins sv t = 2 V tω

    1 2 1( ) ( ( ) (( )) )s shh s ds is = i i t + i t = t+ itt i

    =∑

    1 1 12

    ( ) sin( ) sin( )s s sh h hh

    i t = 2 I t - + 2 I t - ω φ ω φ∞

    =∑

    current i = fundamental harmonic is1+ distortion current idis

    0 0.05 0.1 0.15 0.220−

    10−

    0

    10

    20

    v t( )

    i t( )

    i1h t( )

    idis t( )

    t

    0 0.05 0.1 0.15 0.220−

    10−

    0

    10

    20

    v t( )

    i t( )

    i1h t( )

    idis t( )

    t

  • 15 Basic Electrical and Magnetic Circuit Concepts

    Total Harmonic Distortion (THD)

    • A measure of how much a composite current deviates from an ideal sine wave

    • Caused by the way that electronic loads draw current

    1 2

    01

    T

    s s1I = i (t) dt T ∫

    2 21 2s s shh

    I = I + I∞=∑

    2 2 21 2dis s s shh

    I = I I = I ∞=

    − ∑

    or

    and:

    2

    2 1

    sh

    h s

    ITHD = I

    =

    ⎛ ⎞⎜ ⎟⎝ ⎠

    ∑Total harmonic distortion:

    1 1 12

    ( ) sin( ) sin( )s s sh h hh

    i t = 2 I t - + 2 I t - ω φ ω φ∞

    =∑

  • 16 Basic Electrical and Magnetic Circuit Concepts

    Harmonics

    • Negative effects of harmonics •  Conductor overheating •  Capacitors can be affected by heat rise increases due to power loss

    and reduced life time •  Distorted voltage waveform •  Increased losses (e.g. transformers overheating) •  Fuses and circuit breakers fault operation

    • Harmonic standards •  International Electrotechnical Commission Standard IEC-555 •  IEEE/ANSI Standard 519

  • 17 Basic Electrical and Magnetic Circuit Concepts

    Power Factor PPFS

    @1 1

    0 01 1

    ( ) ( ) ( )T T

    s s1 1P = p t dt = v t i t dtT T∫ ∫

    s sS = V I

    1

    1 101

    sin( ) sin( )T

    s sh h hh

    1P = 2 V t 2 I t - dtT

    ω ω φ∞=

    ⋅∑∫

    1

    1 1 1 1 1 101

    sin( ) sin( ) cosT

    s s s s1P 2 V t 2 I t - dt V I T

    ω ω φ φ= ⋅ =∫

    1 11

    coscoss s1

    s s s

    V I IPF = V I I

    φ φ=

    Real power (vermogen)

    Apparent power (schijnbaar vermogen)

    with

    and

    ( )sv t ( )si t

    DPF

  • 18 Basic Electrical and Magnetic Circuit Concepts

    Inductor and Capacitor Phasor Diagrams

    •  Phasors are only applicable to sinusoidal steady state waveforms.

    jωL

    + - vL

    iL

    VL

    IL

    + - vC

    -1/jωC

    VC

    IC ωω

  • 19 Basic Electrical and Magnetic Circuit Concepts

    Inductor and Capacitor Response

    • Time domain:

    11( ) ( ) ( )

    t

    L L Lt

    1i t = i t + v t dtL ∫ 11( ) ( ) ( )

    t

    c c ct

    1v t = v t + i t dtC ∫

    ( ) LLdiv t Ldt

    = ⋅ ( )C

    Cdvi t Cdt

    = ⋅

  • 20 Basic Electrical and Magnetic Circuit Concepts

    Inductor in Steady State Volt-second Balance

    11( ) ( ) ( )

    t

    L L Lt

    1i t = i t + v t dtL ∫

    1

    1

    ( ) 0t T

    Lt

    v t dt+

    =∫

    v(t) = T)+v(t

    i(t) = T)+i(t

    Steady state implies:

    Net change in flux is zero

    , 0L av v =

  • 21 Basic Electrical and Magnetic Circuit Concepts

    Capacitor in Steady State Amp-second balance 11( ) ( ) ( )

    t

    c c ct

    1v t = v t + i t dtC ∫

    1

    1

    ( ) 0t T

    Ct

    i t dt+

    =∫Net change in charge is zero

    , 0C avi =

    Fig. 3-9 Note: error in fig 3-9 from textbook iC in the second interval should be constant, ----- because vc has a constant derivative in that interval

  • 22 Basic Electrical and Magnetic Circuit Concepts

    Basic Magnetics Theory

    c

    d = i ∑∫ H l—

    sec

    k k m mK core Mtions windings

    H l N I=∑ ∑

    1i g gH l H l N i+ =

    Ampere’s law (4th Maxwell’s equation)

    Right-hand rule:

    c

  • 23 Basic Electrical and Magnetic Circuit Concepts

    H-field, B-field and Material Properties

    • Relationship between B and H given by: •  material properties •  often approximated by:

    • Continuity of flux

    = µB H

    A

    dφ = ⋅∫∫B AφclosedArea = B ⋅dA

    A∫∫ = 0

    Flux (by def.):

    Continuity of flux: Gauss’s law of magnetism (2nd Maxwell’s equation)

  • 24 Basic Electrical and Magnetic Circuit Concepts

    Magnetic Reluctance

    = µB H

    ( ) k k km m k k k k k km k k k kk k k k k k

    l l lN I H l B A A A A

    φ φ φµ µ µ

    = = = = = ⋅ℜ∑ ∑ ∑ ∑ ∑

    Ampere’s law:

    kk

    k k

    l = Aµ

    ℜMagnetic reluctance:

    Magnetic Electrical

    k ℜ R

    i φv Ni

  • 25 Basic Electrical and Magnetic Circuit Concepts

    Magnetic Circuit Analysis

    v i R = ⋅Magnetic Electrical

    kNi φ= ⋅ℜ

    m m km k

    N I φ= ℜ∑ ∑ m km k

    v i R =∑ ∑Ohm’s law:

    Kirchhoff’s voltage law

    0kkφ =∑ 0k

    ki =∑ Kirchhoff’s current law

  • 26 Basic Electrical and Magnetic Circuit Concepts

    Faraday’s law

    d d(N ) dBe = = NA dt dt dt

    φΨ =

  • 27 Basic Electrical and Magnetic Circuit Concepts

    Inductor

    • Coil self-inductance

    NL dii e L

    d(N ) dte = dt

    φ

    φ

    ⎫⎪⎪ → =⎬⎪⎪⎭

    @

    2 2NL = N ANLilN i

    φµ

    φ

    ⎫⎪ → = =⎬ ℜ⎪ℜ = ⎭

    Al = µ

  • 28 Basic Electrical and Magnetic Circuit Concepts

    Transformer •  Ideal transformer

    Faraday’s law

    Ampere’s law

    0l = Aµ

    ℜ ≈

    1,2i i

    iN i φ

    =

    = ⋅ℜ∑ 1 1 2 2N i N i φ− = ⋅ℜ

    1 1dv Ndtφ= ⋅ 2 2

    dv Ndtφ= ⋅

    1 2

    1 2

    v vN N

    =

    1 1 2 2i N i N=Core reluctance

  • 29 Basic Electrical and Magnetic Circuit Concepts

    Transformer

    • Magnetising inductance

    0l = Aµ

    ℜ ≠

    1 1 2 2N i N i φ− = ⋅ℜ

    1 1dv Ndtφ= ⋅

    1 21 1 2

    1

    ( ) m mN Nd dv i i L i

    dt N dt= ⋅ − = ⋅ℜ

    21

    mNL =ℜ2

    1 21

    mNi i iN

    = −

    Non-zero core reluctance

  • 30 Basic Electrical and Magnetic Circuit Concepts

    Transformer •  Leakage flux

    111 1 1 1 1 1 1

    ldd dv = R i N R i Ndt dt dt

    φφ φ⎛ ⎞+ = + +⎜ ⎟⎝ ⎠

    222 2 2 2 2 2 2

    ldd dv = R i N R i Ndt dt dt

    φφ φ⎛ ⎞− − = − − −⎜ ⎟⎝ ⎠

    1 1lφ φ φ= +

    2 2lφ φ φ= − +

    R1,2 – ohmic resistances of the windings

    φl1,2 − leakage flux

  • 31 Basic Electrical and Magnetic Circuit Concepts

    11 1 1 1 1

    22 2 2 2 2

    l

    l

    div = R i L edtdiv = R i L edt

    + +

    − − +

    Equivalent Transformer Circuit

    222 2 2 2 2 2 2

    ldd dv = R i N R i Ndt dt dt

    φφ φ⎛ ⎞− − = − − −⎜ ⎟⎝ ⎠

    11 1 1 1

    2 22 2 2 2

    1

    ml m

    ml m

    d di iv = R i L Ldt dt

    Nd di iv = R i L Ldt N dt

    + +

    − − +

    /L = N iφ⋅

    21 2

    1m

    Ni = i + iN

    111 1 1 1 1 1 1

    ldd dv = R i N R i Ndt dt dt

    φφ φ⎛ ⎞+ = + +⎜ ⎟⎝ ⎠

  • 32 Basic Electrical and Magnetic Circuit Concepts

    Image credits

    • All uncredited diagrams are from the book “Power Electronics: Converters, Applications, and Design” by N. Mohan, T.M. Undeland and W.P. Robbins.

    • All other uncredited images are from research done at the EWI faculty.