Electron scattering experiment off proton at ultra-low Q2...ULQ2@JPARC Nov. 1, 2016 Electron...

41
ULQ2@JPARC Nov. 1, 2016 Electron scattering experiment oproton at ultra-low Q 2 Toshimi Suda Research Center for Electron-Photon Science, Tohoku University, Sendai

Transcript of Electron scattering experiment off proton at ultra-low Q2...ULQ2@JPARC Nov. 1, 2016 Electron...

  • ULQ2@JPARCNov. 1, 2016

    Electron scattering experiment off proton at ultra-low Q2

    Toshimi Suda

    Research Center for Electron-Photon Science, Tohoku University,

    Sendai

  • ULQ2@JPARCNov. 1, 2016

    Proton Radius Puzzle Proton Radius Puzzle A New Way

    to Tame Cancer

    MEDICINE

    People Who

    Remember Everything

    NEUROSCIENCE

    INFOTECH

    The Proton Problem

    © 2014 Scientific American

    FEBRUARY 2014

    2010 2013

    “Proton Radius Puzzle”

  • ULQ2@JPARCNov. 1, 2016

    4%(7σ)

    e-scatt. (1950~)

    hydrogen (1990~)

    μ-hydrogen (2000~)

    Proton Charge Radius (fm)

    “ Proton charge radius puzzle”

    so far, not yet settled (2016)

    Data ? Interpretation ?

    QED calculation ?

    New Physics (beyond SM ?)

    Higher order effects ?

    many many discussions ..

  • ULQ2@JPARCNov. 1, 2016Who are we ?

    We are “ Electron Scatterers”.

    we are currently operating the World’s first electron scattering facility dedicated for exotic nuclei.

    Not for stable nuclei,,,,,BUT never-yet-performed Short-Lived Exotic Nuclei !

    “Hofstadter’s experiments” for exotic nuclei

    “classical” elastic electron scattering to study the charge density distributions pioneered by R. Hofstadter in 1950s !

    d�

    d⌦=

    d�Mott

    d⌦|F

    c

    (q)|2

    Fc(⌥q) =�

    �(⌥r)e�i⇧q·⇧rd⌥r

  • ULQ2@JPARCNov. 1, 2016Nuclei studied by electron scattering

    prot

    on n

    umbe

    r

    neutron number

    126

    82

    50

    282082

    82

    50

    28

    20

    82

    82

    50

    28

    20

    82

    126

    82

    50

    282082

    208Pb

    40,48Ca

    16O

    ○ Most of stable nuclei (except noble gases such as Kr, Xe) ○ some example for unstable nuclei such as 3H, 14C, 41Ca etc...

    strictly limited to stable nuclei never applied for exotic nuclei (short-lived)

    H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

  • ULQ2@JPARCNov. 1, 2016Electron Scattering

    1. point particle 2. electromagnetic interaction i) coupling : charge and current => el.mag. structure ii) “weak” -> probing whole volume perturbation theory iii) exp. data => structure information 3. variable q for fixed ω

    ~e ~e0

    ! = e� e0

    ~q = ~e� ~e0

    Electron scattering provides direct and unambiguous structure information of atomic nuclei including proton

  • ULQ2@JPARCNov. 1, 2016Elastic Electron Scattering

    d�

    d⌦=

    d�Mott

    d⌦|F

    c

    (q)|2

    Fc(⌥q) =�

    �(⌥r)e�i⇧q·⇧rd⌥r

    ⇢c(~r) =ZX

    i=1

    | i(~r)|2⇢c(~r) =ZX

    i=1

    | i(~r)|2

    For 0+ nuclei

    For non-0+ nuclei

    d�

    d⌦=

    d�Mott

    d⌦|F

    c

    (q)|2[Charge+Magnetic]

  • ULQ2@JPARCNov. 1, 2016SCRIT electron scattering facility

    the world’s first facility dedicated for exotic nuclei

  • ULQ2@JPARCNov. 1, 2016SCRIT facility at RIKEN RIBF

    LuminosityMonitor

    RTM : Race Track Microtron injector + ISOL driver 150MeV/0.5 mA peak/2 μs

    Electron energy: 150 - 700 MeV stored current: 300 mA (as of today) beam life time:2 hours

    WiSES (Window-frame Spectrometer for Electron Scattering) Δp/p ~ 10-3 ΔΩ ~ 100 mSr long target acceptance ~ 50 cm

    ISOL (ERIS) photofission of 238U132Sn : 3x105 @ 20W

  • ULQ2@JPARCNov. 1, 2016SCRIT(Self-Confining RI Target)

    Problematic ion trapping phenomena @

    electron storage ring

    ionized residual gases are trappedby the circulating electron beam

    ill problem of e-storage ring

    Idea

    vacuum chamber

    electron beam

    residual gas ions

    scatteredelectron

    electrontrapped RI

    electrode

    e-beam

    manipulating injection,trapping and ejection

    for short-lived RI

    e-ring

    RIs from an external ion source

    trapping RIs on electron beam   (automatic e-scattering off trapped RIs)

    new ion trap for e-RI scattering

    M. Wakasugi, T. Suda and Y. YanoNucl. Instrum. and Method A278 (2004) 216.

    electrode

  • ULQ2@JPARCNov. 1, 2016SCRIT system

  • ULQ2@JPARCNov. 1, 2016

    50 cm

  • ULQ2@JPARCNov. 1, 2016

    110 120 130 140 150 1600

    200

    400

    600

    800

    160 170 180 190 200 2100

    500

    1000

    1500

    2000

    2500

    260 270 280 290 300 3100

    100

    200

    300

    Scattered electron energy (MeV)

    Cou

    nt (/

    MeV

    )

    132Xe(e,e’)

    a) b) c)

    Ion IN - Ion OUT for comparative measurements

    132Xe(e,e’)

    Ee = 150 MeV Ee = 200 MeV Ee = 300 MeV

  • ULQ2@JPARCNov. 1, 2016

    ]-1 [fmeff

    q0.4 0.6 0.8 1 1.2 1.4

    )]-1

    sr2)(c

    m-1 s

    -2 [(

    cmΩdσd L

    -310

    -210

    -110

    1

    10

    210

    First Data from the SCRIT facility

    132Xe is a stable nucleus but has never been targeted.

    The facility started its full operation, and the first physic run was carried out since April, 2016.

    Luminosity, 1027 cm-2s-2, is achieved with only ~107 target nuclei

    132Xe(e,e) Ee = 150, 200, 300 MeV θ = 30 - 60° Nions ~ 107 /s

    First experiment for exotic nucleus, 138Xe (14 min.), this autumn. and to be followed by doubly magic nucleus, 132Sn (50s).

    Ee = 150 MeV

    Ee = 200 MeV

    Ee = 300 MeV

    Preliminary

  • ULQ2@JPARCNov. 1, 2016

    ]-1 [fmeff

    q0.4 0.6 0.8 1 1.2 1.4

    Mot

    tΩdσd /

    Ωdσd

    -410

    -310

    -210

    -110

    1

    PWIA

    d�

    d⌦=

    d�Mott

    d⌦|F

    c

    (q)|2

    DWBA

    |FDWBAC

    |2 ⇠ d�d⌦

    /d�

    Mott

    d⌦

    Ee = 150 MeV

    Ee = 200 MeV●○▼ Ee = 300 MeV

    Preliminary

  • ULQ2@JPARCNov. 1, 2016Luminosities and Number of target nuclei

    Ee Nbeam ρ・t LHofstadter’s era

    (1950s) 150 MeV~ 1nA

    (~109 /s) ~1019 /cm2 ~1028 /cm2/s

    JLAB 6 GeV ~100μA (~1014 /s) ~1022 /cm2 ~1036 /cm2/s

    SCRIT 150 - 300 MeV~200 mA (~1018 /s) ~ 10

    9 /cm2 ~1027 /cm2/s

    ~107 ions are trapped on the electron beam of ~ 1 mm2 cross section

    ~107 /mm2 -> 109 /cm2

  • ULQ2@JPARCNov. 1, 2016

    Proton Charge Radius

  • ULQ2@JPARCNov. 1, 2016

    4%(7σ)

    e-scatt. (1950~)

    hydrogen (1990~)

    μ-hydrogen (2000~)

    Proton Charge Radius (fm)

    Proton charge radius puzzle

  • ULQ2@JPARCNov. 1, 2016Proton charge radius determination

    Spectroscopy Scattering

    e-

    μ-

    me = 0.511 MeV mμ = 105.6 MeV

    0.8770(60)0.8758(77)

    0.8409(4) MUSE@PSI

  • ULQ2@JPARCNov. 1, 2016μH spectroscopy

    P. Randolf et al., Nature 466 (2010) 213

  • ULQ2@JPARCNov. 1, 2016

    1960 1970 1980 1990 2000 2010

    e+p, e+A elastic scattering R. Hofstadter (1961)

    e+p deep inelastic scattering J. Friedman, H. Kendall and R. Taylor

    (1990)

    eH spec.

    μH spec.

    electron scattering

    Electron scattering off proton

  • ULQ2@JPARCNov. 1, 2016

    < r2 >=

    Zr2⇢(~r)d~r

    RMS radius

    ρ(r)~ exponential

    Proton charge radius

    = 4⇡

    Zr4 ⇢(r) dr

  • ULQ2@JPARCNov. 1, 2016

    GE(Q2) =

    1

    (1 + Q2

    ↵2 )2

    ↵2 = 0.71(GeV/c)2

    Q2 1/2=2p3

    < r2 >1/2= 0.81fm

    (r > 0)

    Fourier transformation

    GE(Q2) ! ⇢(r)

  • ULQ2@JPARCNov. 1, 2016

    GE(Q2) ⇠ 1� < r

    2 >1/2

    6Q2 +

    < r4 >1/2

    120Q4 � ...

    2)low Q2

    ill problem : higher order contribution

    lower Q2 as possible

    < r2 >⌘ �6 dGE(Q2)

    dQ2|Q2!0

    < r2 >=

    Zr2⇢(~r)d~r

    1)high Q2: charge density ρ(r)

    radius is sensitive to ρ(r) at large distance ( even at r ~ 4 fm )

    Electric Form FactorGE

    ρ(r)

    ⇢(r) ⇠ e�↵r

    ee’θ

    momentum transferenergy transfer4 momentum transfer Q2 = q2 � !2 = 4EeEe0sin2(✓/2)

    ~q = ~e� ~e0! = e� e0

    Q2 = q2 � !2 = 4 e e0sin2(✓/2)

    d�

    d⌦= (

    d�

    d⌦)Mott

    G2E

    (Q2) + ⌧✏

    G2M

    (Q2)

    1 + ⌧

    ✏ =1

    1 + 2(1 + ⌧)tan2 ✓2

    ⌧ =Q2

    4m2p

    (

    d�

    d⌦

    )

    Mott

    =

    z2↵2

    4e2cos

    2(✓/2)

    sin

    4(✓/2)

    / e2

    q4

    Proton charge radius by e-scattering

  • ULQ2@JPARCNov. 1, 2016Density distribution and RMS radius

    < r2 >=

    Zr2⇢(~r)d~rCharge radius

    R rr2⇢(r)d~rR1r2⇢(r)d~r

    208Pb

    < r2 >1/2

    RMS radius(5.499(1) fm)

    Ratio = 98 %

    R rr2⇢(r)d~rR1r2⇢(r)d~r

    5.503±0.002 fm (4x10-4)

    R rr2⇢(r)d~rR1r2⇢(r)d~r

    Proton

    < r2 >1/2

    ~ exponential

    RMS radius(~0.8 fm)

    Ratio = 98 %

    0.895±0.018 fm (2x10-2)

  • ULQ2@JPARCNov. 1, 2016

    J. C. Bernauer et al., Phys. Rev. C90 (2014) 015206.

    = 0.879 (5) fm

    but …there are discussions about the fitting

    how to treat higher order ?

    Electron scattering at Low Q2

    GE(Q2) ⇠ 1� < r

    2 >

    6Q2 +

    < r4 >

    120Q4 � < r

    6 >

    5040Q6 + ...

  • ULQ2@JPARCNov. 1, 2016

    Q2 = 0.0003 (GeV/c)2

    Reduction of the higher order contribution

    What are we going to do ???

    GE(Q2) at lower Q2 region

  • ULQ2@JPARCNov. 1, 2016

    Mainz 2014 Tohoku

    Q2min (GeV/c)2 0.004 0.0003

    Ee (MeV) 180 ~ 850 20 ~ 60

    absolute dσ/dΩ x 〇

    GE/GM separation x 〇

    What are we going to do ?

  • ULQ2@JPARCNov. 1, 2016

    Lab. Ee θ absolute dσ/dΩGE, GM

    separation

    JLAB (USA)

    Ultra-forward

    1.1 - 2.2 GeV

    1 - 4 deg. 〇 X

    Mainz (Germany)

    lower Ee by Bremsstrah

    lung

    195, 330, 490 MeV X X

    TOHOKU low Ee 20 - 60 MeV30 - 150

    deg. 〇 〇

    Electron scattering at Lower Q2

    ELPH, Tohoku Univ. : only a electron scattering facility.

    experimental GE separation at ultra-low Q2

  • ULQ2@JPARCNov. 1, 2016

    Research Center for Electron Photon ScienceTohoku University

    Sendai

    Where are we ?

  • ULQ2@JPARCNov. 1, 2016

    1.3 GeVbooster

    synchrotron

    Exp. Hall 2

    GeV-γ Hall

    NKS II

    FOREST 90 MeV e-Linac (injector)

    GeV γ beam

    60 MeV e-Linac

    γ/e beam

    GeV γ beam

    Exp. Hall 1

    Research Center for Electron-Photon Science

  • ULQ2@JPARCNov. 1, 2016

    1.3 GeVbooster

    synchrotron

    Exp. Hall 2

    GeV-γ Hall

    NKS II

    FOREST 90 MeV e-Linac (injector)

    GeV γ beam

    60 MeV e-Linac

    γ/e beam

    GeV γ beam

    Exp. Hall 1

    e-beam

    Ee : 20 ~ 60 MeV variable Ie : 0 ~ 150 uA

    “OLD” Low-Energy Electron Linac

    Low-energy branch

  • ULQ2@JPARCNov. 1, 2016e-scattering off proton at ultra-low Q2

    Goal of our experimentGE(Q2) measurements in 0.0003 ≤ Q2 ≤ 0.008 (GeV/c)2

    Our experimentsLow energy electron beam ( 20 ≤ Ee ≤ 60 MeV)Absolute cross section measurementRosenbluth separation (GE(Q2), GM(Q2) separation)

    Q2 = 0.0003 (GeV/c)2

    < r2 >⌘ �6 dGE(Q2)

    dQ2|Q2!0

  • ULQ2@JPARCNov. 1, 2016

    d�

    d⌦/ G2E(Q2) + ↵(✓)G2M (Q2)

    Rosenbluth separation (GE/GM)

    Elastic cross section

    Q2 = 4ee0sin2(✓/2)

    change under fixed Q2↵(✓) different electron beam energies

    Rosenbluth separation

    G2M (Q2)

    G2E(Q2)

    sys. err. of 0.3%q = 30 MeV/c

  • ULQ2@JPARCNov. 1, 2016A key of the e+p experiments at ULQ2

    only ~ 2%

    っっっっz

    dNevtd⌦

    =d�

    d⌦Ntarget Nbeam �⌦target thickens

    beam dose

    spectrometer acceptance

    Statistics : at least > 106 for each (Ee,θ) measurements Target thickness Beam dose at various intensities Acceptance at various scattering angle

    accuracy of ~ 10-3 not obvious !

    Uncertainty of GE(Q2) must be controlled to be an order of ΔGE/GE ~ 10-3

  • ULQ2@JPARCNov. 1, 2016CH2 target for absolute cross section measurement

    Relative measurement for 12C(e,e)12C and p(e,e)p

    dNevtd⌦

    =d�

    d⌦Ntarget Nbeam �⌦

    Canceled out in relative measurements

    dNe12C/d⌦

    dNep/d⌦=

    d�e12C/d⌦

    d�ep/d⌦·N

    12Ctarget

    NHtargetd�ep/d⌦

    d�e12C/d⌦

    1) RMS charge radius (or ρ(r) ) of 12C ??2) 12C(e,e)12C, p(e,e)p by kinematics ??

    3) change of C/H ratio by beam irradiation ??

  • ULQ2@JPARCNov. 1, 2016

    っっっっz

    っっっっz

    μ-Xray electron scattering

    2) 12C(e,e)12C, p(e,e)p by kinematics

    Δp/p ~ 10-3

    1) 12C : “standard” nucleus for (e,e’)

    � < r212C >1/2

    < r212C >1/2

    ⇠ 3⇥ 10�3

    CH2 (e,e’) experiment

    ΔE = 0.2 - 4 MeV for q = 20 - 90 MeV/c

    っっっっz

    3) no severe damage of target is expectedlarge cross section : d�

    d⌦/ 1/q4

    Ie ~ 1 nA - 1 μA

  • ULQ2@JPARCNov. 1, 2016

    Experimental setup at ULQ2 exp.

    Spectrometer A

    Radioactive Isotope

    Production Station

    60-MeV Electron Linac

    Spectrometer B

    22 mEe = 20 ~ 60 MeV Ie ~ 1 nA - 1μA

    1) new beam line 2) two magnetic spectrometers Rosenbluth measurements Luminosity monitoring

    CH2 target ( ~0.1 mm t) Δp/p ~ 1 x 10-3

  • ULQ2@JPARCNov. 1, 2016Rosenbluth-Separated GE(Q2) at ULQ2

    Q2 = 0.0003 (GeV/c)2

    Absolute cross section Rosenbluth separation GE(Q

    2)

  • ULQ2@JPARCNov. 1, 2016How rp has been determined ??

    Spectroscopy Scattering

    e-

    μ- MUSE exp. @PSI is coming …

  • ULQ2@JPARCNov. 1, 2016Summary

    1) elastic e+p scattering at ultra-low Q2 region

    2) GE(Q2) at 0.0003 ≤ Q2 ≤ 0.008 (GeV/c)2

    3) GE is extracted by the Rosenbluth separation

    4) absolute cross section measurement

    relative to 12C(e,e)12C : sys. err. ~3x10-3

    5) Ee = 20 - 60 MeV, θ = 30 - 150°

    6) constructing of new beam line, and spectrometers

    7) the experiments will start in 2019

    科研費・基盤(S) 2016 ~ 2020