Electromagnetic scattering laws in Weyl...

22
ARTICLE Electromagnetic scattering laws in Weyl systems Ming Zhou 1 , Lei Ying 1 , Ling Lu 2 , Lei Shi 3 , Jian Zi 3 & Zongfu Yu 1 Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scat- tering, and diminishes for non-resonant scattering, when wavelength approaches in๏ฌnity. This scattering law explains the colour of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from the conical dispersion of free space at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing the ability to tailor the strength of waveโ€“matter interactions for radiofrequency and optical applications. DOI: 10.1038/s41467-017-01533-0 OPEN 1 Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Madison, 53705, USA. 2 Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, China. 3 Department of Physics, Fudan University, Shanghai, 200433, China. Correspondence and requests for materials should be addressed to Z.Y. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1388 | DOI: 10.1038/s41467-017-01533-0 | www.nature.com/naturecommunications 1 1234567890

Transcript of Electromagnetic scattering laws in Weyl...

Page 1: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

ARTICLE

Electromagnetic scattering laws in Weyl systemsMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1

Wavelength determines the length scale of the cross section when electromagnetic waves

are scattered by an electrically small object. The cross section diverges for resonant scat-

tering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This

scattering law explains the colour of the sky as well as the strength of a mobile phone signal.

We show that such wavelength scaling comes from the conical dispersion of free space at

zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies,

lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from

the wavelength limit. Diverging and diminishing cross sections can be realized at any target

wavelength in a Weyl system, providing the ability to tailor the strength of waveโ€“matter

interactions for radiofrequency and optical applications.

DOI: 10.1038/s41467-017-01533-0 OPEN

1 Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Madison, 53705, USA. 2 Institute of Physics, Chinese Academy ofSciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, China. 3 Department of Physics, Fudan University, Shanghai,200433, China. Correspondence and requests for materials should be addressed to Z.Y. (email: [email protected])

NATURE COMMUNICATIONS |8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications 1

1234

5678

90

Page 2: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

E lectromagnetic scattering is a fundamental process thatoccurs when waves in a continuum interact with an elec-trically small scatterer. Scattering is weak under non-

resonant conditions; an example is Rayleigh scattering, which isresponsible for the colours of the sky. Conversely, scatteringbecomes much stronger with resonant scatterers, which have aninternal structure supporting localized standing waves, such asantennas, optical nanoresonators, and quantum dots. Resonantscatterers have wide application because the resonance allowsphysically small scatterers to capture wave energy from a largearea. As such, large electromagnetic cross sections, ฯƒ, are alwaysdesirable: a larger ฯƒ value means, for example, stronger mobilephone signals1 and higher absorption rates for solar cells2.

The maximum cross section of resonant scattering is boundedby the fundamental limit of electrodynamics. One might be

tempted to enlarge the scatterer to increase the cross section, butthis strategy only works for non-resonant scattering, or elec-trically large scatterers. In resonant scattering, physical size onlyaffects spectral bandwidth, while the limit of cross section isdetermined by the resonant wavelength ฮป as3:

ฯƒmax ยผDฯ€ฮป2 รฐ1รž

The directivity D describes the anisotropy of the scattering; D = 1for isotropic scatterers. Equation 1 shows that an atom4 can havea ฯƒmax similar to that of an optical antenna5, despite the sub-nanometre size of the atom. This also means that optical scat-terers cannot attain resonant cross sections as large as those ofradiofrequency (RF) antennas, due to the smaller wavelengthsinvolved.

k k

Weyl point

Atom

RF antenna

1 1

!2 โˆ†!2โˆ†!

Weyl pointDC

a b

c

!

! !

!=ck

" "

!

Fig. 1 The length scale of cross section and its relation to dispersion. a In free space, the resonant cross section scales according to ฯƒ $ ฮป2 or $ 1=ฯ‰2. Largecross sections always favour low frequencies. For example, the cross section of an optical transition in an atom is small (~10%12 m2) because of theassociated short wavelength (~ฮผm). The cross section of an RF antenna is much larger (~10%4 m2) due to a much longer wavelength (~cm). Diverging crosssections are obtained around the DC point, which happens to be the apex of a conical dispersion. The double lines indicate double degeneracy due topolarization. b By embedding the resonant scatterer in a medium where the dispersion of the continuum exhibits conical dispersions located away from theDC point, diverging cross sections can be realized at high frequencies. The cross section scales according to $ 1=ฮ”ฯ‰2, where ฮ”ฯ‰ is the relative detuningbetween the resonant frequency of the scatterer and the Weyl point. In both a and b, regions with stronger colour indicate larger resonant scattering crosssection. c Schematic of extraordinarily large cross section created by an electrically small resonant scatterer (red dot) placed inside Weyl photonic crystal

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0

2 NATURE COMMUNICATIONS | 8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications

Page 3: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Overcoming the limit just described has far-reaching implica-tions for RF and optoelectronic applications. Many efforts havebeen devoted to realizing this goal, including the use of enhanceddirectivity D6โ€“10, degenerate resonances11, decreased dielectricconstants12 ฯต and materials with negative refractive index13.While these approaches exploit certain trade-offs to slightlyincrease the pre-factor in Eq. (1), the fundamental limit of ฮป2

remains, which can be proven directly from Maxwellโ€™s equationswithout requiring specific scatterer details5. Until now, extremelylarge cross sections have only been obtained at long wavelengthsnear the DC frequency.

Here we show that the scattering laws in Weyl systems14 allowsthe cross section to be decoupled from the wavelength limit. Thisopens a new path to realizing strong waveโ€“matter interaction,providing potential benefits to RF and optoelectronic devices thatrely on resonant scattering. Moreover, the scattering effect dis-covered here is equally applicable to acoustic or electronicwaves15โ€“17.

ResultsLength scale of the cross section. In free space, the dispersiondirectly leads to the wavelength limit of the cross section, which isshown by Eq. (1). Specifically, the DC point, which is located atthe apex of the conical dispersion relation as shown in Fig. 1a,gives rise to the diverging cross sections at low frequencies. The

apex of the conic dispersion can be also realized at other spectralregimes, such as that shown in Fig. 1b. All the special scatteringproperties associated with the DC point can be reproduced,resulting in diverging cross sections and exceptionally stronglightโ€“matter interactions at high frequencies. Weyl points14, 18โ€“28,the three-dimensional (3D) analogy of Dirac points, have recentlybeen shown to exhibit such conical dispersion relations. Thescattering laws in Weyl systems allows the cross section to bedecoupled from the wavelength limit. Extraordinarily large crosssection can be realized even for very small scatterers inside a Weylphotonic crystal, which is schematically illustrated in Fig. 1c.Unlike the lensing effect that can concentrate incident waves to afixed focus, the scatterer concentrates incident waves to itself nomatter where it is placed inside the Weyl photonic crystal.

Conservation law of resonant scattering. To illustrate theunderlying physics of the relation between the dispersion andcross section, we will first show a conservation law of resonantscattering. We start by considering the resonant cross section of adipole antenna (Fig. 2a). Without losing generality, we only dis-cuss the scattering cross section, assuming zero absorption.Similar conclusions can be drawn for the absorptive case, with themaximum absorption cross section 1

4 that of the scattering crosssection29.

The dipole antenna is anisotropic due to its elongated shape, sothe cross section ฯƒรฐฮธ;ฯ†รž depends on the incident direction of thewave. At a normal direction, when ฮธ ยผ ฯ€=2, it reaches itsmaximum value5 of ฯƒmax ยผ 3ฮป2=2ฯ€. Along the axial direction,when ฮธ ยผ 0, the cross section vanishes. While it is straightfor-ward to calculate the cross section of a dipole antenna, it is notimmediately apparent why the cross section follows the ฮป2 ruleand diverges around the DC frequency.

Figure 2b shows the real-space representation of ฯƒรฐฮธ;ฯ†รž at theresonant frequency ฯ‰0. We can also represent ฯƒรฐฮธ;ฯ•รž inmomentum space as ฯƒรฐkรž, with k located on the isosurfacedefined by ฯ‰ ยผ ฯ‰0. As shown in Fig. 2c, the isosurface is a spherewith jkj ยผ ฯ‰0=c. To visualize the momentum-space representa-tion, ฯƒรฐkรž is indicated by the colour intensity on the isosurface inFig. 2d. As we show in Supplementary Note 1, the resonant crosssection satisfies the following conservation law:

โˆฌs:ฯ‰ kรฐ รžยผฯ‰0

ฯƒ kรฐ รžds ยผ 16ฯ€2 รฐ2รž

The integration is performed on the isosurface ฯ‰ kรฐ รž ยผ ฯ‰0. Ourproof is based on quantum electrodynamics30, so it applies toclassical scatterers such as antennas, as well as to quantumscatterers such as electronic transitions that absorb and emit light.More importantly, the continuum, in which the scatterer isembedded, does not need to be free space; it can be anisotropicmaterials, or even photonic crystals31, as long as a well-defineddispersion relation ฯ‰ ยผ ฯ‰รฐkรž exists.

Equation 2 dictates the scaling of ฯƒ with respect to the resonantfrequency ฯ‰0 of the scatterer. As ฯ‰0 decreases, the area of theisosurface shrinks. To conserve the value of the integration over asmaller isosurface, the cross section ฯƒ kรฐ รž must increase accord-ingly. For example, Fig. 2e and f show the isosurfaces of dipoleantennas with resonant frequencies at ฯ‰0=2 and ฯ‰0=3, respec-tively. The cross sections, indicated by colour intensity, mustincrease proportionally to maintain a constant integration overthese smaller isosurfaces. This can also be seen by the averagecross section in the momentum space:

ฯƒ &โˆฌ ฯƒ kรฐ รždsโˆฌ ds

ยผ 16ฯ€2

Sรฐ3รž

Real spacea b

c d

e f

z

yx

kz

ky

kx

#

Incident

"(k)ds

Momentum space

Isosurface

Dipoleantenna

k

$

"($, #)

"(k)/"d

"(k)

!0

!0/3!0/2

1.0

0.8

0.6

0.4

0.2

Fig. 2 Scaling law of resonant cross sections in momentum space. aSchematic of a dipole antenna in free space. b Real-space representation ofscattering cross section ฯƒ ฮธ;ฯ†รฐ รž. c In the momentum space, the crosssection is represented by ฯƒรฐkรž, with k located on the isosurface defined bythe resonant frequency. d The cross section ฯƒรฐkรž of the dipole antenna isrepresented by the colour intensity on the isosurface. e The cross section ofa dipole antenna operating at a lower resonant frequency of ฯ‰0=2. Theisosurface shrinks by half compared to d. The cross section increases asindicated by stronger colours. f Same as e but with an even smallerresonant frequency of ฯ‰0=3. d, e and f all use the same colour map so thatthe cross section can be directly compared. The cross section is normalizedby ฯƒd ยผ 27ฮป20=2ฯ€

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0 ARTICLE

NATURE COMMUNICATIONS |8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications 3

Page 4: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Here, S & โˆฌ ds is the area of the isosurface. When approachingthe apex of the conical dispersion relation, the isosurfacediminishes, i.e., S ! 0. As a result, the cross section divergesaround the DC point (Fig. 1a).

Resonant scattering in Weyl photonic crystal. Recent demon-strations of Weyl points in photonic crystals18 show that thedispersion of a 3D continuum can exhibit conical dispersion atany designed frequency (Fig. 1b). The Hamiltonian for the con-tinuum around the Weyl point is given byH qรฐ รž ยผ vxqxฯƒx รพ vyqyฯƒy รพ vzqzฯƒz , where ฯƒx;y;z are Pauli matrices.The momentum q qx; qy; qz

! "ยผ k % kWeyl defines the distance to

the Weyl point in the momentum space, and q= 0 at the Weylpoint. The linear dispersion described by this Hamiltonian pro-duces an ellipsoidal isosurface that encloses the Weyl point. Theisosurface shrinks to a point at the Weyl frequency ฯ‰Weyl. Scat-tering properties associated with the DC point are carried to highfrequencies within Weyl medium, resulting in exceptionallystrong resonant scattering. As illustrated in Fig. 1b, the averagecross section scales as ฯƒ $ 1

ฯ‰0%ฯ‰Weylรฐ รž2 around the Weyl point. This

allows high frequency resonant scatterers, such as atoms andquantum dots, to attain large cross sections, potentially at amacroscopic scale.

We now demonstrate a specific example of resonant scatteringin a Weyl photonic crystal22. We consider a localized resonantscatterer in an infinitely large photonic crystal. The simulationsare performed in two steps. First, we numerically calculate theeigenmodes of the resonant frequency in the Brillouin zone byusing MIT photonic bands32 (MPB). Next, we use eacheigenmode as excitation and numerically calculate the scatteringcross section by using the quantum scattering theory wedeveloped recently33, which is described in detail in Supplemen-tary Note 2.

The structure of the Weyl photonic crystal consists of twogyroids, as shown in Fig. 3a. The magenta gyroid is defined by theequation f rรฐ รž>1:1, where f rรฐ รž ยผ sinรฐ2ฯ€x=aรž cosรฐ2ฯ€y=aรž รพsinรฐ2ฯ€y=aรž cosรฐ2ฯ€z=aรž รพ sinรฐ2ฯ€z=aรž cosรฐ2ฯ€x=aรž and a is thelattice constant. The yellow gyroid is the spatial inversion of themagenta one. The two gyroids are filled with a material with adielectric constant of ฯต ยผ 13. To obtain Weyl points, we add fourair spheres to the gyroids to break the inversion symmetry(Fig. 3a). These spheres are related by an S4รฐzรž transformation.The resulting band structure has four isolated Weyl points at thesame frequency of ฯ‰Weyl ยผ 0:5645 รฐ2ฯ€c=aรž. Figure 3b illustratesconical dispersion in the 2kz ยผ %kx % ky plane.

The resonant scatterer is a quantum two-level system (TLS)embedded in the above photonic crystal. We numerically solvethe scattering problem using quantum electrodynamics33, 34. TheHamiltonian is ยผ Hpc รพ HTLS รพHI. The first two terms, Hpc ยผP

q !hฯ‰qcyqcq and HTLS ยผ !hฯ‰0byb, are the Hamiltonian of thephotons and the TLS, respectively35. Here, !h is the reducedPlanck constant, bโ€  and b are the raising and lowering operatorsfor the quantum dot, respectively, and cyqand cq are the bosoniccreation and annihilation operators of the photons, respectively.The Lamb shift35 is incorporated into the resonant frequency ฯ‰0.The third term, HI ยผ i!h

Pq gqรฐcyqb% cqbyรž, is the interaction

between the TLS and the radiation. The coupling coefficient isgq ยผ d ( Eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiฯ‰0=2!hฯต0L3

p, where d is the dipole moment, ฯต0 is

vacuum permittivity, Eq is the unit polarization vector of thephotons and L3 is the quantization volume.

Scattering inside photonic crystals is much more complex thanthat in free space. The continuum is highly dispersive, anisotropicand non-uniform, and thus the scattering cross section dependsstrongly on the location of the scatterer and orientation withinthe photonic crystal.

As an example, we consider a TLS with a transition frequencyฯ‰0 slightly below the Weyl frequency:ฯ‰0 % ฯ‰Weyl ยผ %0:0005 รฐ2ฯ€c=aรž. The calculated cross sectionฯƒ qรฐ รž (see Supplementary Note 2 for derivation) is plotted onthe isosurface as shown by Fig. 3e, f. As expected, it stronglydepends on the incident wavevector q. In addition, ฯƒ qรฐ รž variesgreatly at different locations, as shown by comparing Fig. 3e andFig. 3f. Despite all these differences, when integrated over theisosurface, โˆฌ ฯƒ qรฐ รžds always results in the same constant: 16ฯ€2. Weperform the integration for a TLS at 20 different locations, allwith the same constant, as shown in Fig. 3d.

As the transition frequency of the TLS approaches the Weylpoint, i.e., ฯ‰0 ! ฯ‰Weyl, the isosurface shrinks in size, as illustratedby the insets of Fig. 4a. The conservation law leads to anincreasing ฯƒรฐqรž, as shown by stronger colours. Near the Weylfrequency (black dashed line), the average cross sections ฯƒ isenhanced by three orders of magnitude compared to that in freespace, eventually diverging at the Weyl point (Fig. 4a). Theanalytical prediction from Eq. 2 and the area of the isosurfaceagree very well with predictions from numerical simulation(circles in Fig. 4a).

Frequency dependence of resonant scattering. A Weyl pointgreatly enhances the cross section at the resonant frequency.However, it comes at the price of suppressed cross section awayfrom the resonant frequency. Next, we discuss the spectral featureof the average cross section ฯƒรฐฯ‰รž for a given TLS. The spectraldependence is shown in Supplementary Note 3 as

ฯƒ ฯ‰รฐ รž $ฯ‰0 % ฯ‰Weyl! "2

}

ฯ‰0 % ฯ‰รฐ รž2รพ}2 ฯ‰0%ฯ‰Weylรฐ รž44

รฐ4รž

Here, } is a constant that depends on the local electric field at theposition of the TLS, but does not vary significantly with frequency.In order to derive Eq. 4, we use the fact that the spontaneous decayrate is proportional to ฯ‰0 % ฯ‰Weyl

! "2 (Supplementary Eq. 32). Atthe resonance when ฯ‰0 % ฯ‰ ยผ 0; the average cross section scales as1= ฯ‰0 % ฯ‰Weyl! "2, which increases as the resonant frequency moves

closer to the Weyl point. However, away from the resonancewhen jฯ‰0 % ฯ‰j ) jฯ‰0 % ฯ‰Weylj, Eq. 4 reduces toฯƒ ฯ‰0รฐ รž $ ฯ‰0 % ฯ‰Weyl

! "2= ฯ‰0 % ฯ‰รฐ รž2, which shows that being close

to the Weyl point suppresses the cross section. In Fig. 4b, we cal-culate the spectra for three different TLSs with their transitionfrequencies approaching the Weyl point (black dashed line). Whilethe peak value of the cross section grows, the full width at halfmaximum of the spectrum decreases. The spectral integration of thecross section remains around a constant (Supplementary Note 3).

Rayleigh or non-resonant scattering. The non-resonant scat-tering of electrically small objects in free space follows the Ray-leigh scattering law. In great contrast to resonant scattering, thecross section of Rayleigh scattering scales as ฯƒ $ ฯ‰4, anddiminishes at the DC frequency, as shown in Fig. 5a. Thisproperty is also closely related to the isosurface and can be carriedto high frequency at the Weyl point (see proof in SupplementaryNote 5). While the resonant cross section diverges, the non-resonant cross section diminishes at Weyl points, as illustrated inFig. 5b.

Using perturbation theory and the first-order Born approx-imation36, the Rayleigh scattering cross section can be shown as(details in Supplementary Note 5):

ฯƒ ฯ‰; kincรฐ รž ยผ ฯ‰2 โˆฌS:ฯ‰ ksรฐ รžยผฯ‰

d2ks uks r0รฐ รžVukinc r0รฐ รžj j2/ ฯ‰2S รฐ5รž

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0

4 NATURE COMMUNICATIONS | 8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications

Page 5: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Here, ukรฐrรž is the eigenmode of the Weyl photonic crystalassociated with wavevector k. ks and kinc are the wavevectors ofthe scattered and incident eigenmodes, respectively. V is a tensorfor the scattering potential of the Rayleigh scatterer. The integralis proportional to the area of the isosurface S. At the DC point,the isosurface shrinks to a point with S ยผ 0, and the cross sectionof Rayleigh scattering is zero. Similarly, around the Weyl point,the area of the isosurface S $ ฮ”ฯ‰2 ยผ ฯ‰% ฯ‰Weyl

! "2. The cross

section scales as ฯƒ $ ฯ‰2ฮ”ฯ‰2, and is zero at the Weyl point(Fig. 5b).

To validate our theoretical prediction above, we numericallycalculate the Rayleigh scattering cross section of a small dielectricsphere embedded in the same Weyl photonic crystal. We useMPB32 to obtain the eigenmode of the Weyl photonic crystal,then numerically calculate the Rayleigh scattering cross sectionusing the normal-mode expansion37โ€“39 (see more details in

x

y

z

!/ (

2%c/a)

kx /(2%/a) k y/(2%

/a)

a

c

b

d

"(q)/&2

16%2

A' (

B

C

0

500

250

00.005

โ€“0.005

โ€“0.005

0.005

0

0

0.005

11.0

0.57

0.568

0.566

0.564

0.562

0.56โ€“0.2 โ€“0.1 0 0.1 0.2 โ€“0.2

0

0.2

Ez

0.5

โ€“0.5

โ€“1.0A B C A

0.00z

/a

x /a

โ€“1

โ€“1 0 1

โ€“0.005

q z/(

2%/a)

q z/(

2%/a)

qx /(2%/a)

qx /(2%/a)q y

/(2%/a

)

q y/(2

%/a)

fe

00.005

โ€“0.005

โ€“0.005

0.005

0

0

0.005

โ€“0.005

!!"(k)ds

Fig. 3 Simulation of resonant scattering in Weyl point photonic crystals. a The unit cell of the photonic crystal that supports Weyl points. Four air sphereswith a radius of 0.07a, where a is the lattice constant, are added to the gyroids to break the inversion symmetry. The positions of the air spheres are givenby รฐ 14 ; %

18 ;

12รža,

14 ;

18 ; 0

! "a, รฐ58 ; 0;

14รža and รฐ38 ;

12 ;

14รža. b Band structure of the photonic crystal close to the Weyl points. The band structure is plotted on the

plane 2kz ยผ %kx % ky . Four Weyl points are created with conical dispersion relation. c The normalized electric-field distribution of one eigenmode of thephotonic crystal on the xโ€“z plane. We plot the z-component of the electric field as an example. d The resonant cross sections of the two-level system (TLS)for different locations. The integration in the momentum space always leads to the same constant. The dipole moment of the TLS is in the x direction.Positions A-B-C-A are also labelled in c. e, f Examples of ฯƒรฐqรž at two different positions ฮฑ (e) and ฮฒ (f) are plotted on the isosurfaces as colour intensity.The positions ฮฑ and ฮฒ are labelled in c. Both e and f use the same colour map so that the cross sections can be directly compared

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0 ARTICLE

NATURE COMMUNICATIONS |8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications 5

Page 6: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Supplementary Note 6). The calculated Rayleigh scattering crosssections around the Weyl point are obtained by averaging100 scatterers at random locations within one unit cell of thephotonic crystal, and are plotted in Fig. 5c as red circles. They arenormalized by ฯƒR, the scattering cross section of the samescatterer in free space. The blue dashed line indicates the scalinglaw ฯƒ $ ฯ‰2ฮ”ฯ‰2. The calculated Rayleigh scattering cross sectionagrees with the theoretical prediction well, with a vanishing crosssection observed at the Weyl point. For high-frequency devices,such as integrated waveguides and laser cavities, Rayleighscattering caused by interface roughness degrades performanceand increases noise. The combination of suppressed Rayleighscattering and enhanced resonant scattering could make Weylmedia attractive for these optoelectronic applications.

DiscussionMoreover, the conservation law of resonant scattering can also beextended to lower-dimensional space. In two-dimensional pho-tonic crystals, diverging cross sections can be realized at Diracpoints; an example is provided in Supplementary Note 4. Tofurther generalize the findings in this paper, we may not neces-sarily need conical dispersion. Quadratic dispersion found aroundthe band edges of photonic crystals also provides shrinking iso-surfaces. However, this is less useful in practice because the zerogroup velocity at the band edge makes it difficult to obtain pro-pagating waves40 in the presence of disorders. In addition, cou-pling into such media is difficult due to the large impedancemismatch.

As a final remark, the transport properties of electrons aroundDirac and Weyl points has also been studied in the past fewyears15โ€“17. Some of the observations are consistent with thephysics of photon scattering shown in this paper. Here, weexplicitly show the general conservation law of cross section andits connection to the dispersion relation. We expect that similarconclusions can be drawn for both electrons and phonons. Itprovides useful insight to understand general scattering physicsbeyond Dirac and Weyl systems.

In conclusion, large resonant cross sections are of great prac-tical importance. They are only achievable with long resonantwavelengths when the frequency approaches the DC point. Asshown in this work, the dispersion, rather than the wavelength, is

responsible for the cross section. As a result, Weyl points, whichcan achieve similar conic dispersion as that around the DC point,lead to the diverging resonant cross section at any desired fre-quency. The exceptionally strong resonant scattering is also

SimulationAnalytical

!0/(2ฯ€c/a)

!0= 0.562 (2ฯ€c/a)

!0= 0.563 (2ฯ€c/a)

!0= 0.564 (2ฯ€c/a)"(q)/&2

a

Res

onan

t ave

rage

cro

ss s

ectio

n

b

Aver

age

cros

s se

ctio

n

104"0โ€“

103"0โ€“

103"0โ€“

102"0โ€“

10โ€“1"0โ€“

10โ€“2"0โ€“

10โ€“3"0โ€“

10โ€“4"0โ€“

10โ€“5"0โ€“

10โ€“6"0

10"0โ€“

"0โ€“

102"0โ€“

10"0โ€“

"0โ€“

0.560 0.562 0.564 0.566 0.568

500

400

300

200

100

0

0.570!0/(2ฯ€c/a)

0.559 0.560 0.561 0.562 0.563 0.564 0.565

Fig. 4 Resonant scattering cross section in Weyl photonic crystal. a Diverging resonant scattering cross section is realized around the Weyl frequency.Isosurfaces have an ellipsoidal shape (insets) with its colour indicating the value of the cross section; the shrinking isosurface leads to increasing crosssections around the Weyl frequency, which is indicated by the black dashed line. The results from quantum scattering simulation (red circles) agree wellwith the prediction based on the band structure (blue dashed line). The cross section is normalized by the average cross section in free space ฯƒ0 ยผ ฮป2=ฯ€. Itscales as ฯƒ $ 1=ฮ”ฯ‰2. b Spectra of average scattering cross sections for TLSs with different transition frequencies. For simplicity, the spontaneous emissionrates of the TLSs in vacuum are chosen to be 10%4ฯ‰0. We also assume the dipole moments and locations of the TLSs are the same. The black dashed linealso indicates the Weyl frequency

k kฯ‰=ck

Weyl point

Rayleighscattering

Weyl pointDC

a b

c

0.4"R

0.2"R

0

0.6"R

Aver

age

cros

s se

ctio

n

!/(2ฯ€c/a)0.560 0.562 0.564 0.566 0.568 0.570

!

!4!2โˆ†!2

!

! !

" "

โˆ†!

Fig. 5 Rayleigh scattering in free space and Weyl systems. a In free space, theRayleigh scattering cross section scales as ฯƒ $ ฯ‰4 and vanishes at the DCfrequency. b In Weyl systems, the Rayleigh scattering cross section scales asฯƒ $ ฯ‰2ฮ”ฯ‰2 and vanishes at the Weyl frequency, which is indicated by theblack dashed line. In both a and b, regions with stronger red colours indicatesmaller Rayleigh scattering cross section. c Numerical calculation of Rayleighscattering in a Weyl photonic crystal. The Rayleigh scatterer is a dielectricsphere with a radius of 0.01a and a dielectric constant of 2. The numericalresults (red circles) are normalized by the Rayleigh scattering cross section infree space ฯƒR , and fit well the predictedฯƒ $ ฯ‰2ฮ”ฯ‰2scaling (blue dashed line).The black dashed line also indicates the Weyl frequency

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0

6 NATURE COMMUNICATIONS | 8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications

Page 7: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

accompanied by diminishing non-resonant scattering, which isalso similar to that around the DC point. Since Weyl points canbe realized at any frequency, we can effectively decouple the crosssection and the wavelength. It opens up possibilities for tailoringwaveโ€“matter interaction with extraordinary flexibility, which alsocan be extended to acoustic and electronic wave scattering.

Data availability. The data that support the finding of this studyare available from the corresponding author upon reasonablerequest.

Received: 25 May 2017 Accepted: 25 September 2017

References1. Fujimoto, K. & James, J. R. Mobile Antenna Systems Handbook (Artech House,

Norwood, 2001).2. Nozik, A. J. Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nanostructures

14, 115โ€“120 (2002).3. Balanis, C. A. Antenna Theory: Analysis and Design, 3rd edn (Wiley-

Interscience, Hoboken, 2005).4. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. & Thickstun, P. Atom-

Photon Interactions: Basic Processes and Applications (Wiley Online Library,New York, 1992).

5. Jackson, J. D. Classical Electrodynamics, 3rd edn (Wiley, New York, 1998).6. Yagi, H. Beam transmission of ultra short waves. Proc. Inst. Radio Eng. 16,

715โ€“740 (1928).7. Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a

nano-optical Yagiโ€“Uda antenna. Nat. Photonics 4, 312โ€“315 (2010).8. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a

nanoantenna. Science 329, 930โ€“933 (2010).9. Coenen, T., Bernal Arango, F., Femius Koenderink, A. & Polman, A.

Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250(2014).

10. Liu, J., Zhou, M., Ying, L., Chen, X. & Yu, Z. Enhancing the optical cross sectionof quantum antenna. Phys. Rev. A 95, 013814 (2017).

11. Ruan, Z. & Fan, S. Superscattering of light from subwavelength nanostructures.Phys. Rev. Lett. 105, 013901 (2010).

12. Zhou, M., Shi, L., Zi, J. & Yu, Z. Extraordinarily large optical cross section forlocalized single nanoresonator. Phys. Rev. Lett. 115, 023903 (2015).

13. Miroshnichenko, A. E. Non-Rayleigh limit of the Lorenz-Mie solution andsuppression of scattering by spheres of negative refractive index. Phys. Rev. A80, 013808 (2009).

14. Weyl, H. Elektron und gravitation. I. Z. Fรผr Phys. 56, 330โ€“352 (1929).15. Nandkishore, R., Huse, D. A. & Sondhi, S. L. Rare region effects dominate

weakly disordered three-dimensional Dirac points. Phys. Rev. B 89, 245110(2014).

16. Tabert, C. J., Carbotte, J. P. & Nicol, E. J. Optical and transport properties inthree-dimensional Dirac and Weyl semimetals. Phys. Rev. B 93, 085426 (2016).

17. Holder, T., Huang, C.-W. & Ostrovsky, P. Electronic properties of disorderedWeyl semimetals at charge neutrality. Preprint at https://arxiv.org/abs/1704.05481 (2017).

18. Lu, L., Fu, L., Joannopoulos, J. D. & Soljaฤiฤ‡, M. Weyl points and line nodes ingyroid photonic crystals. Nat. Photonics 7, 294โ€“299 (2013).

19. Dubฤek, T. et al. Weyl points in three-dimensional optical lattices: syntheticmagnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

20. Bravo-Abad, J., Lu, L., Fu, L., Buljan, H. & Soljaฤiฤ‡, M. Weyl points inphotonic-crystal superlattices. 2D Mater. 2, 034013 (2015).

21. Chen, W.-J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weylpoints and the experimental observation of robust surface states. Nat. Commun.7, 13038 (2016).

22. Wang, L., Jian, S.-K. & Yao, H. Topological photonic crystal with equifrequencyWeyl points. Phys. Rev. A 93, 061801 (2016).

23. Lin, Q., Xiao, M., Yuan, L. & Fan, S. Photonic Weyl point in a two-dimensionalresonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731(2016).

24. Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat.Commun. 7, 12435 (2016).

25. Xiao, M., Lin, Q. & Fan, S. Hyperbolic Weyl point in reciprocal chiralmetamaterials. Phys. Rev. Lett. 117, 057401 (2016).

26. Xu, Y. & Duan, L.-M. Type-II Weyl points in three-dimensional cold-atomoptical lattices. Phys. Rev. A 94, 053619 (2016).

27. Oono, S., Kariyado, T. & Hatsugai, Y. Section Chern number for a three-dimensional photonic crystal and the bulk-edge correspondence. Phys. Rev. B94, 125125 (2016).

28. Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611โ€“617 (2017).

29. Ruan, Z. & Fan, S. Temporal coupled-mode theory for light scattering by anarbitrarily shaped object supporting a single resonance. Phys. Rev. A 85, 043828(2012).

30. Berestetskii, V. B., Pitaevskii, L. P. & Lifshitz, E. M. Quantum Electrodynamics,2nd edn, Vol. 4 (Butterworth-Heinemann, London, 1982).

31. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics andelectronics. Phys. Rev. Lett. 58, 2059โ€“2062 (1987).

32. Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domainmethods for Maxwellโ€™s equations in a planewave basis. Opt. Express 8, 173โ€“190(2001).

33. Liu, J., Zhou, M. & Yu, Z. Quantum scattering theory of a single-photon Fockstate in three-dimensional spaces. Opt. Lett. 41, 4166โ€“4169 (2016).

34. Shen, J.-T. & Fan, S. Coherent single photon transport in a one-dimensionalwaveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95,213001 (2005).

35. Zhu, S.-Y., Yang, Y., Chen, H., Zheng, H. & Zubairy, M. S. Spontaneousradiation and Lamb shift in three-dimensional photonic crystals. Phys. Rev.Lett. 84, 2136โ€“2139 (2000).

36. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Addison-Wesley,Boston, 2011).

37. Dowling, J. P. & Bowden, C. M. Atomic emission rates in inhomogeneousmedia with applications to photonic band structures. Phys. Rev. A 46, 612โ€“622(1992).

38. Sakoda, K. & Ohtaka, K. Optical response of three-dimensional photoniclattices: solutions of inhomogeneous Maxwellโ€™s equations and theirapplications. Phys. Rev. B 54, 5732โ€“5741 (1996).

39. Chigrin, D. N. Radiation pattern of a classical dipole in a photonic crystal:photon focusing. Phys. Rev. E 70, 056611 (2004).

40. Mookherjea, S., Park, J. S., Yang, S.-H. & Bandaru, P. R. Localization in siliconnanophotonic slow-light waveguides. Nat. Photonics 2, 90โ€“93 (2008).

AcknowledgementsM.Z., L.Y. and Z.Y. acknowledge the finanical support of DARPA (YFA17 N66001-17-1-4049 and DETECT program). L.L. was supported by the National key R\&D Progam ofChina under Grant No. 2017YFA0303800, 2016YFA0302400 and supported by theNational Natural Science fundation of China (NSFC) under Project No. 11721404. L.S.and J.Z. were supported by 973 Program (2015CB659400), China National Key BasicResearch Program (2016YFA0301100) and NSFC (11404064).

Author contributionsM.Z. developed the theoretical formalism, performed the analytic calculations and per-formed the numerical simulations. All authors contributed to the final versions of themanuscript. Z.Y. supervised the project.

Additional informationSupplementary Information accompanies this paper at doi:10.1038/s41467-017-01533-0.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Open Access This article is licensed under a Creative CommonsAttribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you giveappropriate credit to the original author(s) and the source, provide a link to the CreativeCommons license, and indicate if changes were made. The images or other third partymaterial in this article are included in the articleโ€™s Creative Commons license, unlessindicated otherwise in a credit line to the material. If material is not included in thearticleโ€™s Creative Commons license and your intended use is not permitted by statutoryregulation or exceeds the permitted use, you will need to obtain permission directly fromthe copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

ยฉ The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01533-0 ARTICLE

NATURE COMMUNICATIONS |8: ๏ฟฝ1388๏ฟฝ |DOI: 10.1038/s41467-017-01533-0 |www.nature.com/naturecommunications 7

Page 8: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Supplementary Note 1: Conservation law of resonant scattering

As we discussed in the main text, the conservation law of resonant scattering applies to both classical and quantum resonances in any continuum with a well-defined dispersion relation. Here in this section, we will derive the conservation law using quantum electrodynamics.

To simplify the discussion, we consider a non-degenerate resonance embedded in a medium. The resonance frequency of the resonance is ๐œ”๐œ”0 . We also incorporate the Lamb shift into the resonance frequency to simplify the discussion1. The dispersion relation of the medium is defined by ๐œ”๐œ”(๐ค๐ค), where ๐ค๐ค is the wave vector. The interaction between the resonance and the propagating waves in the medium is described by the interaction Hamiltonian ๐ป๐ปI. The exact expression of ๐ป๐ปI is not required to derive the conservation law as we will demonstrate below.

We consider the incident photon is in an eigenmode of the medium with a momentum of ๐ค๐คi. The resonance is initially in its ground state |gโŸฉ. The incident photon is scattered by the resonance to all the eigenmodes of the medium. For a final state with a momentum of ๐ค๐คf, the transition probability is given by2

โ„‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ =โŸจg,๐ค๐ค๐Ÿ๐Ÿ|๐ป๐ปI|๐‘’๐‘’, 0โŸฉโŸจ๐‘’๐‘’, 0|๐ป๐ปI|g,๐ค๐คiโŸฉ

โ„๐œ”๐œ” โˆ’ โ„๐œ”๐œ”0 + ๐‘–๐‘–๐œ‹๐œ‹ โˆ‘ |โŸจ๐‘”๐‘”,๐ค๐ค๐Ÿ๐Ÿ|๐ป๐ปI|๐‘’๐‘’, 0โŸฉ|2๐›ฟ๐›ฟ๏ฟฝโ„๐œ”๐œ”๐ค๐ค๐Ÿ๐Ÿ โˆ’ โ„๐œ”๐œ”0๏ฟฝ๐ค๐คf (1)

where โ„ is the reduced Planck constant and |๐‘’๐‘’, 0โŸฉ indicates that the resonance is in its excited state and there is no photon in the medium. Using Fermiโ€™s golden rule, we can obtain the optical cross section of the resonance as

๐œŽ๐œŽ(๐ค๐ค๐Ÿ๐Ÿ,๐œ”๐œ”) =1

๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ ๐ฟ๐ฟ3โ„ ๏ฟฝ2ฯ€โ„

|โ„‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ|2๐›ฟ๐›ฟ๏ฟฝโ„๐œ”๐œ”๐ค๐คf โˆ’ โ„๐œ”๐œ”๐ค๐คi๏ฟฝ๐ค๐ค๐Ÿ๐Ÿ

(2)

The normalization factor ๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ ๐ฟ๐ฟ3โ„ is the power flux of a single incident photon, where ๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ is the group

velocity of the incident photon and ๐ฟ๐ฟ3 is the quantization volume.

We focus on the resonant cross section at the resonant frequency ๐œ”๐œ”๐ค๐คf = ๐œ”๐œ”๐ค๐คi = ๐œ”๐œ”0. The summation in the momentum space then can be converted to an integration over the iso-surface S defined by ๐œ”๐œ”(๐ค๐ค) = ๐œ”๐œ”0 as

๏ฟฝ๐›ฟ๐›ฟ๏ฟฝโ„๐œ”๐œ”๐ค๐คf โˆ’ โ„๐œ”๐œ”0๏ฟฝ๐ค๐ค๐Ÿ๐Ÿ

= ๏ฟฝ๐ฟ๐ฟ

2๐œ‹๐œ‹๏ฟฝ3๏ฟฝ

๐‘‘๐‘‘๐‘‘๐‘‘โ„๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ๐‘†๐‘†

(3)

The resonant cross section at ๐œ”๐œ”๐ค๐คf = ๐œ”๐œ”๐ค๐คi = ๐œ”๐œ”0 then can be further calculated as

๐œŽ๐œŽ(๐ค๐ค๐Ÿ๐Ÿ,๐œ”๐œ”0) =2ฯ€โ„

|โŸจ๐‘’๐‘’, 0|๐ป๐ปI|๐‘”๐‘”,๐ค๐คiโŸฉ|2

๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ ๐ฟ๐ฟ3โ„1

๐œ‹๐œ‹2 ๏ฟฝ ๐ฟ๐ฟ2๐œ‹๐œ‹๏ฟฝ3โˆฌ ๐‘‘๐‘‘๐‘‘๐‘‘

โ„๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ|โŸจ๐‘”๐‘”,๐ค๐ค๐Ÿ๐Ÿ|๐ป๐ปI|๐‘’๐‘’, 0โŸฉ|2๐‘†๐‘†

Page 9: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

= 16๐œ‹๐œ‹2|โŸจ๐‘’๐‘’, 0|๐ป๐ปI|๐‘”๐‘”,๐ค๐คiโŸฉ|2

โ„๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿโˆฌ ๐‘‘๐‘‘๐‘‘๐‘‘

โ„๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ|โŸจ๐‘”๐‘”,๐ค๐ค๐Ÿ๐Ÿ|๐ป๐ปI|๐‘’๐‘’, 0โŸฉ|2๐‘†๐‘†

(4)

Next, we integrate the resonant cross section ๐œŽ๐œŽ(๐ค๐ค๐Ÿ๐Ÿ,๐œ”๐œ”0) over the iso-surface S and immediately obtain the conservation law

๏ฟฝ๐œŽ๐œŽ(๐ค๐ค๐Ÿ๐Ÿ,๐œ”๐œ”0)๐‘‘๐‘‘๐‘‘๐‘‘๐‘†๐‘†

= 16๐œ‹๐œ‹2โˆฌ ๐‘‘๐‘‘๐‘‘๐‘‘

โ„๐‘ฃ๐‘ฃ๐ค๐ค๐Ÿ๐Ÿ|โŸจ๐‘’๐‘’, 0|๐ป๐ป๐ผ๐ผ|๐‘”๐‘”,๐ค๐คiโŸฉ|2๐‘†๐‘†

โˆฌ ๐‘‘๐‘‘๐‘‘๐‘‘โ„๐‘ฃ๐‘ฃ๐’Œ๐’Œ๐’‡๐’‡

|โŸจ๐‘”๐‘”,๐ค๐ค๐Ÿ๐Ÿ|๐ป๐ปI|๐‘’๐‘’, 0โŸฉ|2๐‘†๐‘†

= 16๐œ‹๐œ‹2 (5)

Supplementary Note 2: Quantum scattering theory

The resonant scattering cross section of a single two-level system (TLS) can be calculated using many approaches2,3. Here in our work, we calculated the scattering cross section and further numerically verified the conservation law by using the quantum scattering theory we recently developed4. In this section, we will describe our quantum scattering theory in detail.

As we described in the main text, the general Hamiltonian governing the interaction between photons and a single TLS is given by5

๐ป๐ป = โ„๐œ”๐œ”0๐‘๐‘โ€ ๐‘๐‘ +๏ฟฝโ„๐œ”๐œ”๐ค๐ค๐‘๐‘๐ค๐คโ€ ๐‘๐‘๐ค๐ค

๐ค๐ค

+ ๐‘–๐‘–โ„๏ฟฝ๐‘”๐‘”๐ค๐ค๏ฟฝ๐‘๐‘๐ค๐คโ€ ๐‘๐‘ โˆ’ ๐‘๐‘๐ค๐ค๐‘๐‘โ€ ๏ฟฝ

๐ค๐ค

(6)

Here ๐‘๐‘โ€  (๐‘๐‘) is the raising (lowering) atomic operator of the TLS. The transition frequency of the TLS is ๐œ”๐œ”0. The creation (annihilation) operator for photons with angular frequency ๐œ”๐œ”๐ค๐ค is ๐‘๐‘๐ค๐ค

โ€ (๐‘๐‘๐ค๐ค), with ๐ค๐ค being the momentum. The coupling strength between the TLS and the photon with momentum ๐ค๐ค is given by ๐‘”๐‘”๐ค๐ค = ๐๐ โˆ™ ๐„๐„๏ฟฝ๐ค๐ค๏ฟฝ๐œ”๐œ”0/2โ„๐œ–๐œ–0๐ฟ๐ฟ3, where ๐๐ is the dipole moment of the TLS, ๐„๐„๏ฟฝ๐ค๐ค is the unit polarization vector of the photons at the location of the TLS and ๐œ–๐œ–0 is the vacuum permittivity.

Page 10: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Supplementary Figure 1: Quantum scattering theory. a Schematic of a two-level system in a continuum. Periodic boundary conditions with periodicity L are applied in both x and y directions. Because of the periodicity, incident photons can only be scattered to a set of discretized directions. b The ๐ช๐ช๐’Ž๐’Ž,๐’™๐’™๐’™๐’™ space is discretized by โˆ†๐‘ž๐‘ž = 2ฯ€/๐ฟ๐ฟ, and represents a set of eigenmode channels (grey dots). c Real space bosonic creation operators. The real-space operators ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰) and ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) create a forward

and backward propagating single photon at position ๐œ‰๐œ‰ in the nth channel of the mth Weyl point, respectively. d Spatial single-photon wavefunctions ๐œ“๐œ“F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) and ๐œ“๐œ“B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) in the nth channel of the mth Weyl point. The coefficients ๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘› and ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› are the amplitudes of reflected and transmitted photons in the nth channel of the mth Weyl point, respectively.

The second term โˆ‘ โ„๐œ”๐œ”๐ค๐ค๐‘๐‘๐ค๐คโ€ ๐‘๐‘๐ค๐ค๐ค๐ค describes the propagating photons in the photonic crystals. Here we focus

on the Weyl-point photonic crystal. As we described in the main text, the dispersion is governed by the Weyl Hamiltonian โ„‹(๐ช๐ช) = ๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ๐‘ž๐‘ž๐‘ฅ๐‘ฅ๐œŽ๐œŽ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ๐‘ž๐‘ž๐‘ฆ๐‘ฆ๐œŽ๐œŽ๐‘ฆ๐‘ฆ + ๐‘ฃ๐‘ฃ๐‘ง๐‘ง๐‘ž๐‘ž๐‘ง๐‘ง๐œŽ๐œŽ๐‘ง๐‘ง, where ๐œŽ๐œŽ๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ,๐‘ง๐‘ง are Pauli matrices. The momentum ๐ช๐ช๏ฟฝ๐‘ž๐‘ž๐‘ฅ๐‘ฅ, ๐‘ž๐‘ž๐‘ฆ๐‘ฆ, ๐‘ž๐‘ž๐‘ง๐‘ง๏ฟฝ = ๐ค๐ค โˆ’ ๐ค๐คWeyl defines the distance to the Weyl point in the momentum space. Diagonalization of the Weyl Hamiltonian yields a three-dimensional (3D) conical dispersion around the frequency of the Weyl point ๐œ”๐œ”Weyl. To simplify the discussion, we consider isotropic Weyl points where ๐‘ฃ๐‘ฃ๐‘ฅ๐‘ฅ = ๐‘ฃ๐‘ฃ๐‘ฆ๐‘ฆ = ๐‘ฃ๐‘ฃ๐‘ง๐‘ง = ๐‘ฃ๐‘ฃ. The dispersion around the Weyl point then can be simplified to ๐œ”๐œ”๏ฟฝ๐ช๐ช = ๐œ”๐œ”๐ค๐ค โˆ’ ๐œ”๐œ”Weyl =ยฑ๐‘ฃ๐‘ฃ|๐ช๐ช|. Note Weyl points typically appear in pairs and the minimum number of Weyl points is two. Here we assume the number of Weyl points is M and the position of mth Weyl point in the momentum space is

Page 11: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

๐ค๐คWeyl,๐‘š๐‘š . By defining ๐ช๐ช๐‘š๐‘š = ๐ค๐ค โˆ’ ๐ค๐คWeyl,๐‘š๐‘š , the Hamiltonian in Supplementary Equation (1) can be rewritten as

๐ป๐ป = โ„๐œ”๐œ”0๐‘๐‘โ€ ๐‘๐‘ + ๏ฟฝ๏ฟฝโ„๐œ”๐œ”๏ฟฝ๐ช๐ช๐‘š๐‘š๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘๐ช๐ช๐‘š๐‘š

๐ช๐ช๐‘š๐‘š

๐‘€๐‘€

๐‘š๐‘š=1

+ ๐‘–๐‘–โ„ ๏ฟฝ๏ฟฝ๐‘”๐‘”๐ช๐ช๐‘š๐‘š๏ฟฝ๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐ช๐ช๐‘š๐‘š๐‘๐‘

โ€ ๏ฟฝ๐ช๐ช๐‘š๐‘š

๐‘€๐‘€

๐‘š๐‘š=1

(7)

The key idea of our quantum scattering theory is to convert the summation over ๐ช๐ช๐‘š๐‘š to a summation over a set of 1-dimension (1D) channels, or waveguides, where solutions have been successfully obtained6. Each channel carries a eigenmode of the photonic crystal with a distinct momentum ๐ช๐ช๐‘š๐‘š. They can be illustrated in the ๐ช๐ช๐‘š๐‘š-space as shown in Supplementary Figures 1a-b. Here, we use box quantization for the ๐ช๐ช๐‘š๐‘š -space by setting up a periodic boundary condition in both x and y directions. At the end of derivation, we will take the periodicity L to โˆž to effectively remove the impact of this artificial periodic boundary condition. Because of the periodicity, incident photons can only be scattered to a set of discretized channels. These channels are defined by the in-plane wave vectors ๐ช๐ช๐‘š๐‘š,๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ of the wave, which are discretized by โˆ†๐‘ž๐‘ž = 2๐œ‹๐œ‹/๐ฟ๐ฟ (Supplementary Figure 1b). For a given frequency ๐œ”๐œ”๐ช๐ช๐‘š๐‘š, the channels are located on a sphere of radius |๐ช๐ช๐‘š๐‘š| = ๐œ”๐œ”๐ช๐ช๐‘š๐‘š/๐‘ฃ๐‘ฃ. Thereby, the total number of channels N is given by ๐‘๐‘ =โˆฏ cos ๐œƒ๐œƒ๐ช๐ช๐‘š๐‘š ๐‘‘๐‘‘

2๐ช๐ช๐‘š๐‘š/(โˆ†๐‘ž๐‘ž)2 /2 = ๐œ‹๐œ‹(๐œ”๐œ”๏ฟฝ๐ช๐ช๐‘š๐‘š/๐‘ฃ๐‘ฃโˆ†๐‘ž๐‘ž)2. We can then convert the summation over ๐ช๐ช๐‘š๐‘š to

๏ฟฝโ„๐œ”๐œ”๏ฟฝ๐ช๐ช๐‘š๐‘š๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘๐ช๐ช๐‘š๐‘š

๐ช๐ช๐‘š๐‘š

= ๏ฟฝ ๏ฟฝ โ„๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›โ€  ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›

๐‘๐‘

๐‘›๐‘›=1

(8)

๏ฟฝ๐‘”๐‘”๐ช๐ช๐‘š๐‘š๏ฟฝ๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐ช๐ช๐‘š๐‘š๐‘๐‘

โ€ ๏ฟฝ๐ช๐ช๐‘š๐‘š

= ๏ฟฝ ๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๏ฟฝ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›โ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐‘๐‘

โ€ ๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›

๐‘๐‘

๐‘›๐‘›=1

(9)

Note the wave number ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘› is a scalar. Itโ€™s also useful to differentiate waves with opposite group velocities as their dispersions are governed by two different branches. We define two scalar wave numbers ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F and ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›

B for forward and backward propagating waves, respectively. The summations over ๐ช๐ช๐‘š๐‘š then become

๏ฟฝโ„๐œ”๐œ”๏ฟฝ๐ช๐ช๐‘š๐‘š๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘๐ช๐ช๐‘š๐‘š

๐ช๐ช๐‘š๐‘š

= ๏ฟฝ(๏ฟฝ โ„๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

+ ๏ฟฝโ„๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Bโ€  ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

)๐‘๐‘

๐‘›๐‘›=1

(10)

๏ฟฝ๐‘”๐‘”๐ช๐ช๐‘š๐‘š๏ฟฝ๐‘๐‘๐ช๐ช๐‘š๐‘šโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐ช๐ช๐‘š๐‘š๐‘๐‘

โ€ ๏ฟฝ๐ช๐ช๐‘š๐‘š

= ๏ฟฝ ๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๏ฟฝ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘๐‘โ€ ๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

๐‘๐‘

๐‘›๐‘›=1

+๏ฟฝ ๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๏ฟฝ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Bโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๐‘๐‘โ€ ๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

๐‘๐‘

๐‘›๐‘›=1

(11)

Page 12: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

where ๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F = ๐‘ฃ๐‘ฃ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F and ๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B = โˆ’๐‘ฃ๐‘ฃ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B are the dispersion relationships for forward and backward propagating photons in each channel, respectively. Note ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F and ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B are scalars with opposite signs.

Our next step is to convert the ๐ช๐ช๐‘š๐‘š -space operators ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  and ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

โ€  to real-space operators. It can be

realized by defining the following Fourier transformation

๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  = ๏ฟฝ1

๐ฟ๐ฟ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘šF ๐œ‰๐œ‰

๐ฟ๐ฟ

โˆ’๐ฟ๐ฟ(12)

๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Bโ€  = ๏ฟฝ1

๐ฟ๐ฟ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘šB ๐œ‰๐œ‰

๐ฟ๐ฟ

โˆ’๐ฟ๐ฟ(13)

where operators ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) and ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰) create a forward and a backward propagating photon at position ๐œ‰๐œ‰ in the nth channel, respectively (Supplementary Figure 1c). By using rotating wave approximation, the summations over ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F further become

๏ฟฝโ„๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

= ๏ฟฝโ„๐‘ฃ๐‘ฃ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

๐ฟ๐ฟ ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘‘๐‘‘๐œ‰๐œ‰โ€ฒโˆž

โˆ’โˆž

โˆž

โˆ’โˆž๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰โ€ฒ)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š

F ๏ฟฝ๐œ‰๐œ‰โˆ’๐œ‰๐œ‰โ€ฒ๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

=โ„๐‘ฃ๐‘ฃโˆ†๐‘ž๐‘ž๐ฟ๐ฟ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘‘๐‘‘๐œ‰๐œ‰โ€ฒ

โˆž

โˆ’โˆž

โˆž

โˆ’โˆž๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰โ€ฒ)๏ฟฝ ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘šF ๏ฟฝ๐œ‰๐œ‰โˆ’๐œ‰๐œ‰โ€ฒ๏ฟฝ ๐‘‘๐‘‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

โˆž

โˆ’โˆž

= ๐‘–๐‘–โ„๐‘ฃ๐‘ฃ ๏ฟฝ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘‘๐‘‘๐œ‰๐œ‰โ€ฒโˆž

โˆ’โˆž

โˆž

โˆ’โˆž๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)(โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰)๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›

(๐œ‰๐œ‰โ€ฒ)๐›ฟ๐›ฟ(๐œ‰๐œ‰ โˆ’ ๐œ‰๐œ‰โ€ฒ)

= ๐‘–๐‘–โ„๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) ๏ฟฝโˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰๏ฟฝ ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›

(๐œ‰๐œ‰)โˆž

โˆ’โˆž(14)

and

๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๏ฟฝ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Fโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘๐‘โ€ ๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

= ๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๏ฟฝ1๐ฟ๐ฟ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐œ‰๐œ‰๐‘๐‘โˆž

โˆ’โˆžโˆ’ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘’๐‘’โˆ’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐œ‰๐œ‰๐‘๐‘โ€ 

โˆž

โˆ’โˆž๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

=๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F

โˆ†๐‘ž๐‘ž๏ฟฝ1๐ฟ๐ฟ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰)๐‘๐‘โˆž

โˆ’โˆž๏ฟฝ ๐‘‘๐‘‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐œ‰๐œ‰โˆž

โˆ’โˆžโˆ’ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘๐‘โ€ 

โˆž

โˆ’โˆž๏ฟฝ ๐‘‘๐‘‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐‘’๐‘’โˆ’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›F ๐œ‰๐œ‰โˆž

โˆ’โˆž๏ฟฝ

= ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐›ฟ๐›ฟ(๐œ‰๐œ‰)๏ฟฝ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘๐‘ โˆ’ ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘๐‘โ€ ๏ฟฝ

โˆž

โˆ’โˆž(15)

Similarly, the summations over ๐‘ž๐‘ž๐‘š๐‘šB further become

Page 13: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

๏ฟฝ โ„๐œ”๐œ”๏ฟฝ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Bโ€  ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

= ๐‘–๐‘–โ„๐‘ฃ๐‘ฃ ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) ๏ฟฝโˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰๏ฟฝ ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)

โˆž

โˆ’โˆž(16)

and

๏ฟฝ๐‘”๐‘”๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๏ฟฝ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›Bโ€  ๐‘๐‘ โˆ’ ๐‘๐‘๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B ๐‘๐‘โ€ ๏ฟฝ

๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›B

= ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐›ฟ๐›ฟ(๐œ‰๐œ‰)๏ฟฝ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰)๐‘๐‘ โˆ’ ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘๐‘โ€ ๏ฟฝ

โˆž

โˆ’โˆž(17)

By substituting Supplementary Equations (8) โ€“ (17) into Supplementary Equation (7) we obtain the real-space Hamiltonian as

๐ป๐ป = โ„๐œ”๐œ”0๐‘๐‘โ€ ๐‘๐‘ + ๐‘–๐‘–โ„๐‘ฃ๐‘ฃ๐ฟ๐ฟ ๏ฟฝ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰ ๏ฟฝ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) ๏ฟฝโˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰๏ฟฝ ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘› + ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰)(๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰)๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๏ฟฝ

โˆž

โˆ’โˆž

๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

+ ๐‘–๐‘–โ„ ๏ฟฝ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐œ‰๐œ‰๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๐ฟ๐ฟ๐›ฟ๐›ฟ(๐œ‰๐œ‰) ๏ฟฝ๏ฟฝ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) + ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰)๏ฟฝ ๐‘๐‘ โˆ’ ๏ฟฝ๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) + ๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๏ฟฝ ๐‘๐‘โ€ ๏ฟฝโˆž

โˆ’โˆž

๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

(18)

Given the real-space Hamiltonian, our next step is to solve the time-independent Schrodinger equation ๐ป๐ป|๐œ“๐œ“โŸฉ = โ„๐œ”๐œ”๐ช๐ช|๐œ“๐œ“โŸฉ, where |๐œ“๐œ“โŸฉ is the eigenstate. The most general eigenstate can be written in terms of the eigenmodes of the photonic crystal as

|๐œ“๐œ“โŸฉ = ๏ฟฝ ๏ฟฝ๏ฟฝ๐‘‘๐‘‘๐œ‰๐œ‰๏ฟฝ๐œ“๐œ“F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘๐‘F,๐‘š๐‘š,๐‘›๐‘›โ€  (๐œ‰๐œ‰) + ๐œ“๐œ“B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰)๐‘๐‘B,๐‘š๐‘š,๐‘›๐‘›

โ€  (๐œ‰๐œ‰)๏ฟฝ |0, gโŸฉ๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

+ ๐ธ๐ธ๐‘๐‘โ€ |0, gโŸฉ (19)

where |0, gโŸฉ indicates that the TLS is in the ground state and ๐ธ๐ธ is the excitation amplitude of the TLS. The single-photon wavefunctions ๐œ“๐œ“F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) and ๐œ“๐œ“B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) in the nth channel of the mth Weyl point are given by

๐œ“๐œ“F,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) = ๐‘ข๐‘ข(๐œ‰๐œ‰)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐œ‰๐œ‰๏ฟฝ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘›๐œƒ๐œƒ(โˆ’๐œ‰๐œ‰) + ๐‘ก๐‘ก๐‘š๐‘š.๐‘›๐‘›๐œƒ๐œƒ(๐œ‰๐œ‰)๏ฟฝ (20)

๐œ“๐œ“B,๐‘š๐‘š,๐‘›๐‘›(๐œ‰๐œ‰) = ๐‘ข๐‘ข(๐œ‰๐œ‰)๐‘’๐‘’โˆ’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐œ‰๐œ‰๏ฟฝ๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘›๐œƒ๐œƒ(โˆ’๐œ‰๐œ‰)๏ฟฝ (21)

where ๐‘ข๐‘ข(๐œ‰๐œ‰)๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š๐œ‰๐œ‰ is the eigenmode associated with wave number ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘› and ๐œƒ๐œƒ(๐œ‰๐œ‰) is the Heaviside step function. The Kronecker delta ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘› indicates that single photons are incident from the in the pth channel of the lth Weyl point. The coefficients ๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘› and ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› are the amplitudes of the reflected and transmitted photons in the nth channel of the mth Weyl point, respectively. We schematically plot the wavefunctions in Supplementary Figure 1d for clear visualization.

By substituting the eigenstate into the real-space Hamiltonian, we obtain the following set of equations for each channel

โˆ’๐‘–๐‘–๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰ ๏ฟฝ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘›๐‘ข๐‘ข(๐œ‰๐œ‰)๐œƒ๐œƒ(โˆ’๐œ‰๐œ‰) + ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘›๐‘ข๐‘ข(๐œ‰๐œ‰)๐œƒ๐œƒ(๐œ‰๐œ‰)๏ฟฝ + ๐‘–๐‘–๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๐‘’๐‘’โˆ’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐œ‰๐œ‰๐ธ๐ธ = 0 (22)

Page 14: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

๐‘–๐‘–๐‘ฃ๐‘ฃ๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐œ‰๐œ‰๐‘‘๐‘‘๐‘‘๐‘‘๐œ‰๐œ‰ ๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘›๐‘ข๐‘ข(๐œ‰๐œ‰)๐œƒ๐œƒ(โˆ’๐œ‰๐œ‰) + ๐‘–๐‘–๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๐‘’๐‘’๐‘–๐‘–๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๐œ‰๐œ‰๐ธ๐ธ = 0 (23)

and the following equation for the interaction between the TLS and the propagating waves

๐œ”๐œ”0๐ธ๐ธ โˆ’ ๐‘–๐‘– ๏ฟฝ ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ ๏ฟฝ๐‘ข๐‘ข(0)๏ฟฝ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘› + ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2 +๐‘ข๐‘ข(0)๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘›

2 ๏ฟฝ๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

= ๐œ”๐œ”๐ช๐ช๐ธ๐ธ (24)

By solving Supplementary Equation (22) and Supplementary Equation (23) we can obtain the coefficients ๐‘ก๐‘ก๐‘›๐‘› and ๐‘Ÿ๐‘Ÿ๐‘›๐‘› as

๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› =๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๐‘ฃ๐‘ฃ๐‘ข๐‘ข(0) ๐ธ๐ธ + ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘› (25)

๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘› =๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๐‘ฃ๐‘ฃ๐‘ข๐‘ข(0) ๐ธ๐ธ (26)

By substituting Supplementary Equations (25) โ€“ (26) into Supplementary Equation (24), we obtain a simple equation of the excitation amplitude E as

๏ฟฝ๐œ”๐œ”๐ช๐ช โˆ’ ๐œ”๐œ”0 + ๐‘–๐‘– ๏ฟฝ ๏ฟฝ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2๐ฟ๐ฟ๐‘ฃ๐‘ฃ

๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

๏ฟฝ๐ธ๐ธ = โˆ’๐‘–๐‘–๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›โˆš๐ฟ๐ฟ๐‘ข๐‘ข(0) (27)

We can then obtain the transmission coefficient ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› and reflection coefficient ๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› in the nth channel of the mth Weyl point as

๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› = โˆ’๐‘–๐‘–๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๐ฟ๐ฟ

๐‘ฃ๐‘ฃ1

๐œ”๐œ”๐ช๐ช โˆ’ ๐œ”๐œ”0 + ๐‘–๐‘– ฮ“2+ ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘› (28)

๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘› = โˆ’๐‘–๐‘–๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๐ฟ๐ฟ

๐‘ฃ๐‘ฃ1

๐œ”๐œ”๐ช๐ช โˆ’ ๐œ”๐œ”0 + ๐‘–๐‘– ฮ“2(29)

where ฮ“ = 2โˆ‘ โˆ‘ ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ2๐ฟ๐ฟ/๐‘ฃ๐‘ฃ ๐‘๐‘

๐‘›๐‘›=1๐‘€๐‘€๐‘š๐‘š=1 is the spontaneous emission rate of the TLS and the factor of 2

results from the forward and backward propagating waves.

Thus, the scattering cross section can be calculated as

๐œŽ๐œŽ๏ฟฝ๐œ”๐œ”๐ช๐ช, ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๏ฟฝ =โˆ‘ โˆ‘ ๏ฟฝ|๐‘ก๐‘ก๐‘š๐‘š,๐‘›๐‘› โˆ’ ๐›ฟ๐›ฟ๐‘š๐‘š๐‘š๐‘š๐›ฟ๐›ฟ๐‘›๐‘›๐‘›๐‘›|2 + |๐‘Ÿ๐‘Ÿ๐‘š๐‘š,๐‘›๐‘›|2๏ฟฝ๐‘๐‘

๐‘›๐‘›=1๐‘€๐‘€๐‘š๐‘š=1

1/๐ฟ๐ฟ2

=2๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2๐ฟ๐ฟ3

๐‘ฃ๐‘ฃโˆ‘ โˆ‘ ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2๐ฟ๐ฟ/๐‘ฃ๐‘ฃ๐‘๐‘๐‘›๐‘›=1

๐‘€๐‘€๐‘š๐‘š=1

(๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช)2 + ฮ“24

= ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2๐ฟ๐ฟ3

๐‘ฃ๐‘ฃฮ“

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 + ฮ“2

4

(30)

Page 15: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

We can further normalize the coupling coefficient ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ2๐ฟ๐ฟ/๐‘ฃ๐‘ฃ by its maximum (๐‘”๐‘”0)2๐ฟ๐ฟ/๐‘ฃ๐‘ฃ, and define an

angular factor ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘› = ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›/๐‘”๐‘”0๏ฟฝ2. Supplementary Equation (30) then can be rewritten to an expression

similar to the well-known Breit-Wigner formula as

๐œŽ๐œŽ๏ฟฝ๐œ”๐œ”๐ช๐ช, ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›๏ฟฝ =2๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐ฟ๐ฟ2

โˆ‘ โˆ‘ ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘› ๐‘๐‘๐‘›๐‘›=1

๐‘€๐‘€๐‘š๐‘š=1

ฮ“24

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐’’๐’’๏ฟฝ2 + ฮ“2

4

=4๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐ฟ๐ฟ2(โˆ†๐‘ž๐‘ž)2

|๐‘ž๐‘ž๐‘š๐‘š.๐‘›๐‘›|2 โˆ‘ โˆฎ cos๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›๐‘€๐‘€๐‘š๐‘š=1

ฮ“24

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 + ฮ“2

4

=๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›โ„ฑ

16๐œ‹๐œ‹2๐‘ฃ๐‘ฃ2

(๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐‘Š๐‘Š๐‘Š๐‘Š๐‘ฆ๐‘ฆ๐‘š๐‘š)2

ฮ“24

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 + ฮ“2

4

(31)

where ฮฉ๐‘š๐‘š,๐‘›๐‘› is the solid angle associated with ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘›, โ„ฑ = โˆ‘ โˆฎ cos ๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›๐‘€๐‘€๐‘š๐‘š=1 and ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›/โ„ฑ indicates

the angular distribution of the scattering cross section. The prefactor 16๐‘ฃ๐‘ฃ2/(๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl)2 ultimately determines the maximum cross section, which agrees with the conclusion in the main text. Note we have assumed that the isosurface around each Weyl point is isotropic throughout the derivation, i.e. |๐‘ž๐‘ž๐‘š๐‘š.๐‘›๐‘›| =๏ฟฝ๐œ”๐œ”๐‘ž๐‘ž๐‘š๐‘š.๐‘›๐‘› โˆ’ ๐œ”๐œ”Weyl๏ฟฝ/๐‘ฃ๐‘ฃ. For anisotropic Weyl point, the scattering cross section has the same form and only differs from the isotropic case by a constant.

Supplementary Note 3: Frequency dependence of the spectrum of the average cross section

In the main text, we focus on the maximum of the average cross section when ๐œ”๐œ”๐ช๐ช = ๐œ”๐œ”0 and briefly discuss the spectrum of the average cross section in Fig. 4. Here we will discuss more details about the frequency dependence of the spectrum of the average cross section.

The average cross section can be directly calculated by using Supplementary Equation (30). To simplify the discussion, here we will also assume that the isosurface around each Weyl point is identical and isotropic, i.e., |๐‘ž๐‘ž๐‘š๐‘š.๐‘›๐‘›| = ๏ฟฝ๐œ”๐œ”๐‘ž๐‘ž๐‘š๐‘š.๐‘›๐‘› โˆ’ ๐œ”๐œ”Weyl๏ฟฝ/๐‘ฃ๐‘ฃ . Recall that (๐‘”๐‘”0)2 = ๐‘‘๐‘‘2๐œ”๐œ”0/2โ„๐œ–๐œ–0๐ฟ๐ฟ3 and ๐‘‘๐‘‘ is the dipole moment of the TLS. Thereby, the spontaneous emission rate ฮ“ can also be calculated as

ฮ“ = 2 ๏ฟฝ ๏ฟฝ๏ฟฝ๐‘”๐‘”๐‘š๐‘š,๐‘›๐‘›๏ฟฝ

2๐ฟ๐ฟ๐‘ฃ๐‘ฃ

๐‘๐‘

๐‘›๐‘›=1

๐‘€๐‘€

๐‘š๐‘š=1

=(๐‘”๐‘”0)2๐ฟ๐ฟ3๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ

2

4๐œ‹๐œ‹2๐‘ฃ๐‘ฃ3 ๏ฟฝ ๏ฟฝ cos๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›

๐‘€๐‘€

๐‘š๐‘š=1

๐‘‘๐‘‘2๐œ”๐œ”0๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ2

8โ„๐œ–๐œ–0๐œ‹๐œ‹2๐‘ฃ๐‘ฃ3๏ฟฝ ๏ฟฝ cos๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›

๐‘€๐‘€

๐‘š๐‘š=1

Page 16: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

= ๐“…๐“…๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ2 (32)

where ฮฉ๐‘š๐‘š,๐‘›๐‘› is the solid angle associated with wave number ๐‘ž๐‘ž๐‘š๐‘š,๐‘›๐‘› . For simplification, we define a coefficient ๐“…๐“… = ๐‘‘๐‘‘2๐œ”๐œ”0 โˆ‘ โˆฎ cos ๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›

๐‘€๐‘€๐‘š๐‘š=1 /8โ„๐œ–๐œ–0๐œ‹๐œ‹2๐‘ฃ๐‘ฃ3. Around the Weyl point, the coefficient ๐“…๐“…

does not vary significantly with the frequency. As a result, the spontaneous emission rate ฮ“ scales as

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ2.

Next, we calculate the average cross section by integrating the cross section on the isosurfaces and then dividing the integration by the area of the isosurfaces. The spectrum of the average cross section then is given by

๐œŽ๐œŽ๏ฟฝ๏ฟฝ๐œ”๐œ”๐ช๐ช๏ฟฝ =(๐‘”๐‘”0)2๐ฟ๐ฟ3

๐‘ฃ๐‘ฃโˆ‘ โˆฎ cos ๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›๐‘€๐‘€๐‘š๐‘š=1

โˆ‘ โˆฎ๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›๐‘€๐‘€๐‘š๐‘š=1

ฮ“

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 + ฮ“2

4

= ๐‘‘๐‘‘2๐œ”๐œ”0

8๐‘€๐‘€โ„๐œ–๐œ–0๐œ‹๐œ‹๐‘ฃ๐‘ฃ๏ฟฝ ๏ฟฝ cos ๐œƒ๐œƒ๐‘š๐‘š.๐‘›๐‘› ๐‘“๐‘“๐‘š๐‘š,๐‘›๐‘›๐‘‘๐‘‘ฮฉ๐‘š๐‘š,๐‘›๐‘›

๐‘€๐‘€

๐‘š๐‘š=1

ฮ“

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 + ฮ“2

4

= ๐œ‹๐œ‹๐“…๐“…2๐‘ฃ๐‘ฃ2

๐‘€๐‘€๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ

2

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ2 +

๐“…๐“…2๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ4

4

(33)

Note the prefactor ๐œ‹๐œ‹๐“…๐“…2๐‘ฃ๐‘ฃ2/๐‘€๐‘€ does not vary significantly with the frequency around the Weyl point. On

resonance, i.e., ๐œ”๐œ”๐ช๐ช = ๐œ”๐œ”0, the resonant average cross section scales as 1/๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ2 and increases

drastically as ๐œ”๐œ”0 โ†’ ๐œ”๐œ”Weyl . In great contrast, the cross section of off-resonance frequencies scales as

๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ2/๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”๐ช๐ช๏ฟฝ

2 and is strongly suppressed around the Weyl point.

Meanwhile, itโ€™s clear to see that the integration of the average cross section โˆซ ๐œŽ๐œŽ๏ฟฝ๏ฟฝ๐œ”๐œ”๐ช๐ช๏ฟฝ๐‘‘๐‘‘๐œ”๐œ”๐ช๐ชโˆžโˆ’โˆž is roughly a

constant, which can be shown as

๏ฟฝ ๐œŽ๐œŽ๏ฟฝ๏ฟฝ๐œ”๐œ”๐’’๐’’๏ฟฝ๐‘‘๐‘‘๐œ”๐œ”๐’’๐’’โˆž

โˆ’โˆž= ๏ฟฝ ๐‘‘๐‘‘๐œ”๐œ”๐’’๐’’

โˆž

โˆ’โˆž

๐œ‹๐œ‹๐“…๐“…2๐‘ฃ๐‘ฃ2

๐‘€๐‘€๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ

2

๏ฟฝ๐œ”๐œ”๐’’๐’’ โˆ’ ๐œ”๐œ”0๏ฟฝ2 +

๐“…๐“…2๏ฟฝ๐œ”๐œ”0 โˆ’ ๐œ”๐œ”Weyl๏ฟฝ4

4

=2๐“…๐“…๐œ‹๐œ‹2๐‘ฃ๐‘ฃ2

๐‘€๐‘€(34)

where 2๐“…๐“…๐œ‹๐œ‹2๐‘ฃ๐‘ฃ2/๐‘€๐‘€ remains around the same around the Weyl point.

Page 17: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Supplementary Note 4: Resonant scattering in Dirac systems

The conservation law of resonant scattering can be also extended to two-dimensional (2D) space. In 2D space, the conical dispersion forms a Dirac point, which is the 2D analogy of the Weyl point. In this section, we will use a 2D Dirac photonic crystal as an example and demonstrate the diverging resonant scattering cross section around the Dirac point.

We consider a triangular lattice of dielectric rods (grey circle in Supplementary Figure 2a), which has a dielectric constant of ๐œ–๐œ– = 12. The radius of the rods is 0.3๐‘Ž๐‘Ž, where a is the lattice constant. We then solve the band structure of this Dirac photonic crystal by using MPB7. We obtain 6 Dirac points in the band structure for the transverse electric (TE) bands at ๐œ”๐œ” = 0.462 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž). To visualize the momentum space in 2D space, we plot the isofrequency contour for ๐œ”๐œ” = 0.461 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž) in Supplementary Figure 2b. For each Dirac point, the isofrequency contour is almost a circle.

Supplementary Figure 2: Resonant scattering in Dirac systems. a Schematic of the 2D Dirac photonic crystal. b Isofrequency contour of the Dirac photonic crystal at ๐œ”๐œ” = 0.461 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž). 6 Dirac points are obtained at ๐œ”๐œ” = 0.462 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž) for the TE bands. The isofrequency contour is almost a circle. c The resonant cross section of the TLS for different locations. The resonant frequency of the TLS is ๐œ”๐œ”0 = 0.461 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž). The integration in momentum space always leads to the same constant. Positions A-B-C-A are labelled in a. Examples of ๐œŽ๐œŽ(๐ช๐ช) at two different positions are plotted as insets. d Diverging

Page 18: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

average resonant cross section is realized around the Dirac frequency. The results from quantum scattering simulation (red circles) agree well with the prediction based on the band structure (blue dashed line). The cross section is normalized by the average cross section in free space ๐œŽ๐œŽ๏ฟฝ0 = 2๐œ†๐œ†/๐œ‹๐œ‹. The black dashed line indicates the Dirac frequency.

Next, we numerically verify the conservation law of resonant scattering in Dirac systems. As an example, we consider a TLS with a transition frequency of ๐œ”๐œ”0 = 0.461 (2๐œ‹๐œ‹๐‘๐‘/๐‘Ž๐‘Ž). The dipole moment of the TLS is in the x direction. The calculated cross sections ๐œŽ๐œŽ(๐ช๐ช) of the TLS at two different positions are plotted as insets of Supplementary Figure 2c. Similar to the cross section in Weyl photonic crystals, it also strongly depends on the incident wavevector ๐ช๐ช = ๐ค๐ค โˆ’ ๐ค๐คDirac and varies significantly at different locations.

The conversation law of resonant cross section in 2D space is slightly different from that in 3D space. Instead of integrating over the isosurface, we now integrate the resonant cross section over the isofrequency contour and the conservation law becomes

๏ฟฝ๐œŽ๐œŽ(๐ช๐ช)๐‘‘๐‘‘๐‘‘๐‘‘ = 8๐œ‹๐œ‹ (35)

To confirm the above conservation law, we integrate the resonant cross section for a TLS at 16 different locations and plot the results in Supplementary Figure 2c. As expected, the integration โˆซ๐œŽ๐œŽ(๐ช๐ช)๐‘‘๐‘‘๐‘‘๐‘‘ always results in the same constant of 8๐œ‹๐œ‹.

We then sweep the transition frequency of the TLS to across the Dirac point, which is indicated by black dashed line in Supplementary Figure 2d. To better demonstrate the enhancement, we also define an average cross section ๐œŽ๐œŽ๏ฟฝ = โˆซ๐œŽ๐œŽ(๐ช๐ช)๐‘‘๐‘‘๐‘‘๐‘‘ /๐ถ๐ถ, where C is the total circumference of the isofrequency contours. The calculated average cross section is plotted as red circles in Supplementary Figure 2d. Itโ€™s enhanced by almost three orders of magnitude compared to ๐œŽ๐œŽ๏ฟฝ0 = 2๐œ†๐œ†/๐œ‹๐œ‹, the average cross section in free space. At the Dirac frequency, the resonant cross section diverges.

Supplementary Note 5. Proof of suppressed Rayleigh (non-resonant) scattering in Weyl systems

The suppressed Rayleigh scattering in Weyl system can be directly proved by using perturbation theory and Born approximation. In this section, we will describe the mathematical proof in detail.

Under the framework of the first-order Born approximation8, the scattering amplitude ๐‘“๐‘“(๐ค๐คs,๐ค๐คinc)for a Rayleigh scatterer with a weak scattering potential ๐•๐•(๐ซ๐ซ) is given by

๐‘“๐‘“(๐ค๐คs,๐ค๐คinc) = ๏ฟฝ๐‘‘๐‘‘3๐ซ๐ซโ€ฒ๐ฎ๐ฎ๐ค๐คs ๏ฟฝ๐ซ๐ซโ€ฒ๏ฟฝ๐•๐• ๏ฟฝ๐ซ๐ซโ€ฒ๏ฟฝ๐ฎ๐ฎ๐ค๐คinc ๏ฟฝ๐ซ๐ซ

โ€ฒ๏ฟฝ ๐‘’๐‘’๐‘–๐‘–(๐ค๐คincโˆ’๐ค๐คs)โˆ™๐ซ๐ซโ€ฒ (36)

Here ๐ฎ๐ฎ๐ค๐ค๐’†๐’†๐‘–๐‘–๐ค๐คโˆ™๐ซ๐ซ is the eigenmode of the surrounding medium associated with wave vector ๐ค๐ค. ๐ค๐คs and ๐ค๐คinc are the wave vectors of the scattered and incident eigenmodes, respectively. For simplicity, we assume the scatterer is very small compared to the incident wavelength and can be considered as a point scatterer located at ๐ซ๐ซ0. The scattering potential then can be written as ๐•๐•(๐ซ๐ซ) = ๐œ”๐œ”๐•๐•๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ0). Note here ๐•๐• is a tensor containing the dielectric constant of the scatterer. Thus, the scattering amplitude becomes

Page 19: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

๐‘“๐‘“(๐ค๐คs,๐ค๐คinc) = ๐œ”๐œ”๐ฎ๐ฎ๐ค๐คs(๐ซ๐ซ0)๐•๐•๐ฎ๐ฎ๐ค๐คinc(๐ซ๐ซ0)๐‘’๐‘’๐‘–๐‘–(๐ค๐คincโˆ’๐ค๐คs)โˆ™๐ซ๐ซ0 (37)

The total scattering cross section then can be calculated as

๐œŽ๐œŽ(๐œ”๐œ”,๐ค๐คinc) = ๏ฟฝ|๐‘“๐‘“(๐ค๐คs,๐ค๐คinc)|2๐ค๐คs

= ๐œ”๐œ”2๏ฟฝ๏ฟฝ๐ฎ๐ฎ๐ค๐คs(๐ซ๐ซ0)๐•๐•๐ฎ๐ฎ๐ค๐คinc(๐ซ๐ซ0)๏ฟฝ2

๐ค๐คs

(38)

The summation over ๐ค๐คs can be readily converted to a surface integral over the isosurface given by ๐œ”๐œ”(๐ค๐คs) = ๐œ”๐œ”, and Supplementary Equation (38) further becomes

๐œŽ๐œŽ(๐œ”๐œ”,๐ค๐คinc) = ๐œ”๐œ”2 ๏ฟฝ ๐‘‘๐‘‘2๐ค๐คs ๐‘†๐‘†:๐œ”๐œ”(๐ค๐ค๐ฌ๐ฌ)=๐œ”๐œ”

๏ฟฝ๐ฎ๐ฎ๐ค๐คs(๐ซ๐ซ0)๐•๐•๐ฎ๐ฎ๐ค๐คinc(๐ซ๐ซ0)๏ฟฝ2 โˆ ๐œ”๐œ”2๐‘†๐‘† (39)

where ๐‘†๐‘† is the area of the isosurface. In free space, the area of the isosurface S scales ๐‘†๐‘†~๐œ”๐œ”2. Consequently, the Rayleigh scattering cross section scales as ๐œŽ๐œŽ(๐œ”๐œ”,๐ค๐คinc)~๐œ”๐œ”4. In great contrast, the area of the isosurface S scales ๐‘†๐‘†~โˆ†๐œ”๐œ”2 = (๐œ”๐œ” โˆ’ ๐œ”๐œ”Weyl)2 and thus the Rayleigh scattering cross section scales as ๐œŽ๐œŽ(๐œ”๐œ”,๐ค๐คinc)~๐œ”๐œ”2(๐œ”๐œ” โˆ’ ๐œ”๐œ”Weyl)2 in Weyl systems.

Supplementary Note 6. Numerical calculation of Rayleigh (non-resonant) scattering in Weyl systems

The Rayleigh scattering cross section can be rigorously calculated by using the normal-mode expansion of the dipole field9โ€“11 that radiated by the scatterer. In this section, we will briefly describe the normal-mode expansion method that we implemented to numerically calculate the Rayleigh scattering cross section.

In a nonmagnetic medium with a dielectric constant of ๐œ–๐œ–(๐ซ๐ซ), the Maxwellโ€™s equations are given by

โˆ‡ ร— ๐„๐„ = โˆ’๐œ‡๐œ‡0๐œ•๐œ•๐‡๐‡๐œ•๐œ•๐‘ก๐‘ก

(40a)

โˆ‡ ร— ๐‡๐‡ = โˆ’๐œ–๐œ–(๐ซ๐ซ)๐œ–๐œ–0๐œ•๐œ•๐„๐„๐œ•๐œ•๐‘ก๐‘ก + ๐‰๐‰ (40b)

โˆ‡ โˆ™ (๐œ–๐œ–(๐ซ๐ซ)๐œ–๐œ–0๐„๐„) = 0 (40c)

โˆ‡ โˆ™ ๐‡๐‡ = 0 (40d)

where ๐œ‡๐œ‡0 is vacuum permeability. The electric (magnetic) field is denoted by ๐„๐„ (๐‡๐‡). An electromagnetic field is produced by a current density ๐‰๐‰. Since the charge density is zero, the scalar potential is zero. The electric and magnetic fields can be written in terms of vector potential ๐€๐€ as

๐„๐„ = โˆ’โˆ‚๐€๐€โˆ‚๐‘ก๐‘ก

(41a)

๐‡๐‡ =1๐œ‡๐œ‡0โˆ‡ ร— ๐€๐€ (41b)

Page 20: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Thus, the wave equation for the vector potential ๐€๐€ is given by

โˆ‡ ร— โˆ‡ ร— ๐€๐€ +๐œ–๐œ–(๐ซ๐ซ)๐‘๐‘2

โˆ‚2๐€๐€โˆ‚2๐‘ก๐‘ก = ๐œ‡๐œ‡0๐‰๐‰ (42)

where ๐‘๐‘ is the speed of light.

The homogeneous solutions to the above wave equation can be written as a superposition of the eigenmodes ๐€๐€๐ค๐ค(๐ซ๐ซ) = ๐ฎ๐ฎ๐ค๐ค(๐ซ๐ซ)๐‘’๐‘’๐‘–๐‘–๐ค๐คโˆ™๐ซ๐ซ of the photonic crystal, which satisfy the homogenous wave equation

โˆ‡ ร— โˆ‡ ร— ๐€๐€๐ค๐ค(๐ซ๐ซ) +๐œ”๐œ”๐ค๐ค2

๐‘๐‘2 ๐œ–๐œ–(๐ซ๐ซ)๐€๐€๐ค๐ค(๐ซ๐ซ) = 0 (43)

The eigenmodes ๐€๐€๐ค๐ค(๐ซ๐ซ) also have to satisfy the orthogonalization, normalization and closure conditions given by

๏ฟฝ๐‘‘๐‘‘3๐ซ๐ซ ๐œ–๐œ–(๐ซ๐ซ)๐€๐€๐ค๐ค(๐ซ๐ซ)๐€๐€๐ค๐คโ€ฒโˆ— (๐ซ๐ซ) = (2๐œ‹๐œ‹)3๐ฟ๐ฟ3๐›ฟ๐›ฟ(๐ค๐ค โˆ’ ๐ค๐คโ€ฒ) (44)

Here ๐ฟ๐ฟ3 is the normalization volume.

We then consider a generic Rayleigh scatterer embedded in such a medium. During the Rayleigh scattering process, the incident wave induces an oscillating dipole moment ๐๐ = ๐›ผ๐›ผ๐„๐„inc(๐ซ๐ซ0) in the scatterer. Here ๐›ผ๐›ผ is the polarizability of the scatterer, and ๐„๐„inc(๐ซ๐ซ0) is the local incident electric field at the position of the scatterer. Since the scatterer is quite small compared to the wavelength, the external current source ๐‰๐‰ can be written as

๐‰๐‰(๐ซ๐ซ, ๐‘ก๐‘ก) = โˆ’๐‘–๐‘–๐œ”๐œ”0๐๐๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ0)๐‘’๐‘’โˆ’๐‘–๐‘–๐œ”๐œ”0๐‘ก๐‘ก (45)

where ๐ซ๐ซ0 is the position of the scatterer. The vector potential ๐€๐€(๐ซ๐ซ, t) then can be obtained by solving Supplementary Equation (42) in terms of ๐‰๐‰ via the dyadic Greenโ€™s function ๐†๐† as

๐€๐€(๐ซ๐ซ, ๐‘ก๐‘ก) = ๏ฟฝ ๐‘‘๐‘‘๐‘ก๐‘กโ€ฒโˆž

โˆ’โˆž๏ฟฝ๐‘‘๐‘‘3๐ซ๐ซโ€ฒ ๐‰๐‰ ๏ฟฝ๐ซ๐ซโ€ฒ, ๐‘ก๐‘ก๏ฟฝ๐†๐† ๏ฟฝ๐ซ๐ซ, ๐‘ก๐‘ก; ๐ซ๐ซโ€ฒ, ๐‘ก๐‘กโ€ฒ๏ฟฝ (46)

The exact expression of the dyadic Greenโ€™s function ๐†๐† can be found in Supplementary Reference [8] and we will not discuss the technical details here. Given the vector potential ๐€๐€(๐ซ๐ซ, ๐‘ก๐‘ก), one can show that the time-average radiation power from the induced dipole moment ๐๐ is given by11

๐‘ƒ๐‘ƒ(๐œ”๐œ”) =๐œ‹๐œ‹๐œ”๐œ”2

4๐œ–๐œ–0๏ฟฝ ๐‘‘๐‘‘2๐ค๐ค

๐œ”๐œ”(๐ค๐ค)=๐œ”๐œ”

|๐ฎ๐ฎ๐ค๐ค(๐ซ๐ซ0) โˆ™ ๐๐|2

๐‘ฃ๐‘ฃ๐‘”๐‘”,๐ค๐ค(47)

Page 21: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

Here ๐‘ฃ๐‘ฃ๐‘”๐‘”,๐ค๐ค is the group velocity associated with wave vector ๐ค๐ค. Then the Rayleigh scattering cross section can be calculated as

๐œŽ๐œŽ(๐œ”๐œ”,๐ค๐คinc) =๐‘ƒ๐‘ƒ(๐œ”๐œ”)

12๐œ‡๐œ‡0

๐ฎ๐ฎ๐ค๐คinc(๐ซ๐ซ0) ร— ๏ฟฝโˆ‡ ร— ๐ฎ๐ฎ๐ค๐คincโˆ— (๐ซ๐ซ0)๏ฟฝ

(48)

Here we assume the incident wave is one of the eigenmodes associated with wave vector ๐ค๐คinc . The denominator in Supplementary Equation (48) indicates the Poynting vector of the incident wave at the location of the scatterer, which usually does not vary much with the frequency. On the other hand, Supplementary Equation (47) clearly indicates that the radiation power ๐‘ƒ๐‘ƒ(๐œ”๐œ”) is proportional to the area of the isosurface S as ๐‘ƒ๐‘ƒ(๐œ”๐œ”) ~๐œ”๐œ”2๐‘†๐‘† . Consequently, the Rayleigh scattering cross scales as ๐œŽ๐œŽ~๐œ”๐œ”2๐‘†๐‘†, which is consistent with Supplementary Equation (39) that we derived by using perturbation theory.

Supplementary References 1. Zhu, S.-Y., Yang, Y., Chen, H., Zheng, H. & Zubairy, M. S. Spontaneous Radiation and Lamb Shift

in Three-Dimensional Photonic Crystals. Phys. Rev. Lett. 84, 2136โ€“2139 (2000).

2. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. & Thickstun, P. Atom-photon interactions:

basic processes and applications. (Wiley Online Library, 1992).

3. Dung, H. T., Knรถll, L. & Welsch, D.-G. Resonant dipole-dipole interaction in the presence of

dispersing and absorbing surroundings. Phys. Rev. A 66, 063810 (2002).

4. Liu, J., Zhou, M. & Yu, Z. Quantum scattering theory of a single-photon Fock state in three-

dimensional spaces. Opt Lett 41, 4166โ€“4169 (2016).

5. Ficek, Z. & Swain, S. Quantum Interference and Coherence: Theory and Experiments. (Springer

Science & Business Media, 2005).

6. Shen, J.-T. & Fan, S. Coherent Single Photon Transport in a One-Dimensional Waveguide Coupled

with Superconducting Quantum Bits. Phys. Rev. Lett. 95, 213001 (2005).

7. Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwellโ€™s

equations in a planewave basis. Opt. Express 8, 173โ€“190 (2001).

Page 22: Electromagnetic scattering laws in Weyl systemslinglu.info/pdf/2017-Zhou-NatComm-WeyScattering.pdfMing Zhou1, Lei Ying1, Ling Lu2, Lei Shi3, Jian Zi3 & Zongfu Yu1 Wavelength determines

8. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics. (Addison-Wesley, 2011).

9. Dowling, J. P. & Bowden, C. M. Atomic emission rates in inhomogeneous media with applications

to photonic band structures. Phys. Rev. A 46, 612โ€“622 (1992).

10. Sakoda, K. & Ohtaka, K. Optical response of three-dimensional photonic lattices: Solutions of

inhomogeneous Maxwellโ€™s equations and their applications. Phys. Rev. B 54, 5732โ€“5741 (1996).

11. Chigrin, D. N. Radiation pattern of a classical dipole in a photonic crystal: Photon focusing. Phys.

Rev. E 70, 056611 (2004).