Electrochemical Potential

download Electrochemical Potential

of 40

Transcript of Electrochemical Potential

  • 8/15/2019 Electrochemical Potential

    1/40

     Spin Transport in Epitaxial Heusler Alloy/

    III-V Semiconductor Heterostructures 

    Kevin D. Christie, Chad Geppert, Tim Peterson, Changjiang Liu,

    Gordon Stecklein, Paul A. Crowell School of Physics and AstronomyUniversity of Minnesota

    Sahil J. Patel, Mihir Pendharkar, Chris J. Palmstrøm

     Dept. of Electrical and Computer Engineering, Dept. of MaterialsUniversity of California Santa Barbara

  • 8/15/2019 Electrochemical Potential

    2/40

    7/31/2015 Heusler Workshop, Minneapolis

    Outline

    • Why lateral spin valves

    • Why Heuslers: the Co2FexMn1-xSi family

    • Progress in semiconductor lateral spin valves

    • Improvements in high temperature performance

    • Microwave detection of spin accumulation

  • 8/15/2019 Electrochemical Potential

    3/40

    7/31/2015 Heusler Workshop, Minneapolis

    Lateral spin valve

    − injector

    detector

    ≈50%  ≈ 5 μm 

    •  Allows the study of spin-physics in wide array of materials systems

    • ferromagnetic contacts (Fe, Co, Py, Co2MnSi, etc.)

    • metallic channels (Al, Cu, Ag, etc.); ≪ 1 % • semiconducting channels (GaAs, Si, Ge, graphene, etc.)

    • Can quantify injection rates, detection efficiencies, spin-lifetimes,

    etc.

    3

  • 8/15/2019 Electrochemical Potential

    4/40

    7/31/2015 Heusler Workshop, Minneapolis

    The non-local measurement

    e- 

    V

    S

    Dm 

    • No charge current flows in F2.

    • The electrochemical potential is measured for

    each state of F2 (seemingly straight-forward).• The (less than 100%) polarization of F2 reduces

    the signal from the ideal value.

    • F2 draws a spin current. This can perturb N

    (irrelevant in this system)

    F1 F2

    NS 

  • 8/15/2019 Electrochemical Potential

    5/40

    7/31/2015 Heusler Workshop, Minneapolis

    Outline

    • Why lateral spin valves

    • Why Heuslers: the Co2FexMn1-xSi family

    • Progress in semiconductor lateral spin valves

    • Improvements in high temperature performance

    • Microwave detection of spin accumulation

  • 8/15/2019 Electrochemical Potential

    6/40

    7/31/2015 Heusler Workshop, Minneapolis

    Co2MnSi – a potential half-metal

    CoMn

    Si

    • Predicted to be a half-metal with a relatively large minoritygap

    • Lattice-matched to GaAs

  • 8/15/2019 Electrochemical Potential

    7/407/31/2015 Heusler Workshop, Minneapolis

    Co2MnSi – a potential half-metal

    CoMn

    Si

    • Predicted to be a half-metal with a relatively large minority gap

    • Lattice-matched to GaAs

    • Spin injection will work [see Dong et al., Appl. Phys. Lett. 86, 102107

    (2006) for Co2MnGe/GaAs]

  • 8/15/2019 Electrochemical Potential

    8/407/31/2015 Heusler Workshop, Minneapolis

    General idea: Fermi level in a rigid band model

    Co2MnSi Co2FeSiCo2Mn0.5Fe0.5Si

    • Can we tune the Fermi level through the minority spin gap?

    B. Balke et al., Solid State Communications 150, 529 –532 (2010).

  • 8/15/2019 Electrochemical Potential

    9/407/31/2015 Heusler Workshop, Minneapolis

    Heusler alloy: Co2MnSi

    L21 ordered

    = 985 K 

    = 5.65 Å 

    Co

    Mn

    Si Cap

    GaAs

     

    Co2MnSi

    (STEM courtesy of Paul Voyles, UW Madison)

    Near perfect lattice

    match to GaAs

    Co2MnSi

    =4.97 

    9

  • 8/15/2019 Electrochemical Potential

    10/407/31/2015 Heusler Workshop, Minneapolis

    Useful features of these alloys

    • As indicated by work on MTJ’s, the tunneling polarization is

    high; Co2MnSi is half-metallic or nearly so.

    •  As suggested by the cartoons on the previous viewgraphs,

    the density of states at the Fermi level is relatively small.

    This is a corollary to the fact that

     changes so rapidly with

    composition.

    • Grown on (100) GaAs, they have a very large in-plane

    uniaxial anisotropy. This turns out to be of practical utility.

    • The LLG damping is particularly small for Co2MnSi

    (~ 0.003 at high temperatures)

  • 8/15/2019 Electrochemical Potential

    11/407/31/2015 Heusler Workshop, Minneapolis

    Outline

    • Why lateral spin valves

    • Why Heuslers: the Co2FexMn1-xSi family

    • Progress in semiconductor lateral spin valves

    • Improvements in high temperature performance

    • Microwave detection of spin accumulation

  • 8/15/2019 Electrochemical Potential

    12/407/31/2015 Heusler Workshop, Minneapolis 12

    FM/n -GaAs Heterostructures

    (15 nm)(15 nm)

    n n+ : GaAs

    (5 nm)

    n : GaAs

    n ~ 3 x 1016 cm-3 

    i -GaAs [001]

    (~ 2500 nm)

    n+ : GaAs n ~ 5 x 1018/cm3FM : Co2MnSi or Fe

    cap

    FM n-GaAs

    0.7 eV

    12 nm

       e

       n   e   r   g   y 

    depth

    w/o graded doping

    (~ 100 nm)

    w/ graded

    doping

    • Epitaxially grown along [001]

    • Fe polarization at Fermi level ≈40% • Co2MnSi proposed to be half-metallic

    • Surface-induced FM anisotropy

    • Graded doping used to ‘thin’

    natural forming Schottky barrier

    • Interface states lead to complex

    bias dependence

  • 8/15/2019 Electrochemical Potential

    13/407/31/2015 Heusler Workshop, Minneapolis

    Lateral spin valve

    13

     

    drift diffusion onlydiffusion

    -250 0 250

    0

    20

    40

    60

    80

    100

          DV(

        m  V)

    Field (Oe)

    Co2MnSi

    Fe

    -250 0 250

    -400

    -200

    0

          D   V

        (

        m   V   )

    Field (Oe)

    Co2MnSi

    Fe

    unbiased (non-local) biased (non-local)

  • 8/15/2019 Electrochemical Potential

    14/40

  • 8/15/2019 Electrochemical Potential

    15/407/31/2015 Heusler Workshop, Minneapolis

    The full time of flight experiment: add drift

    ∗ =0.79 

    • Solid curves are the analytic solution

  • 8/15/2019 Electrochemical Potential

    16/407/31/2015 Heusler Workshop, Minneapolis 16

    Non-local Hanle fitting

    -600 -300 0 300 600

    0

    50

    100

    150

    -600 -300 0 300 600

    1140

    1520

    760

          DV

    (    m  V)

    Field (Oe)

    380 A/cm2

    60 K 760 A/cm2

    120 K

    90 K

    60 K

    30 K

    Field (Oe)

    • Multiple biases at each temperature fit with a single set of parameters

    • Hanle curves with ‘lobes’ allow extraction of diffusion constant 

  • 8/15/2019 Electrochemical Potential

    17/407/31/2015 Heusler Workshop, Minneapolis

    0 30 60 90 120 1500

    6

    12

    18

    24

    Temperature (K)

    Diffusionconstant(     m   m/ns

    2)

    0

    3

    6

    9

    12

    SpinLifetime(ns

    )

    17

    Spin lifetime and diffusion constant

    Einstein

    free-fit

    •  Allowing  to be a fitting parameter yields values in agreement withthe Einstein relation: spin and charge diffusion constants are thesame.

    • Larger uncertainty at higher temperatures due to disappearance of

    ‘lobes’ 

  • 8/15/2019 Electrochemical Potential

    18/407/31/2015 Heusler Workshop, Minneapolis

    Estimates of the spin polarization

    -50 0 50-2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

          DVcd

    (mV)

    Field (mT)

    = 30 K 

    = ↑ ↓↑ + ↓ =60% 

    +ΔV↓ 

    Δ↑  

    DOS () 

    E

    • We can set a lower bound for the spin-polarization if we assume a perfect

    detection efficiency ( = 1)• The measured spin splitting Δ is half of the Fermi energy = 5 meV 

    = 1 

    ↑(↓) = ±↑ ↓  

  • 8/15/2019 Electrochemical Potential

    19/407/31/2015 Heusler Workshop, Minneapolis

    Sign of the spin accumulation by Hanle measurements

    -75 -50 -25 0 25 50 75

    0

    500

          D

    V

    (    m  V)

    Field (mT)-75 -50 -25 0 25 50 75

    0

    500

          D

       V    (

        m   V   )

    Field (mT)

    Sign of the spin polarization in the bulk GaAs can be determined in thepresence of a hyperfine field

    60 K

     Co2MnSi/GaAs Co2FeSi/GaAs

    = ⋅

    40 K

     majority spinaccumulation minority  spinaccumulation

    Exploit hyperfine coupling:

  • 8/15/2019 Electrochemical Potential

    20/40

  • 8/15/2019 Electrochemical Potential

    21/40

    7/31/2015 Heusler Workshop, Minneapolis 21

    Interlude: (Scalar) Spin EMF

    • Expand chemical potentials w.r.t. :

    asymmetric shift: Δ 

    0

    ↓Δ

    = 0

    DOS

    • Current in each spin-channel:

    spin-indep.

    mobility

    chemical

    potentials

    electrostatic

    potential

    carrier

    densities

    • Result:

    spin-generated EMF

    = 12 ( +

    ) =

    29

     

  • 8/15/2019 Electrochemical Potential

    22/40

    7/31/2015 Heusler Workshop, Minneapolis 22

    Quadratic dependence

    1 10

    0.1

    1

    10

    10075 K

    60 K45 K

    Sp

    in-EMF,

          D      V

    CH

    (    m  V)

    Non-local, DV DH (mV)

    30 K

    1 10

    0.1

    1

    10

    10075 K

    60 K45 K

    Sp

    in-EMF,

          D      V

    CH

    (    m  V)

    Non-local, DV DH (mV)

    30 K

    Δ ∝  

    Δ ∝  

    slope = 2

    • Log-log plot of magnitudesdemonstrates quadratic dependence

    • Deviation at large bias due to largeE-field at injector (drift effects)

  • 8/15/2019 Electrochemical Potential

    23/40

    7/31/2015 Heusler Workshop, Minneapolis 23

    Dual-injector experiment

    anti-parallel

     parallelA

    H

    C

    C

    DB

    • Spins injected simultaneously at FMcontacts B and D

    • Clear spin valve signals observed atcontact C

    • Low-field features due to hyperfineinteractions

    Field

    I. J. Vera-Marun et al ., Nature Phys. 8, 313 (2012).

    hyperfine

    -400 -200 0 200 400

    0

    25

    50

    75

    100

    125

    150

    SpinEMF,

          D      V

    CH

    (    m  V)

     j B =  j 

    D = 380 A/cm

    2

     x 260 K

    30 K

    Field (Oe)

    45 K

  • 8/15/2019 Electrochemical Potential

    24/40

    7/31/2015 Heusler Workshop, Minneapolis 24

    Polarization vs. Temperature

    30 45 60 75 90 105 1200

    20

    40

    60

     Temperature (K)

    Numberpolarization

    (%)

     

    Co2MnSi

    (3.8 x 1016

    /cm3

    )

    Fe/n

    -GaAs(5.5 x 10

    16/cm

    3)

    = ↑ ↓↑ + ↓ 

    • For > 0 . 3, need to account for ‘Thompson’ effect: =  • Results are independent of any assumptions about

    interfacial spin injection/detection efficiencies

    • This resolved the “three-terminal” discrepancy 

    O li

  • 8/15/2019 Electrochemical Potential

    25/40

    7/31/2015 Heusler Workshop, Minneapolis

    Outline

    • Why lateral spin valves

    • Why Heuslers: the Co2FexMn1-xSi family

    • Progress in semiconductor lateral spin valves

    • Improvements in high temperature performance

    • Microwave detection of spin accumulation

    Wh t b t t t ?

  • 8/15/2019 Electrochemical Potential

    26/40

    7/31/2015 Heusler Workshop, Minneapolis

    What about room temperature?

    0.0 0.2 0.4

    0

    50

    100

    150

    200

          DVNL(

        m  V)

    Iinj

     (mA)

     Idet

    = 0

     1 m A

     10 m A

     100 m A

    250 nm separation, 150 K

    • Δ is linear in spin injection rate, , withfixed non-zero detector bias  

    • Δ becomes larger with detector bias ,which we interpret as a detector bias

    dependence of → ( ) 

       

     

    Δ =() ()   • We also see saturation of Δ at large .

    • Biased detector

    C li ti T li AMR (TAMR)

  • 8/15/2019 Electrochemical Potential

    27/40

    7/31/2015 Heusler Workshop, Minneapolis

     z 

    FM

    GaAs

     x

     y

     

     

    2

    || ||3  ( , )[ ( ) ( )]

    (2 )  F N 

    edEd k T E k f E f E    

      

    K. Wang et al., PRB, 88, 054407 (2013)

    A. Matos-Abiague et al., PRB, 80, 045312 (2009)

    2 2 2

    0   sin ( ) cos ( ) sin ( )in out   R R R R

      D D

    2sin ( )[ ( , ) ( , ) cos(2 )]anisoT f g   

    ( , ) R   

    Complication: Tunneling AMR (TAMR)

    J. Moser et al., PRL, 99, 056601 (2007)

     

      

    : Rashba spin-orbit coupling

    constant

    : Dresselhaus spin-orbit coupling

    constant

    [1,1,0]

    m

    R ifi ti f bi d d t t

  • 8/15/2019 Electrochemical Potential

    28/40

    7/31/2015 Heusler Workshop, Minneapolis

    Ramifications for a biased detector

    • The ratio of the uniaxial to fourfold anisotropies is larger in

    Co2Mn1-xFexSi than in Fe. This makes the Heuslers very forgiving.

    •  Any contact rotation leads to a TAMR contribution to the“three-terminal”

    signal; i.e. an additional field-dependent voltage at the detector. This is

    large and only weakly temperature-dependent. 

    La Bella et al., PRL 83, 2989 (1999).

    2-fold surface symmetry

    D i ti g t t t

  • 8/15/2019 Electrochemical Potential

    29/40

    7/31/2015 Heusler Workshop, Minneapolis

    Devices operating at room temperature

    • Use of Co2FeSi as injector/detector

    • Electron beam lithography• Performance today comparable to low-T performance as of a

    few years ago (particularly size of non-local voltage)

    • Spin diffusion length at 300 K is ~ 800 nm

    T t d d

  • 8/15/2019 Electrochemical Potential

    30/40

    7/31/2015 Heusler Workshop, Minneapolis

    Temperature dependence

    0 2 4

    10

    100

          DVNL

    (    m  V)

    Separation (mm)

     25 K

     50 K

     100 K 150 K

     200 K

     250 K

     300 K

    = 0 =

    + D

    +  

    We fit to the steady state solution of the spin

    drift-diffusion equation to extract  

    relaxation diffusion drivedrift

       

    Channel (n-GaAs)

     

     

    Detector

      

     

    For ≫  

    By measuring the separation dependence,we extract the spin diffusion length .

    10 1000.01

    0.1

    1

    10

    fitted

           s

    (ns)

    Temperature (K)

    O tli

  • 8/15/2019 Electrochemical Potential

    31/40

    7/31/2015 Heusler Workshop, Minneapolis

    Outline

    • Why lateral spin valves

    • Why Heuslers: the Co2FexMn1-xSi family

    • Progress in semiconductor lateral spin valves

    • Improvements in high temperature performance

    • Microwave detection of spin accumulation

  • 8/15/2019 Electrochemical Potential

    32/40

    Hanle measurement at room temperature fails

  • 8/15/2019 Electrochemical Potential

    33/40

    7/31/2015 Heusler Workshop, Minneapolis

    Hanle measurement at room temperature fails

    -4000 -2000 0 2000 4000

    433.80

    434.40

    435.00

    435.60

    436.20

    T = 300 K

    Voltage(mV)

    Field (Oe)

    I = 1 mA

    5  50 mm2

    Co2MnSi/n-GaAs

     

    • Signal/Background ~10− • Impossible to extract spin

    signal at room temperature

    in n-GaAs system

    What about Hanle measurements?

  • 8/15/2019 Electrochemical Potential

    34/40

    7/31/2015 Heusler Workshop, Minneapolis

    What about Hanle measurements?

    • Conventional wisdom: these become difficult or impossibleat high temperatures because the lifetime “is too short” 

    • This is reinforced by the fact that the g-factor in GaAs

    is so small (i.e. -0.44 insteady of 2)

    • Ordinary magnetoresistance is very large

    • Solution: use the Hanle concept (sensitivity to precession),

    but exploit the fact that spins can precess in the FM as wellas the semiconductor.

    Solution: modulate the injector with FMR

  • 8/15/2019 Electrochemical Potential

    35/40

    7/31/2015 Heusler Workshop, Minneapolis

    Solution: modulate the injector with FMR

    V

     

     

    (15 nm)

    (18 nm)

    n n+ : GaAs 

    (5 nm)FM

    i -GaAs [001]

    n : GaAs

    n ~ 3 x 1016 cm-3 (~ 2500 nm)

    n+ : GaAs n ~ 5 x 1018/cm3

    Cap

    FM: Co2MnSi, Co2FeSi, Fe

    • This is a three-terminal measurement

    with microwave excitation

    • Signal is the difference of the 3T

    signal with and without microwave field

    Skipping details...

    Spin accumulation leads to an FMR peak in

  • 8/15/2019 Electrochemical Potential

    36/40

    7/31/2015 Heusler Workshop, Minneapolis

    Spin accumulation leads to an FMR peak in Δ •  A strong resonance peak is

    observed (note the sign is

    negative)

    • The peak position is well

    described by the Kittel’s

    formula

    2000 2200 2400 2600

    -4

    -3

    -2

    -1

    Voltage

    (    m  V)

    Field (Oe)

    T = 100 K

     I = 3 mA

     f = 13 GHz

    •  At forward bias, the FMR signal isdominated by spin accumulation

    • Linewidth determined by ~0.003 for Co2MnSi at room temperature

    Modeling FMR spin detection

  • 8/15/2019 Electrochemical Potential

    37/40

    7/31/2015 Heusler Workshop, Minneapolis

    Modeling FMR spin detection 

    n-GaAs

    : Spin injection current: Detection efficiency: Spin diffusion constant

    :Spin lifetime

    = ∙

    −∞ (′) 12(′) −−

    ′ 

      : Precession cone angles

    = 12 ( + )2

    1

    2 1 +

    +

    1

    2 1 +

    1  

    (′)  

    Temperature dependence (comparison with NLSV)

  • 8/15/2019 Electrochemical Potential

    38/40

    7/31/2015 Heusler Workshop, Minneapolis

    Temperature dependence (comparison with NLSV)

    0 100 200 3000

    1

    2

    3

     VFMR

      (Co2MnSi)

    VFMR

      (Co2FeSi)

    VNLSV

    (Co2MnSi)

    VNLSV

      (Co2FeSi)

    0.0

    1.5

    3.0

    4.5

    V

    NLSV

    (     m   V)

    T (K)

    V

    FMR

    (arb.u.)

    0

    300

    600

    900

    0

    200

    400

    600

    •  Agreement with spin-valve data for both Co2FeSi and Co2MnSi

    Frequency dependence

  • 8/15/2019 Electrochemical Potential

    39/40

    7/31/2015 Heusler Workshop, Minneapolis

    Frequency dependence

    • Spin lifetime extracted agrees with those obtained from spin-valve

    measurements

    •  At high temperatures, this technique is much more sensitive than

    the conventional spin valve approach

    Summary

  • 8/15/2019 Electrochemical Potential

    40/40

    Summary

    • Co2Mn1-xFexSi is a very effective spin injector/detector

    for GaAs

    • The high polarization helps, although in our case the

    highest polarizations measured  are about 70%

    • There are other features of these materials that are as“useful” as the high polarization 

    • Lateral spin valves useful as quantitative tools up to

    room temperature

    • Microwave detection of spin accumulation is a complementary

    technique, particularly when  is short .