Electric Charges

39
 2/20/2009 1 PHYS202   SPRING 2009 Lecture notes ‐  Electrosta tics What is Electricity  Static effects known since ancient times.  Static charges can be made by rubbing certain materials  together.  Described by Benjamin Franklin as a fluid.    Excess of  the fluid was described as positive.    .  Like charges  repel, unlike charges attract.

description

electric

Transcript of Electric Charges

  • 2/20/2009

    1

    PHYS202 SPRING2009Lecturenotes Electrostatics

    WhatisElectricity

    Staticeffectsknownsinceancienttimes. Staticchargescanbemadebyrubbingcertainmaterialstogether.

    DescribedbyBenjaminFranklinasafluid. Excessofthefluidwasdescribedaspositive.Deficit of the fluid was described as negative Deficitofthefluidwasdescribedasnegative.

    Likechargesrepel,unlikechargesattract.

  • 2/20/2009

    2

    AQuantitativeApproach

    CharlesAugustin deCoulombfirstdescribedrelationshipofforce andcharges.

    Coulombinventedthetorsionbalancetomeasuretheforcebetweencharges.

    BasicunitofchargeinSIsystemiscalledtheCoulomb

    Oneofthebasicirreduciblemeasurements.

    Likemass,lengthandtime.

    FundamentalCharge

    Duetoatomicstructure.

    Positively charged heavy nuclei and negative charged electrons.Positivelychargedheavynucleiandnegativechargedelectrons.

    Chargedobjectshaveexcessordeficitofelectrons.

    Protonsandelectronshaveequalandoppositecharge:e =1.602x1019 C

    Rubbingsomeobjectscauseselectronstomovefromoneobjecttoanother.

    Negativelychargedobjects haveanexcessofelectrons.

    Positivelychargedobjects haveadeficitofelectrons.

    Netchangeinchargeinaclosedsystemmustbezero.

  • 2/20/2009

    3

    FundamentalCharge

    Problem18.6Waterhasamasspermoleculeof18g/molandeach molecule has 10 electrons How many electrons are ineachmoleculehas10electrons.Howmanyelectronsareinoneliterofwater?

    h i h h f h l ?

    23 3

    26

    10electrons 6.02210 molecules 1mol 1g 10 ml 1molecule 1mol 18g 1ml 1liter

    electrons3.3 10liter

    N

    N

    =

    =

    Whatisthenetchargeoftheelectrons?

    ( )( )26 197

    3.3 10 electrons 1.602 10 C / electron

    5.4 10 C

    q Ne

    q

    = = =

    ConservationofCharge

    Netchangeinchargeinanyclosedsystemiszero.

    Or, the change of charge in any volume equals the net charge entering andOr,thechangeofchargeinanyvolumeequalsthenetchargeenteringandleavingthesystem:

    WedenotetheamountofchargebytheletterQ orq

    IfChargeiscreated,itmustbeequalandopposite.

    ( ) ( ) ( ) ( )Charge Original Charge Charge in Charge out= +

    0 in out= + -q q q q

  • 2/20/2009

    4

    ConservationofCharge

    Twoidenticalmetalspheresofcharge5.0Cand1.6Carebrought together and then separated What is the charge onbroughttogetherandthenseparated.Whatisthechargeoneachsphere?

    Sincethechargeisdistributedequally,eachmusthaveanequal charge:

    1 2 = 3.4Ctotalq q q= +

    equalcharge:

    1 2 = 1.7C2totalqq q= =

    ConductorsandInsulators

    Insulator Charge stays where it is depositedChargestayswhereitisdeposited. Wood,mica,Teflon,rubber.

    Conductor Chargemovesfreelywithintheobject. Metalsexhibithighconductivity

    Duetoatomicstructure. Istheoutermostelectron(s)tightlybound?

  • 2/20/2009

    5

    ChargingObjects

    Byfriction Rubbing different materials Rubbingdifferentmaterials Example:furandebonite

    Bycontact Bringingachargedobjectintocontactwithanother(chargedoruncharged)object.

    Byinductionh d b d ll Bringingachargedobjectnearaconductortemporally

    causesoppositechargetoflowtowardsthechargedobject.

    Groundingthatconductordrainstheexcesschargeleavingtheconductoroppositelycharged.

    ForceBetweenCharges

    Coulombfoundthattheforcebetween two charges isbetweentwochargesisproportionaltotheproductoftheirchargesandinverselyproportiontothesquareofthedistancebetweenthem:

    1 22

    q qF Whereq1 andq2 representthechargesandr12 thedistancebetweenthem.

    212r

  • 2/20/2009

    6

    CoulombsLaw

    Byusingthetorsionbalance,Coulombdiscoveredtheconstantofproportionality:k = 8.99 Nm2/C2

    Ifbothq1 andq2 arebothpositive,theforceispositive.

    1 22

    12

    q qF kr

    =+ +

    +

    Ifbothq1 andq2 arebothnegative,theforceispositive. Ifbothq1 ispositiveandq2 isnegative,theforceisnegative. Hence,thesignoftheforceispositiveforrepulsionandnegativefor

    attraction.

    CoulombsLawPrincipleofSuperposition

    Electricforceobeysthelawoflinearsuperposition thenetforceonachargeisthevector sumoftheforcesduetoeachcharge:

    Addthevectors:

    2i ji ij

    i j ij

    q qk

    r= F rr

    1

    3

    Thenetforceoncharge4isF14+F24+F34=Fnet

    Red arepositivechargesBlue arenegativecharges

    1

    24

    F14F24

    F34

  • 2/20/2009

    7

    CoulombsLawPrincipleofSuperposition

    Theforcesaddforasmanychargesasyouhave:

    2i ji ij

    i j ij

    q qk

    r= F rr

    36

    Red arepositivechargesBlue arenegativecharges

    1

    2

    3

    4

    5

    7

    8

    CoulombsLawPrincipleofSuperposition

    Electricforceobeysthelawoflinearsuperposition thenetforceonachargeisthevector sumoftheforcesduetoeachcharge:

    2i ji ij

    i j ij

    q qk

    r= F rr

    36 Thenetforceoncharge5 isthe

    vectorsumofalltheforceson

    1

    2

    3

    4

    5

    7

    8charge5.

    Red arepositivechargesBlue arenegativecharges

  • 2/20/2009

    8

    CoulombsLaw18.14 Twotinyconductingspheresareidenticalandcarrychargesof20.0Cand

    +50.0C.Theyareseparatedbyadistanceof2.50cm.(a)Whatisthemagnitudeoftheforcethateachsphereexperiences,andistheforceattractiveorrepulsive?

    ( )( )( )( )

    9 2 2 6 61 2

    22 2

    8.99 10 N m /C 20.0 10 C 50.0 10 Cq qF k = =

    Thenetforceisnegativesothattheforceisattractive.

    (b)Thespheresarebroughtintocontactandthenseparatedtoadistanceof2.50cm.Determinethemagnitudeoftheforcethateachspherenowexperiences,andstatewhethertheforceisattractiveorrepulsive.Si h h id i l h h h f b i d i

    ( )22 2124

    2.50 10 m

    1.44 10 N

    r

    F

    =

    Sincethespheresareidentical,thechargeoneachafterbeingseparatedisonehalfthenetcharge,soq1 +q2 =+15C.

    Theforceispositivesoitisrepulsive.

    ( )( )( )( )

    9 2 2 6 631 2

    2 2212

    8.99 10 N m /C 15.0 10 C 15.0 10 C3.24 10 N

    2.50 10 m

    q qF k

    r

    = = =

    CoulombsLaw18.21 Anelectricallyneutralmodelairplaneisflyinginahorizontalcircleona3.0m

    guideline,whichisnearlyparalleltotheground.Thelinebreakswhenthekineticenergyoftheplaneis50.0J.Reconsiderthesamesituation,exceptthatnowthereisapointchargeof+q ontheplaneandapointchargeofq attheotherendofh id li I hi h li b k h h ki i f h l itheguideline.Inthiscase,thelinebreakswhenthekineticenergyoftheplaneis51.8J.Findthemagnitudeofthecharges.

    Fromthedefinitionofkineticenergy,weseethatmv2 =2(KE),sothatEquation5.3forthecentripetalforcebecomes

    ( )2c

    2 KEmFr r

    = =So,

    r r

    ( ) ( ) ( ) ( )2

    charged unchargedmax max2

    CentripetalCentripetal force

    force

    2 KE 2 KE1 2

    k qT T

    r rr+ = =1424314243

  • 2/20/2009

    9

    CoulombsLaw18.21 (cont.)

    ( ) ( ) ( ) ( )2

    charged unchargedmax max2

    CentripetalCentripetal force

    f

    2 KE 2 KE1 2

    k qT T

    r rr+ = =1424314243

    SubtractingEquation(2)fromEquation(1)eliminatesTmax andgives

    ( ) ( )2 charged uncharged2

    2 KE KEk qrr

    =

    force

    Solvingfor|q|gives

    ( ) ( ) ( ) ( )charged uncharged 59 2 2

    2 KE KE 2 3.0 m 51.8 J 50.0 J3.5 10 C

    8.99 10 N m / C

    rq

    k

    = = =

    TheElectricField Electricchargescreateandexertandexperiencetheelectricforce.

    q q q

    WedefinetheElectricField astheforceatestchargewouldfeelifplacedatthatpoint:

    2 2 i j ji ij i i ij

    i j i jij ij

    q q qk q k

    r r = = F r F rr r

    Theelectricfieldexistsaroundallchargedobjects.

    2j

    i j

    qk q

    r= =E r F Er r r

  • 2/20/2009

    10

    ElectricForceLines

    MichaelFaradaysawtheforcecaused by one charge to becausedbyonechargetobefromlinesemanatingfromthecharges.

    LinesbeginonPositivechargesandendonNegativecharges,flowingsmoothlythroughspace,nevercrossing.

    ElectricForceLines

    Faradayimaginedtheselinesd h fandtheforcewasgreater

    wherethelinesaredenser,weakerwheretheyarespreadout.

  • 2/20/2009

    11

    ElectricFieldLines

    Gooutfrompositivechargesandintoti hnegativecharges.

    PositiveNegativeNeutral

    TheInverseSquareLaw

    Manylawsbasedonthegeometryofthreedi i ldimensionalspace:

    1 22

    2 24 4

    g

    sound light

    Gm mFr

    P LI Ir r

    =

    = =1 2

    2eq qF kr

    =

  • 2/20/2009

    12

    TheElectricField

    18.28 Fourpointchargeshavethesamemagnitudeof2.4x1012 Candarefixedtothecornersofasquarethatis4.0cmonaside.Threeofthechargesarepositived i ti D t i th it d f th t l t i fi ld th t i tandoneisnegative.Determinethemagnitudeofthenetelectricfieldthatexists

    atthecenterofthesquare.

    A

    B C

    D-

    ++

    +

    EA

    ECEB

    ED

    Thedrawingattherightshowseachofthefieldcontributionsatthecenterofthesquare(seeblackdot).Eachisdirectedalongadiagonalofthesquare.NotethatED andEB pointinoppositedirectionsand,therefore,cancel,sincetheyhavethesamemagnitude.IncontrastEAandEC pointinthesamedirectiontowardcorner A and therefore combine to give a net field thatcornerAand,therefore,combinetogiveanetfieldthatistwicethemagnitudeofEA orEC.Inotherwords,thenetfieldatthecenterofthesquareisgivenbythefollowingvectorequation:

    2

    = + + += + + = +=

    A B C D

    A B C B

    A C

    A

    E E E E EE E E EE EE

    TheElectricField

    18.28 (cont.)

    B C++

    ED

    Themagnitudeofthenetfieldis A 22 2k q

    E Er

    = =

    A D- +

    EA

    ECEB

    Inthisresultr isthedistancefromacornertothecenterofthesquare,whichisonehalfofthediagonaldistanced.UsingL forthelengthofasideofthesquareandtakingadvantageofthePythagoreantheorem,wehave.Withthissubstitutionforr,themagnitudeofthenetfieldbecomes

    r

    / 2r L=

    4k k

    ( )( ) ( )

    ( )

    2 2

    9 2 2 12

    2

    42

    / 2

    4 8.99 10 N m / C 2.4 10 C

    0.040 m

    54 N/C

    k q k qE

    LL

    E

    E

    = =

    =

    =

  • 2/20/2009

    13

    ElectricFieldLines

    18.34 ReviewConceptualExample12beforeattemptingtoworkthisproblem.ThemagnitudeofeachofthechargesinFigure1821is8.6x1012 C.Thelengthsofth id f th t l 3 00 d 5 00 Fi d th it d f ththesidesoftherectanglesare3.00cmand5.00cm.FindthemagnitudeoftheelectricfieldatthecenteroftherectangleinFigures1821aandb.

    1 2

    34

    1

    4

    + q

    + q + q

    - qThefigureattherightshowstheconfigurationgivenintextFigure18.21a.Theelectricfieldatthecenteroftherectangleistheresultantoftheelectricfieldsatthecenterduetoeachofthefourcharges.AsdiscussedinConceptualExample11,themagnitudesoftheelectricfieldatthecenterduetoeachofthefourchargesareequal.However,thefieldsproducedbythechargesincorners1and3areinoppositedirections.Sincetheyhavethesamemagnitudes,theycombinetogivedirections. Since they have the same magnitudes, they combine to givezeroresultant.Thefieldsproducedbythechargesincorners2and4pointinthesamedirection(towardcorner2).Thus,EC =EC2 +EC4,whereEC isthemagnitudeoftheelectricfieldatthecenteroftherectangle,andEC2 andEC4 arethemagnitudesoftheelectricfieldatthecenterduetothechargesincorners2and4respectively.SincebothEC2 andEC4 havethesamemagnitude,wehaveEC =2EC2.

    ElectricFieldLines18.34 (cont.)

    Thedistancer,fromanyofthechargestothecenteroftherectangle,canbefoundusingthePythagoreantheorem:

    1 21

    d5.00 cm

    2 2(3 00 ) +(5 00 ) 5 83d

    ThefigureattherightshowstheconfigurationgivenintextFi 18 21b All f h t ib t t

    344

    3.00 cm

    2 2(3.00 cm) +(5.00 cm) 5.83 cmd = =

    2Therefore, 2.92 cm 2.92 10 m2dr = = =

    9 2 2 1222

    2 2 2 22 2(8.99 10 N m /C )( 8.60 10 C)2 1.81 10 N/C

    (2.92 10 m)C Ckq

    E Er

    = = = = - q - q

    Figure18.21b.Allfourchargescontributeanonzerocomponenttotheelectricfieldatthecenteroftherectangle.AsdiscussedinConceptualExample11,thecontributionfromthechargesincorners2and4pointtowardcorner2andthecontributionfromthechargesincorners1and3pointtowardcorner1.

    1 2

    34

    1

    4+ q + q

    C

    E 13 E 24

  • 2/20/2009

    14

    ElectricFieldLines18.34 (cont.)

    Noticealso,themagnitudesofE24andE13areequal,and,fromthefirstpartofthisproblem,weknowthat

    E24 =E13 =1.81 102 N/C1 21- q - q

    E 13 E 24

    TheelectricfieldatthecenteroftherectangleisthevectorsumofE24 andE13.ThexcomponentsofE24 andE13 areequalinmagnitudeandoppositeindirection;hence

    (E13)x (E24)x =0Therefore,

    F Fi 2 h th t

    344+ q + q

    C

    C 13 24 13 13( ) ( ) 2( ) 2( )siny y yE E E E E = + = =

    FromFigure2,wehavethat

    5.00 cm 5.00 cmsin 0.8585.83 cmd

    = = =

    ( ) ( )( )2 2C 132 sin 2 1.81 10 N/C 0.858 3.11 10 N/CE E = = =

    TheElectricField

    Theelectricfieldexistsaroundallchargedobjects.

    Thisisshownbyelectricfieldlines.

    Constructedid i ll hidenticallytotheforcelines.

  • 2/20/2009

    15

    DrawingElectricFieldLines

    Numberoflinesatachargeisproportionaltothe chargethecharge.

    ElectricFieldLines

    Thechargewith3qmusthavethreetimesasmanylinesasthe charge with +q and 1.5 times the lines for +/ 2q.thechargewith q and1.5timesthelinesfor / 2q.

  • 2/20/2009

    16

    ParallelPlatesofCharge

    Addingfieldsfromeachpointonsurfacecausesfieldlinesparalleltotheplatestocancel.

    PositivelyCharged

    NegativelyCharged

    Awayfromtheedges,thefieldisparallelandperpendiculartotheplate(s).

    ElectricField&Conductors

    Inconductorsexcesselectronswillmovewhenanelectricfieldispresent. Forsteadystate(i.e.nomovingcharges),thenetelectricfieldmustbezero.r r r r Thereforethechargesmovetothesurface(s)oftheconductoruntiltheycancel

    theelectricfieldinsidetheconductor. Fieldlinescanstartandendonaconductoratrightanglestothesurfaceofthe

    conductor.

    0q = = =F E F Er r r r

  • 2/20/2009

    17

    ElectricFieldLines

    18.44 Twoparticlesareinauniformelectricfieldwhosevalueis+2500N/C.Themassandchargeofparticle1arem1 =1.4x105 kgandq1 =7.0C,whilethe

    di l f ti l 2 2 6 10 5 k d 18 C I iti llcorrespondingvaluesforparticle2arem2 =2.6x105 kgandq2 =+18C.Initiallytheparticlesareatrest.Theparticlesarebothlocatedonthesameelectricfieldline,butareseparatedfromeachotherbyadistanced.Whenreleased,theyaccelerate,butalwaysremainatthissamedistancefromeachother.Findd.

    Exd

    +x

    q1 =7.0Cm1 =1.4 105 kg

    q2 =+18Cm2 =2.6 105 kg

    ThedrawingshowsthetwoparticlesintheelectricfieldEx.Theyareseparatedbyadistanced.Iftheparticlesaretostayatthesamedistancefromeachotherafterbeingreleased,theymusthavethesameacceleration,soax,1 =ax,2.AccordingtoNewtonssecondlaw,theaccelerationax ofeachparticleisequaltothenetforceFx actingonitdividedbyitsmassm,or./x xa F m=

    ElectricFieldLines

    18.44 (cont.)

    N t th t ti l 1 t b t th l ft f ti l 2 If ti l 1 t th i ht

    Exd

    +x

    q1 =7.0Cm1 =1.4 105 kg

    q2 =+18Cm2 =2.6 105 kg

    Notethatparticle1mustbetotheleftofparticle2.Ifparticle1weretotherightofparticle2,theparticleswouldaccelerateinoppositedirectionsandthedistancebetweenthemwouldnotremainconstant.

    1 2, 1 1 2

    1 21 2, 1

    ,11 1

    x x

    xxx

    q qF q E k

    dq q

    q E kF dam m

    = = =

    1 2, 2 2 2

    1 22 2, 2

    , 22 2

    x x

    xxx

    q qF q E k

    dq q

    q E kF dam m

    = ++= =

    Notethesignsindicatedthedirectionofthevectorpointingfromcharge2tocharge1fortheforceoncharge1.

  • 2/20/2009

    18

    ElectricFieldLines

    18.44 (cont.)

    Th l ti f h h t b th if th di t b t th

    Exd

    +x

    q1 =7.0Cm1 =1.4 105 kg

    q2 =+18Cm2 =2.6 105 kg

    Theaccelerationofeachchargemust bethesameifthedistancebetweenthechargesremainsunchanged:

    Solving for d

    1, 2,

    1 2 1 21 22 2

    1 2

    x x

    x x

    a a

    q q q qq E k q E k

    d dm m

    =

    +=

    Solvingford,

    ( )( )1 2 1 21 2 2 1 6.5 mx

    kq q m md

    E q m q m+= =

    ElectricFlux Flux(fromLatin meaningtoflow) Electricfluxmeasuresamountofelectricfieldpassingthroughasurface.

    Er

    Er

    So to calculate find the normal to

    E EA =

    FluxthroughsurfaceisAreaofsurfacetimesthefieldflowingthroughthatsurface.

    So,tocalculate,findthenormal tothesurface.

    Thenfindtheanglebetweenthefieldandthatnormal vector:

    ( )cosE E A =

  • 2/20/2009

    19

    ElectricFlux

    ( )cosE E A =

    Er

    So to calculate find the normal to

    Thiscanbeexpressedasthevectordotproduct:

    E = E Arr

    cosE A =E Arr So,tocalculate,findthenormal tothesurface.

    Thenfindtheanglebetweenthefieldandthatnormalvector:

    cos

    x x y y z z

    E Aor

    E A E A E A

    =

    = + +

    E A

    E Arr

    ElectricFlux

    18.48 Arectangularsurface(0.16mx0.38m)isorientedinauniformelectricfieldof580N/C.Whatisthemaximumpossibleelectricfluxthroughthesurface?

    Themaximumpossiblefluxoccurswhentheelectricfieldisparalleltothenormaloftherectangularsurface(thatis,whentheanglebetweenthedirectionofthefieldandthedirectionofthenormaliszero).Then,

    ( ) ( ) ( )2

    ( cos ) 580 N / C (cos 0 ) 0.16 m 0.38 m

    35 N m / C E

    E

    E A = = =

  • 2/20/2009

    20

    GaussLaw ElectricFluxthroughaclosedsurfaceisproportionaltothechargeenclosedbythatsurface:

    encE

    q =

    Thefundamentalconstant0 is called the permittivity of free space. It is related to Coulombs law by , 0 =8.85x1012 C2/(Nm2)

    GaussLawismostusefulwhentheelectricfieldontheentiresurfaceisconstant.

    Takeapointcharge.Constructaspherecenteredonthepointcharge(allpointsonthesurfaceequidistantfromthecharge) theelectricfieldisconstant.

    Since the field is radial it is perpendicular to the concentric spherical surface everywhere so

    0

    0

    14

    k =

    Sincethefieldisradial,itisperpendiculartotheconcentricsphericalsurfaceeverywhereso=0,cos =1

    Thedirectionofthefieldisradially outwardfromthecharge(orinwardtowardsthechargeifqisnegative).

    0 0

    cosenc encEq qEA ==

    ( )2 20 0

    44

    encq qE r Er

    = =

    GaussLawforaplateofcharge Inthiscasewetakeourclosedsurfacetobeaboxorientedsuchthattwofacesare

    paralleltotheplateofchargeandtheothersareperpendiculartotheplate.

    Si th l t i fi ld f l t f h i di l t th f f th Sincetheelectricfieldfromaplateofchargeisperpendiculartothesurfaceoftheplate,thesidesthatareperpendiculartotheplatehavenoflux.

    Er

    Thecharge enclosedbytheboxisthesurfacechargedensitymultipliedbytheareatheboxpassesthroughthe plate: Atheplate:.

    Thearea oftheboxwithfluxis2A:

    A

    0 0 0E

    q AEA E = = =

  • 2/20/2009

    21

    GaussLawforalineofcharge

    18.54 Along,thin,straightwireoflengthL hasapositivechargeQ distributeduniformlyalongit.UseGausslawtofindtheelectricfieldcreatedbythiswireatadi l di tradialdistancer.

    Asthehintsuggests,wewilluseacylinderasourGaussiansurface.Theelectricfieldmustpointradially outwardfromthewire.Becauseofthissymmetrythefieldmustbethesamestrength pointingradially outwardonthesurfaceofthecylinderregardlessofthepointonthecylinder,thuswearejustifiedinusingGaussLaw.

    Long straight wire Gaussian cylinderGausssiancylinderE

    ++++++ ++

    12

    3

    L

    r

    End view

    GaussLawforalineofcharge

    18.54 (cont.)Letusdefinethefluxthroughthesurface.Notethatthefieldisparalleltothe

    d th th l b t th l f th f ( hi h i ll l tendcaps,thustheanglebetweenthenormalfromthesurface(whichisparalleltothewire)isperpendiculartothefield,thus =/2,so,cos()=0fortheends.Forthesideifthecylinder,thefluxis

    Thus,fromGaussLaw,

    ( )2E sideEA E rL = =++++++ ++

    Long straight wire Gaussian cylinder

    12

    3

    L

    r

    ( )2encE q QE rL = =

    Itiscustomarytorefertochargedensity =Q/L ,

    End view

    GausssiancylinderE

    ( )0 0

    02QE

    rL

    =

    02E

    r=

  • 2/20/2009

    22

    Work

    LetustakeanobjectwithchargeqinaconstantelectricfieldE. Ifwereleasethischarge,theelectricfieldcausesaforcetomovethecharge.

    Letusdefinethefieldas,sothereisonlyonedimensiontoconsider.Letusalsosettheinitialvelocityandpositiontobebothzero.

    Lettheobjectmovethroughadistanced.Theequationsofmotionare

    qqm

    = =F E a E

    21x at at= =

    E=E x

    So,afteratimet,theobjectmoves,2

    x at atx d=

    2122

    qE d m qEdm

    = =

    21 2 /2

    d at t d a= =/

    2 2

    t a

    d ada a

    == =

    ConservationofEnergy

    Thelefthandsideisthekineticenergytheparticlehasaftermovingadistanced.

    212

    m qEd=

    Thatmeans,therighthandsidemustrepresentsomeformofpotentialenergytheobjecthadpriortobeingreleased.

    TypesofEnergyalreadycovered: Translationalkineticenergy Rotationalkineticenergy Gravitationalpotentialenergy Elastic(spring)potentialenergy

    ElectricPotentialEnergy Cutnell &Johnsonuse(EPE),however,itisoftenmoreconvenienttouseU.

    2 2212

    1 )12

    (2total

    E kx Em h PI g Em= + + + +

  • 2/20/2009

    23

    ElectricPotentialEnergy

    Likegravitationalpotentialenergy,EPE isdefinedwithrespecttotheenergyatsomelocation.

    Importanceliesinthedifferencebetweenelectricpotentialenergybetweentwopoints.

    ExampleProblem

    19.4 Aparticlehasachargeof+1.5CandmovesfrompointAtopointB,adistanceof0.20m.Theparticleexperiencesaconstantelectricforce,anditsmotionisl th li f ti f th f Th diff b t th ti l l t ialongthelineofactionoftheforce.ThedifferencebetweentheparticleselectricpotentialenergyatAandBisUA UB =+9.0x104 J.Findthemagnitudeanddirectionoftheelectricforcethatactsontheparticleandthemagnitudeanddirectionoftheelectricfieldthattheparticleexperiences.Theworkdonemustbeequaltothechangeinpotentialenergy:

    (from A to B)4

    39.0 10 J 4.5 10 N

    A B A B

    A B

    Work U U F x U UU UF

    = = = = =

    (fromA toB)

    But,weknowthatforaparticleinanelectricfield:F=qE

    ( ) 4.5 10 N0.20mF x

    ( )( )4

    36

    9.0 10 J 3.0 10 N / C1.5 10 C 0.20 m

    A B A BU U U UqE Ex q x

    E

    = = = =

  • 2/20/2009

    24

    ElectricPotential

    Theelectricpotentialenergyofanobjectdependsonthechargeofanobject.

    ( )EPE Onceagain,wecanfindameasurementindependentoftheobjectscharge: TheSIunitforV ismeasuredinVolts(=Joules/Coulomb)

    AcommonunitofenergyistheelectronVolt.

    Specifically,Howmuchpotentialenergydoesanelectrongetifmovedthrougha

    ( )EPEVq

    =

    potentialof1Volt.

    191eV 1.602 10 J=

    ElectricPotential

    LiketheElectricfield,theelectricpotentialisindependent ofanytestchargeplacedtomeasureaforce.

    Unliketheelectricfield,thepotentialisascaler,notavector.

    Byusingcalculusmethodsitcanbeshownthattheelectricpotentialduetoapointchargeis

    N h h l f h l i i l d d h i f h h

    kqVr

    = Notethatthevalueoftheelectricpotentialdependsonthesign ofthecharge.

  • 2/20/2009

    25

    ElectricPotentialforapointcharge

    Example:WhatwasthepotentialdifferenceduetoachargeqA = 10.0 nC, at the distances r0 = 10.0 cm and r1 = 20.0 cm ?qA 10.0nC,atthedistancesr0 10.0cmandr1 20.0cm?

    0 10 1

    0 1

    1 1

    A A

    A

    kq kqV V Vr r

    V kqr r

    = = =

    ( )( )9 2 2 5 1 18.99 10 N m / C 10 C 0.1m 0.2 m450V

    V

    V

    = =

    ElectricPotentialforapointcharge

    Example:AchargeqA isheldfixed.AsecondchargeqB isplaced a distance r0 away and is released. What is the velocityplacedadistancer0 awayandisreleased.WhatisthevelocityofqB whenitisadistancer1 away?

    Weusetheconservationofenergy:

    2 2 20 0 1 1

    1 1 12 2 2

    Energy m U m U m U= + + = +

    ( )21 0 1 0 112 Bm U U q V V= = ( )1 0 12q V Vm=

  • 2/20/2009

    26

    ElectricPotentialforapointcharge

    ( )1 0 12q V Vm= Findtheelectricpotentialatr0 andr1:

    0 10 1

    A Akq kqV Vr r

    = =

    122 1 1A A A Bkq kq kq qq

    m r r m r r = =

    m

    Or,

    0 1 0 1m r r m r r

    1 2 /q V m=

    ElectricPotentialforapointcharge

    Forasinglecharge,wesetthepotentialatinfinitytozero.kqV =

    Sowhatisthepotentialenergycontainedintwocharges? Bringinthechargesfrominfinity. Thefirstchargeisfreeasitdoesnotexperienceanyforces. Thesecondmovesthroughthefieldcreatedbythefirst. So,theenergyinthesystemmustbe

    Vr

    =

    2

    1 1 1

    12 12

    rU q V V V Vkq kq kqVr r

    = = = =

    1 2

    12

    kq qUr

    =

  • 2/20/2009

    27

    PotentialEnergyofacollectionofcharges

    Letsaddathirdchargetothisgroup.

    2 1 3 1 3 2

    1 21 2

    13 23

    U q V q V q Vkq kqV Vr r

    = + + = =

    1 3 2 31 2

    12 13 23

    kq q kq qkq qUr r r

    = + +

    Eachsuccessivechargeexperiencesthefield(i.e.potential)createdbythepreviouscharges.Becarefulnottodoublecount!

    ExampleProblem

    19.13 Anelectronandaprotonareinitiallyveryfarapart(effectivelyaninfinitedistanceapart).Theyarethenbroughttogethertoformahydrogenatom,inwhichth l t bit th t t di t f 5 29 10 11 Wh t i ththeelectronorbitstheprotonatanaveragedistanceof5.29x1011 m.Whatisthechangeintheelectricpotentialenergy?Thefirstchargecomesinforfree,thesecondchargeexperiencesthefieldofthefirst,so,

    ( )( )

    2

    1 1 1

    12 12

    9 2 2 198 99 10 N m /C 1 602 10 C

    rU q V V V Vkq kq kqVr r

    = = = =

    ( ) ( )( )19 1118

    8.99 10 N m /C 1.602 10 C1.602 10 C

    5.29 10 m4.35 10 J

    U

    U

    = =

  • 2/20/2009

    28

    ElectricFieldandPotential

    LetachargebemovedbyaconstantelectricfieldfrompointsAtoB(letd be that distance).

    W F d W qE d= =

    Now,weknowthattheworkdonemustbeequaltothenegativechangeinelectricpotentialenergy:

    Butpotentialenergyissimply:

    W F d W qE d= =

    ABU qE d =

    Thus:

    ABq V qE d =

    VEd

    =

    ElectricFieldandPotential

    Thisimpliesthatthefieldlinesareperpendiculartolines(surfaces)ofequal

    VEd

    = potential.

    Thisequationonlygivesthecomponentoftheelectricfieldalongthedisplacementd.

    Totrulyfindtheelectricvectorfield,youmustfindthecomponentsineachdirection:

    V V V x y z

    V V VE E Ex y z

    = = =

  • 2/20/2009

    29

    ElectricFieldandPotential

    Ifthepotentialsatthefollowingpoints(x,y)areV(1,1) = 30 V, V(0.9,1)=15V, and V(1,0.9)=40 V. What is theV(1,1) 30V,V(0.9,1) 15V,andV(1,0.9) 40V.Whatisthe(approximate)electricfieldat(1,1)?

    x y zV V VE E Ex y z

    = = = 30V 15V 150 V / m

    1.0m 0.9mxE = =

    30V 40V 100 V / m1.0m 0.9my

    E = =

    ( ) ( )2 21

    150V 100V 180V

    100Vtan 34150VE

    E

    = + =

    = = o

    x

    E

    (1,1)

    y

    Example

    Problem19.34 Determinetheelectric field between each of theelectricfieldbetweeneachofthepoints.

    VEx

    = 5.0V 5.0V 0 V / m

    0.20m 0.0mABE = =

    3.0V 5.0V 10.0 V / m0.40m 0.20mBC

    E = =1.0V 3.0V 5.0 V / m

    0.80m 0.40mCDE = =

  • 2/20/2009

    30

    Equipotential Surfaces

    Electricfieldlinesareperpendiculartoequipotential surfaces.

    Electricfieldlinesareperpendiculartosurfacesofconductors.

    Thus,surfacesofconductorsareequipotential surfaces.

    Theinteriorofconductorshavenoelectricfieldandarethereforeequipotential.

    TheElectricpotentialofaconductorisconstantthroughouttheconductor.

    Example19.68 Anelectronisreleasedatthenegativeplateofa

    parallelplatecapacitorandacceleratestothepositiveplate(seethedrawing),(a)Astheelectrongainskineticenergy,doesitselectricpotentialenergyincreaseordecrease?Why?decrease? Why?

    (b)ThedifferenceintheelectronselectricpotentialenergybetweenthepositiveandnegativeplatesisUpos Uneg .Howisthisdifferencerelatedtothechargeontheelectron(e)andtothedifferenceintheelectricpotentialbetweentheplates?The change in the electrons electric potential energy is equal to the charge on the

    Theelectricpotentialenergydecreases.TheelectricforceFisaconservativeforce,sothetotalenergy(kineticenergypluselectricpotentialenergy)remainsconstantastheelectronmovesacrossthecapacitor.Thus,astheelectronacceleratesanditskineticenergyincreases,itselectricpotentialenergydecreases.

    Thechangeintheelectron selectricpotentialenergyisequaltothechargeontheelectron(e)timesthepotentialdifferencebetweentheplates.

    (c)Howisthepotentialdifferencerelatedtotheelectricfieldwithinthecapacitorandthedisplacementofthepositiveplaterelativetothenegativeplate?

  • 2/20/2009

    31

    Example19.68 (cont.)(c)Howisthepotentialdifferencerelatedto

    theelectricfieldwithinthecapacitorandthedisplacementofthepositiveplaterelativetothenegativeplate?

    Problem Theplatesofaparallelplatecapacitorareseparatedbyadistanceof1.2cm,

    TheelectricfieldEisrelatedtothepotentialdifferencebetweentheplatesandthedisplacements by

    Notethat(Vpos Vneg)ands arepositivenumbers,sotheelectricfieldisanegativenumber,denotingthatitpointstotheleftinthedrawing.

    ( )pos negV VEs

    =

    andtheelectricfieldwithinthecapacitorhasamagnitudeof2.1x106 V/m.Anelectronstartsfromrestatthenegativeplateandacceleratestothepositiveplate.Whatisthekineticenergyoftheelectronjustastheelectronreachesthepositiveplate?Useconservationofenergy:

    Total energy at Total energy atpositive plate negative plate

    pos pos neg n pos negeg pos negeV eVKE U KE U KE KE + = ++ = +1442443 1442443

    Example19.68 (cont.)

    Buttheelectronstartsfromrestonthepositiveplate,so,h ki i h i i l i

    pospos neg negKE KEeV eV+ = +

    thekineticenergyatthepositiveplateiszero.

    But so( )pos negV VE ( )

    pos neg

    pos

    neg

    neg neg

    pos n gneg e

    KE

    KE

    eV eV

    eV eV

    e V VKE

    = +

    =

    =

    But,,so,( )Es

    =

    ( ) ( )( )( )19 615

    1.602 10 C 2.16 10 V / m 0.012m

    4.0 10 J

    neg

    neg

    KE

    K

    s

    E

    e E

    =

    =

    =

  • 2/20/2009

    32

    LinesofEqualPotential

    Linesofequalelevationonamap show equal potentialmapshowequalpotentialenergy(mgh).

    Example

    19.29 Twoequipotential surfacessurrounda+1.5x108 Cpointcharge.Howfaristhe190Vsurfacefromthe75.0Vsurface?Th l t i t ti l V t di t f i t h i V k / ThTheelectricpotentialV atadistancer fromapointchargeq isV=kq/r.Thepotentialisthesameatallpointsonasphericalsurfacewhosedistancefromthechargeisr =kq/V.Theradialdistancer75fromthechargetothe75.0Vequipotential surfaceisr75 =kq/V75,andthedistancetothe190Vequipotentialsurfaceisr190 =kq/V190.Thedistancebetweenthesetwosurfacesis

    75 19075 190 75 190

    1 1kq kqr r kqV V V V

    = =

    ( )29 875 190 2N m 1 18.99 10 1.50 10 C 1.1 m75.0 V 190 VCr r = + =

  • 2/20/2009

    33

    Capacitors

    Acapacitorconsistsoftwoconductorsatdifferentpotentialsbeingusedtostorecharge.

    Commonly,thesetaketheshapeofparallelplates,concentricspheresorconcentriccylinders,butanyconductorswilldo.

    q=CV,whereCisthecapacitance,measuredinSIunitsofFarads(Coulomb/VoltorC2/J),Visthevoltagedifferencebetweentheconductorsandq isthechargeoneachconductor(oneispositive,theothernegative).

    Capacitanceisdependsonlyuponthegeometryoftheconductors.

    ParallelPlateCapacitor

    Fieldinaparallelplatecapacitoris0

    qEA=

    But,theaconstantelectricfieldcanbedefinedintermsofelectricpotential:

    Substitutingintotheequationforcapacitance,

    VE V Edd

    = =

    0

    0

    0

    q CV CEd

    Aqq C d CA d

    = = = =

  • 2/20/2009

    34

    OtherCapacitors

    Twoconcentricsphericalshells4

    Cylindricalcapacitorhasacapacitanceperunitlength: 2C

    041 1

    C

    a b

    =

    02

    ln

    CbLa

    =

    Energystoredinacapacitor

    Abatteryconnectedtotwoplatesofacapacitordoesworkcharging the capacitor.chargingthecapacitor.

    Eachtimeasmallamountofchargeisaddedtothecapacitor,thechargeincreases,sothevoltagebetweentheplatesincreases.

    V

    qq

    q/c

    q

    V=q/c

  • 2/20/2009

    35

    Energystoredinacapacitor

    PotentialEnergyisU =qV

    Weseethataddingupeachsmallincreaseinchargeq x V isjusttheareaofthetriangle.

    Suchthat,2

    2

    12

    12 2

    U qV q CV

    qU U CVV

    = =

    = =V

    So the energy density (i e energy per unit

    qq

    q/c

    q

    V=q/c ( )( )

    20

    20

    1212

    AU Edd

    U E Ad

    = =

    Sotheenergydensity(i.e.energy perunitvolume)mustbe

    Ad istheareaofthecapacitor!2

    012

    Uu EAd

    = =

    Example

    Howmuchenergyisstoredinaparallelplatecapacitormadeof 10.0 cm diameter circles kept 2.0 mm apart when aof10.0cmdiametercircleskept2.0mmapartwhenapotentialdifferenceof120Visapplied?

    Findthecapacitance:2

    0 0A rCd d = =

    Theenergystoredis( ) ( ) ( )

    ( )2 212 2 22 2

    2 08.85 10 C / (N m ) 0.05m 120V1

    2 2 2 0.002mr VU CVd

    = = =92.09 10 JU =

  • 2/20/2009

    36

    ElectricPolarizationinMatter

    Electricchargedistributioninsomemoleculesis not uniformisnotuniform.

    Example:Water bothHatomsareononeside.

    InthepresenceofanElectricField,waterwillalignopposite tothefield.

    ElectricPolarizationinMatter

    Intheabsenceofafield.l l ll bMoleculeswillbe

    orientedrandomly.

    Inanelectricfield,theyline up opposite to thelineupoppositetothefield.

  • 2/20/2009

    37

    ElectricPolarizationinMatter

    Theresultingelectricfieldisthesumoftheexternalfieldandthefieldsgeneratedbythemolecules.

    Theelectricfieldstrengththroughthematterisreduced.

    Thereductionofthefielddependsontheenergyinthemolecules,thestrengthofthefield each one makes and the density of thefieldeachonemakesandthedensityofthemolecules.

    Thiscanbemeasuredandthematerialissaidtohaveadielectricconstant .

    Dielectrics

    Thisdielectricconstantchangesthevalueofthepermittivityinspace()

    q q Coulombslawinadielectricis

    Where isrelatedto0 byaconstant:

    Thedielectricconstantforavacuumis =1.

    1 22

    12

    4q q

    r=F r

    0 =

    Allothermaterialshaveadielectricconstantvaluegreaterthan1.

    Wateratabout20Chas=80.4. Airatabout20Chas=1.00054.

  • 2/20/2009

    38

    Dielectrics

    0 = Howdoesthisaffectthecapacitanceofparallelplates?

    0

    0

    d

    d

    AACd d

    C C

    = =

    =

    DielectricBreakdown

    Ifthefieldinthedielectricbecomestoot (i lt i t t) th t i lstrong(i.e.voltageistoogreat),thematerialbeginstoconductcurrent thisiscalleddielectricbreakdown.

    When this happens the charge flows throughWhenthishappensthechargeflowsthroughthematerialtotheotherplateandneutralizesthecapacitor.

  • 2/20/2009

    39

    Example19.57 Twohollowmetalspheresareconcentricwitheachother.Theinnersphere

    hasaradiusof0.1500mandapotentialof85.0V.Theradiusoftheoutersphereis0.1520manditspotentialis82.0V.IftheregionbetweenthespheresisfilledwithTeflon,findtheelectricenergycontainedinthisspace.Theelectricenergystoredintheregionbetweenthemetalspheresis

    Thevolumebetweenthespheresisthedifferenceinthevolumesofthespheres:

    2 20 0

    1 1 ( )2 2

    u E E VolumU e ==

    ( )3 3 3 32 2 2 24 4 4( ) 3 3 3Volume r r r r = = SinceE =V/sands=r2 r1,so,E =V/(r2 r1)

    ( )2 3 3 80 2 22 1

    1 4 1.2 10 J2 3

    V r rr

    Ur

    = =