ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes...

9
The University of Michigan – Visiting Prof. HKU p. 1 S. W. Pang ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion by STELLA W. PANG from The University of Michigan, Ann Arbor, MI, USA Visiting Professor at The University of Hong Kong The University of Michigan – Visiting Prof. HKU p. 2 S. W. Pang Movement Due to Concentration Gradient

Transcript of ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes...

Page 1: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 1 S. W. Pang

ELEC 7364 Lecture Notes Summer 2008

Dopant Diffusion

by STELLA W. PANG

from The University of Michigan, Ann Arbor, MI, USA

Visiting Professor at The University of Hong Kong

The University of Michigan – Visiting Prof. HKU p. 2 S. W. Pang

Movement Due to Concentration Gradient

Page 2: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 3 S. W. Pang

Impurity Types

The University of Michigan – Visiting Prof. HKU p. 4 S. W. Pang

  Movement of atoms through vacancies or interstitials of crystal lattice

  Dopants (e.g. B, As, P): Big, Slow Diffusers through Vacancies

  Metals (e.g. Na+, Li+, Fe+, …): Small, Ionic, Fast Diffusers through Interstitial

Dopant Diffusion

Page 3: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 5 S. W. Pang

  Assume no thermal or electrical gradient   Fick's 1st Law (Concentration Gradient)

Flux

D = Diffusion Constant (cm2/s) C = Concentration of Impurities (atoms/cm3)

  Fick's 2nd Law (Continuity and Matter Conservation)

Rate of Conc. Change Local Change in Diff Flux

Solve for C(x,t) using B. C.

Diffusion Process

J( atomscm2 − s

) = −D∂C∂x

∂C∂t

= −∂∂x(D∂C

∂x)

The University of Michigan – Visiting Prof. HKU p. 6 S. W. Pang

  Surface concentration is held constant - Needs continuous supply of dopants (e.g. POCl3, B2H6, …)

  B.C.: C(0,t) = Constant, C(∞,t) = 0; C(x,0) = 0   Solution:   Complementary error function

at x=0: erfc(0)=1; C=Cs at x= : erfc(1)=0.16; C=0.16Cs

Diffusion Length LD =

Higher dose, deeper junction with longer diffusion time

Constant Source Diffusion

C(x,t) = Cserfc(x

2 Dt)

erfc(y) = 1− 2π

e−η2

0

y

∫ dη

2 Dt

2 Dt

Page 4: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 7 S. W. Pang

  Junction Depth = xj At x = xj C(x) = Csub

Total Dose = Q

Constant Source - Junction Depth

xj = 2 Dt erfc−1Csub

Cs

Q = C(x, t )dx = 2

π0

+∞

∫ Cs Dt

The University of Michigan – Visiting Prof. HKU p. 8 S. W. Pang

  A fixed amount of dopants is deposited in the wafer before diffusion (e.g. ion implantation or drive-in after pre-deposition)

  B.C.: C(∞,t) = 0   Known amount: (atoms/cm2)

  Gaussian Solution:

  Lower Cs, larger xj at longer diffusion time

Limited Source Diffusion

Qo = C(x,t)dx0

C(x,t) =Qo

πDte−x 2

4Dt

Page 5: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 9 S. W. Pang

  Surface Concentration decreases with time At x= 0:

At x= C = Cse-1

Junction Depth: at x= xj, C(x) = Csub

Limited Source - Junction Depth

Cs =Qo

πDt

2 Dt

xj = 4Dt ln Cs

Csub

The University of Michigan – Visiting Prof. HKU p. 10 S. W. Pang

  B in Si with Csub = 1.5x1016 cm-3 Constant Source Diffusion: Cs = 1.8x1020 cm-3 D = 3x10-15 cm2/s, t = 30 min

LD = = 4.7x10-6 cm

= 0.13 µm

Total amount of B in Si

  = 4.7x1014 atoms/cm2

Diffusion Example

2 Dt

xj = 2 Dt erfc−1Csub

Cs

Q = C(x,t)dx =2π0

+∞

∫ Cs Dt

Page 6: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 11 S. W. Pang

  erfc(x) is steeper than exp(-x2)

Complementary Error and Gaussian Profiles

The University of Michigan – Visiting Prof. HKU p. 12 S. W. Pang

  p-type: B atom, Diffuses as negatively charged atom - Intrinsic Diffusion Constant (Neutral Vacancies + Positively Charged Vacancies)

- At 1000 °C: - Relatively fast diffuser, need to limit thermal

budget for shallow junction   n-type: As and P atoms

-  For As: Slower Diffuser, more abrupt and shallow junction

-  Intrinsic Diffusion Constant (Neutral Vacancies + Negatively Charged Vacancies)

- At 1000 °C:

Dopants in Si

DBi = DBV

o +DBV+1

DBi ~10−14 cm

2

s

DAsi = DAs−V

o +DAs−V−1

DAsi ~10−15 cm

2

s

Page 7: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 13 S. W. Pang

  For P: Faster Diffuser, not as good for shallow junction

- Intrinsic Diffusion Constant (Neutral Vacancies)

- At 1000 °C: - P junctions form "kink" at high concentration

due to excess vacancies

Phosphorus in Si

DPi = DP−V

o

DPi ~10−14 cm

2

s

The University of Michigan – Visiting Prof. HKU p. 14 S. W. Pang

  Faster Diffusion at Higher Temperature   At any given temperature: Dsubstitutional << Dinterstitial

Control Diffusion Coefficient

Page 8: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 15 S. W. Pang

  Control No at the solid solubility limit: Wide process margin

  At the solid solubility limit: Chemical concentration >Electrically active concentration

  Control of high dose but shallow profile difficult

Control Surface Concentration

The University of Michigan – Visiting Prof. HKU p. 16 S. W. Pang

  Similar to oxidation furnaces - Batch Processing   Solid, liquid, gas dopant sources available

Diffusion Systems

Page 9: ELEC 7364 Lecture Notes Summer 2008 - Home | …work7364/diffusion.pdf · ELEC 7364 Lecture Notes Summer 2008 Dopant Diffusion ... s Q= C(x,t)dx= 2 0 ... Lecture Diffusion-08.ppt

The University of Michigan – Visiting Prof. HKU p. 17 S. W. Pang

  Dominated by grain-boundary diffusion. Much faster (10-100 X) compared to diffusion in single crystal Si

  Grain size varies (50-300 nm) and dopants can precipitate at grain boundaries and lower conductivity

Dopant Diffusion in Poly-Si

The University of Michigan – Visiting Prof. HKU p. 18 S. W. Pang

  Usually xL ~ 0.8 xh

  Need to minimize lateral diffusion: - Change Leff or cause punch through if S/D

overlap - Increase CGD and CGS due to diffusion under gate,

Result in increased parasitic and reduced speed

Lateral Diffusion