ELB044 Lecture 18. Introduction to Induction Machines

41
Dr. Francisco M. Gonzalez-Longatt 1/41 ELB044 Electrotechnology ELB044 Electrotechnology Lecture 18 Induction Machines Dr Francisco M. Gonzalez-Longatt [email protected] http://www.fglongatt.org

Transcript of ELB044 Lecture 18. Introduction to Induction Machines

Page 1: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 1/41ELB044 Electrotechnology

ELB044 Electrotechnology

Lecture 18

Induction Machines

Dr Francisco M. [email protected]

http://www.fglongatt.org

Page 2: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 2/41ELB044 Electrotechnology

Agenda• Lecture Outline

– Lesson Opening

– Objectives

– Rotating Magnetic Field

– Induction Machine

– Questions and Answers

– Lesson closing and summary

Page 3: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 3/41ELB044 Electrotechnology

Lesson Opening Electrical Machines

Rotating Machines Transformers (static machines)

AC MachinesDC Machines

Operation Mode:

• Generator

• Motor

Separately Excited

Series

Shunt or Parallel

Compounds: Series+Parallel

Synchronous

Machines

Operation Mode:

• Generator

• Motor

Asynchronous

Machines or

Induction

Machines

Squirrel-Cage

Wound Rotor

Cylindrical Rotor

Salient Pole Rotor

Today’s

Lesson

Last Week Lesson

Why???

Page 4: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 4/41ELB044 Electrotechnology

ELB044 Electrotechnology

General objective

Understand the most basic structure ofinduction machine and to generation ofrotating magnetic field produced due to threecoils using AC current

Page 5: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 5/41ELB044 Electrotechnology

ELB044 Electrotechnology

Specific Objectives

1) Identify the main components of inductionmachine.

(2) Recognize the generation of rotating magneticfield produced due to three coils using AC current

Page 6: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 6/41ELB044 Electrotechnology

ELB044 Electrotechnology

An Introduction to

Induction Machines (IM)

How does it work…

Page 7: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 7/41ELB044 Electrotechnology

How does it work…

Asynchronous Induction Motor. How does it work.avi. Category: Education, Licence: Standard YouTube Licence

Source: https://www.youtube.com/watch?v=N8LUOTQKXlk

Page 8: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 8/41ELB044 Electrotechnology

ELB044 Electrotechnology

Structure of an Induction

Machine

Page 9: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 9/41ELB044 Electrotechnology

Stator and Rotor• Every induction machine (motor or generator) has

two main parts:

• Rotating part (rotor) and

• Stationary part (stator).

Stator

Rotor

Machine Shaft

Schematic DiagramPhysical Structure

Page 10: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 10/41ELB044 Electrotechnology

Additional Components• Additional components with specific uses.

Steel

Frame

Page 11: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 11/41ELB044 Electrotechnology

Stator• A stationary stator:

– Consisting of a steel frame that supports a hollow,

cylindrical core.

– Core, constructed from stacked laminations, having a

number of evenly spaced slots, providing the space for

the stator winding.

Page 12: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 12/41ELB044 Electrotechnology

Rotor• A Revolving Rotor:

– Composed of punched laminations, stacked to create a

series of rotor slots, providing space for the rotor

winding.

Single Cage Rotor Wounded Rotor

Page 13: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 13/41ELB044 Electrotechnology

Rotor Winding• One of two types of rotor windings.

– Conventional 3-phase windings made of insulated wire

(wound-rotor) similar to the winding on the stator.

– Aluminum bus bars shorted together at the ends by two

aluminum rings, forming a squirrel-cage shaped

circuit (squirrel-cage).

Welds at all

joints

Shaft

Iron CoreCooper or aluminium bars

Welds holding copper or

aluminium bars to end

ring

Aluminiu

m or

copper end

rings

Rotor Core

Rotor

winding

Slip rings

Ball bearings

Cooling Fan

Ball bearingsSquirrel Cage

Rotor

Wound Rotor

Page 14: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 14/41ELB044 Electrotechnology

ELB044 Electrotechnology

Rotating Magnetic Field

Page 15: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 15/41ELB044 Electrotechnology

The Rotating Magnetic Field• The basic idea of an electric machine is to

generate two magnetic fields:

– Rotor magnetic field (Br) and

– Stator magnetic field (Bs) and make the

stator field rotating.

rBb

'a

'c

a

'b

c sBThis Section presents the

fundamentals behind the

stator magnetic field a

rotating magnetic field

Page 16: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 16/41ELB044 Electrotechnology

Single Coil (1/2)• Single coil AA’:

➁➂

➀ ➁ ➂

'( ) sin

AA Mi t I t

'0

AA RMSI I

Time domain Representation

Phasor domain Representation

'( )

AAi t

'( )

AAB t

The dark green plot in the phase diagrams is the resulting relative

magnitude of the magnetic field created by the sine wave source

currents. Within the vector plots, the red ball represents the time

position and the dashed black vector is the resultant vector when the

phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf

Page 17: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 17/41ELB044 Electrotechnology

Single Coil (2/2)

Magnetic flux

density (BAA’)

is fixed in the

space and

changing

magnitude and

direction

Souce: ACRotatingMagneticFieldPrinciple.cdf

"AC Rotating Magnetic Field Principle"

from the Wolfram Demonstrations

Project http://demonstrations.wolfram.co

m/ACRotatingMagneticFieldPrinciple/

Page 18: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 18/41ELB044 Electrotechnology

Two Coils (1/2)• Two coils AA’ and BB’:

➀ ➁ ➂

'

'

( ) sin

( ) sin 90

AA M

BB M

i t I t

i t I t

'

'

0

90

AA RMS

BB RMS

I I

I I

Time domain Representation

Phasor domain Representation

'( )

AAi t

( )sB t

The dark green plot in the phase diagrams is the resulting relative

magnitude of the magnetic field created by the sine wave source

currents. Within the vector plots, the red ball represents the time

position and the dashed black vector is the resultant vector when the

phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf

➁➂

'( )

BBi t

sB

'AAB

'BBB

Page 19: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 19/41ELB044 Electrotechnology

Two Coils (2/2)

Two magnetic flux

density (BAA’ and

BBB’) are fixed in

the space and

changing

magnitude and

direction

Souce: ACRotatingMagneticFieldPrinciple.cdf

Total magnetic flux

density in the

stator (BS) is

rotating and

constant

amplitude

"AC Rotating Magnetic Field Principle"

from the Wolfram Demonstrations

Project http://demonstrations.wolfram.co

m/ACRotatingMagneticFieldPrinciple/

Page 20: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 20/41ELB044 Electrotechnology

Three Coils (1/2)• Three coils AA’, BB’, and CC’:

➀ ➁ ➂

'

'

'

( ) sin

( ) sin 120

( ) sin 120

AA M

BB M

CC M

i t I t

i t I t

i t I t

'

'

'

0

120

120

AA RMS

BB RMS

CC RMS

I I

I I

I I

Time domain Representation

Phasor domain Representation

( )sB t

The dark green plot in the phase diagrams is the resulting relative

magnitude of the magnetic field created by the sine wave source

currents. Within the vector plots, the red ball represents the time

position and the dashed black vector is the resultant vector when the

phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf

➁➂

'( )

BBi t

sB

'AAB

'BBB

'CCB

'BBB

'( )

CCi t

'( )

AAi t

Page 21: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 21/41ELB044 Electrotechnology

Three Coils (2/2)

Three magnetic

flux density (BAA’

BBB’ and BCC’) are

fixed in the space

and changing

magnitude and

direction

Souce: ACRotatingMagneticFieldPrinciple.cdf

Total magnetic flux

density in the

stator (BS) is

rotating and

constant

amplitude

"AC Rotating Magnetic Field Principle"

from the Wolfram Demonstrations

Project http://demonstrations.wolfram.co

m/ACRotatingMagneticFieldPrinciple/

Page 22: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 22/41ELB044 Electrotechnology

The Rotating Magnetic Field (1/6)• Simple stator made of three pairs of coils around

iron pole pieces.

Iron Pole

Pieces

Phase connections

A’

A

B

B’

C

C’

Iron

Stator

Ring

Phase

Coils

Current enters coil

A and leaves coils

A’

Magnetic flux set

up in coils with

North Pole at the

bottom and South

Pole at the top

Page 23: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 23/41ELB044 Electrotechnology

The Rotating Magnetic Field (2/6)• Changing which coils are energised alters

direction of magnetic flux

AA’ energised CC’ energised BB’ energised

N

S

C

B’

C’

A

B

A’

C

B’

C’

A

B

A’

C

B’

C’

A

B

A’

Page 24: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 24/41ELB044 Electrotechnology

The Rotating Magnetic Field (3/6)• Energizing two sets of coils together in sequence

• Compass settles half way between poles

Page 25: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 25/41ELB044 Electrotechnology

The Rotating Magnetic Field (4/6)• Sequence produces one complete rotation of the

magnetic field

➀ CC’ & B’B

➁ AA’ & B’B

➂ AA’ & C’C

➃ BB’ & C’C

➄ BB’ & A’A

➅ CC’ & A’A

➆ CC’ & B’B

Page 26: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 26/41ELB044 Electrotechnology

The Rotating Magnetic Field (5/6)• Three-Phase supply provides the correct sequence

for stator coils➀ CC’ & B’B

➁ AA’ & B’B

➂ AA’ & C’C

➃ BB’ & C’C

➄ BB’ & A’A

➅ CC’ & A’A

➆ CC’ & B’B0AI

0AI

0CI

0CI

0BI

0BI

Page 27: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 27/41ELB044 Electrotechnology

The Rotating Magnetic Field (6/6)• Three-Phase supply provides the correct sequence

for stator coils➀ CC’ & B’B

➁ AA’ & B’B

➂ AA’ & C’C

➃ BB’ & C’C

➄ BB’ & A’A

➅ CC’ & A’A

➆ CC’ & B’B0

AI

0AI

0CI

0CI

0BI

0BI

0AI

0AI

Page 28: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 28/41ELB044 Electrotechnology

Animation

http://www.ece.umn.edu/users/riaz/animations/spacevecmovie.html

Page 29: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 29/41ELB044 Electrotechnology

Rotational Speed (1/4)

• Relationship between electrical frequency

and speed of field rotation

• The stator rotating magnetic (BS) field can be

represented as a north pole and a south pole.

a’

b

c’

a

b’

c

ω

N

ω

SSB

ω

These magnetic poles

complete one

mechanical rotation

around the stator

surface for each

electrical cycle of

current.

N S

Page 30: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 30/41ELB044 Electrotechnology

Rotational Speed (2/4)• The mechanical speed of rotation of the magnetic

field equals to the electrical frequency (Two Pole

Machine)a’

b

c’

a

b’

c

ω

N

ω

SSB

ω[ ] [ ] mf Hz f rps

[ ] [ ]sec sec

e m

rad rad

Two

Poles

Machine N S

Page 31: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 31/41ELB044 Electrotechnology

Rotational Speed (3/4)• What if 3 additional windings will be added? The

new sequence will be: a-c’-b-a’-c-b’-a-c’-b-a’-c-b’ and, when

3-phase current is applied to the stator, two north poles

and two south poles will be produced.

In this winding, a pole moves only halfway around the

stator. 2a

'

1b

1c

'

1a

1b

'

2c1a

'

2b

2c

'

2a

2b

'

1ca’

b

c’

a

b’

c

One south Pole

One North PoleTwo south Pole

Two North Pole

Page 32: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 32/41ELB044 Electrotechnology

Rotational Speed (4/4)• The relationship between the electrical angle e

(current’s phase change) and the mechanical angle m(at which the magnetic field rotates) in this situation is:

• Therefore, for a four-pole stator:2a

'

1b

1c

'

1a

1b

'

2c1a

'

2b

2c

'

2a

2b

'

1c

mB B

B B

S

S N

N

m

m

m

2e m

[ ] [ ] mf Hz f rps

[ ] [ ]sec sec

e m

rad rad

Four

Poles

Machine

Page 33: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 33/41ELB044 Electrotechnology

Rotational Speed: General Case• Relationship between electrical frequency

and speed of field rotation:

- For an AC machine with Npoles in its stator:

- Relating the electrical frequency to the machine

speed in rpm:

2

poles

e m

N

2

poles

m

Nf f

2

poles

e m

N

120

polesNf n

Page 34: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 34/41ELB044 Electrotechnology

Rotational Speed: General Case • A rotating magnetic field with constant

magnitude is produced, rotating with a speed.

Npoles 50 Hz 60 Hz

2 3000 3600

4 1500 1800

6 1000 1200

8 750 900

10 600 720

12 500 600

120e

sync

poles

fn rpm

N

Page 35: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 35/41ELB044 Electrotechnology

ELB044 Electrotechnology

Example

Demonstrative example of rotational magnetic field

Page 36: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 36/41ELB044 Electrotechnology

Example:• What is the frequency (f) of a four-pole alternator

operating at a speed of n = 1500 rpm?

• Applying the mathematical definition for the

frequency on AC machine:

where Npoles = 4 and mec = 1500 rpm, then

4 1500

120f 120

polesN

f n 50f Hz

120

poles

e

Nf n

50f HzAnswer

Page 37: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 37/41ELB044 Electrotechnology

ELB044 Electrotechnology

Closure and Summary

Page 38: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 38/41ELB044 Electrotechnology

Induction Machines• Basic structure

• How does it work…

Rotor

Stator

Faraday's law of induction

Stator created a

rotating magnetic field

Page 39: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 39/41ELB044 Electrotechnology

ELB044 Electrotechnology

Suggested Readings

Page 40: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 40/41ELB044 Electrotechnology

Suggested Readings• S. J. Chapman, Electric machinery fundamentals,

4th Edition. New York, NY: McGraw-Hill Higher

Education, 2005. Chapter 7.

• A. E. Fitzgerald, C. Kingsley, and S. D. Umans,

Electric machinery, 6th Edition. Boston, Mass.:

McGraw-Hill, 2003. Chapter 6.

• I. L. Kosow, Electric Machinery and Transformers,

2nd Edition: Prentice Hall, 2007. Chapter 9.

Page 41: ELB044 Lecture 18. Introduction to Induction Machines

Dr. Francisco M. Gonzalez-Longatt 41/41ELB044 Electrotechnology

ELB044 Electrotechnology

Any Question?

Lecture 18

Induction Machines

Dr Francisco M. [email protected]

http://www.fglongatt.org