Elastomeric Bearing - 15m Span

Click here to load reader

  • date post

    09-Dec-2015
  • Category

    Documents

  • view

    29
  • download

    5

Embed Size (px)

description

Design of Elastomeric Bearing For 15m Span bridge

Transcript of Elastomeric Bearing - 15m Span

BRG LOADNOTE NO. DN-18SHEET NO.DESIGN OF ELASTOMERIC BEARINGThe bridge is having simply support span. each support has three no. of elastomeric bearings.CALCULATION OF BEARING LOADSNormal CaseMax. Reaction on a bearing(Refer STAAD output)On outer BearingOn inner BearingOn inner most BearingDue to DL of RCC girder and slab (from design calc.) =25.00t25.00t15.00tDue to Diaphragm =0.92t3.06t4.00t25.92t28.06t0.00tDue to SIDL =9.67t0.54t0tTotal DL + SIDL =35.59t28.60t0.00t35.5928.600.0064.19Due to Live load (impact -1.1) =Max.37.99t52.89t0.00t128.38Min.-1.20t-0.35t0.00t256.76Total Maximum load =Max.73.58t81.49t0.00tTotal Minimum load =Min.34.39t28.25t0.00tCalculation of horizontal forces :--Horizontal force from superstructure3 Nos. elastomeric bearings are proposed on each support.Braking force =(100 x 0.2 )=20.00tTotal Horizontal force transferred from superstructure =20.00/ 2=10.00tThis force is resisted by three bearing provided at each endThus longitudinal force on each bearing =10.00/3=3.33tSeismic Transverse Casea h=0.075( Hor. seismic coeff.)Seismic force on Dead load =5.99t, say5.99tIts lever arm above bearing level =1.01m (approx.)Thus moment at bearing level =5.991.01=6.02TmSeismic force on SIDL =19.880.075=1.49tIts lever arm above bearing level =1.80mThus moment at bearing level =1.491.80=2.68TmTotal live load reaction at support=67.0tSeismic force on LL (50%) =33.50.075=2.51tIts lever arm above bearing level =2.765mThus moment at bearing level =2.512.77=6.95TmTotal transverse force =10.00tThis force is resisted by three bearing provided at each endThus transverse force on each bearing =10.00/3=3.33tTotal transverse moment =15.65Tmx ^2 =2 x ( 2.90^2 + 0^2 )=16.82m^2checkHence, Vertical load on inner bearing =15.65x0.000= (+/-)0.00tHence, Vertical load on outer bearing =15.65x0.172= (+/-)2.70tThus,Maximum load on outer bearing (50% LL) =25.929.6719.002.70=57.29tMinimum load on outer bearing =25.929.67-0.60-2.70=32.29tMaximum load on inner bearing =28.060.5426.440.00=55.04tMinimum load on inner bearing =28.060.54-0.180.00=28.42tThe design vertical load (minimum) =28.42t (Governing)Horizontal force from superstructure3 Nos. elastomeric bearings are proposed on each support.Braking force (50%) =(100 x 0.2) x 0.5 =10.00tTotal Horizontal force transferred from superstructure =10.00/ 2=5.00tThis force is resisted by three bearing provided at each endThus longitudinal force on each bearing =5.00/3=1.67tSeismic Longitudinal CaseMaximum load on outer bearing =25.99.6719.00=54.59tMinimum load on outer bearing =25.929.67-0.60=34.99tMaximum load on inner bearing =28.060.5426.44=55.04tMinimum load on inner bearing =28.060.54-0.18=28.42tThe design vertical load (minimum) =28.42t (Governing)Horizontal force from superstructure (seismic)Horizontal force Dead load and SIDL(seismic) =5.991.49=7.48tBraking force (50%) =(100 x 0.2)x0.5=10.00tTotal Horizontal force transferred from superstructure =7.4810.0/ 2=12.48tThis force is resisted by three bearing provided at each endThus longitudinal force on each bearing =12.48/3=4.16tMovement at bearing (@ 0.5 x 10^-3 )=0.5 x 10^-3 x 14.0 x 10^3 x0.5=3.50mmRotationas per clause :916.3.5IRC:83(part-II)Dead Load rotationad=400 Mmax L /(Ec I )10^-3radMmax=83.78t-m(refer design calculations of superstructure)Grade of concrete=M30E5000xfck=2791654.2176614t/m2I =Moment of inertia=0.2882(refer design of superstructure)ad=400x83.78x14.000x0.0010.5x2791654.2176614x0.2882=0.0011662799radLive Load rotationMmax=149.41t-m(refer design calculations of superstructure)ad=0.0010399491Total rotation =0.0011662799+0.0010399=0.0022rad

xxxxx+++++++++++++++++++++++++++++x++

SIDLNOTE NO. DN-18SHEET NO.1. STAAD SPACE ANALYSIS OF SUPERSTRUCTURE FOR SIDL2. INPUT WIDTH 793. UNIT MTON METRE4. *5. JOINT COORDINATE6. *7. 101 0.0 0.0 0.000 109 14.0 0.0 0.0008. 201 0.0 0.0 1.450 209 14.0 0.0 1.4509. 301 0.0 0.0 4.350 309 14.0 0.0 4.35010. 401 0.0 0.0 7.250 409 14.0 0.0 7.25011. 501 0.0 0.0 8.700 509 14.0 0.0 8.70012. *13. 701 0.0 0.0 0.725 709 14.0 0.0 0.72514. 801 0.0 0.0 2.900 809 14.0 0.0 2.90015. 901 0.0 0.0 5.800 909 14.0 0.0 5.80016. 1001 0.0 0.0 7.975 1009 14.0 0.0 7.97517. *18. 110 -0.50 0.0 0.00; 111 14.50 0.0 0.019. 210 -0.50 0.0 1.450; 211 14.50 0.0 1.45020. 310 -0.50 0.0 4.350; 311 14.50 0.0 4.35021. 410 -0.50 0.0 7.250; 411 14.50 0.0 7.25022. 510 -0.50 0.0 8.700; 511 14.50 0.0 8.70023. *24. 710 -0.50 0.0 0.725; 711 14.50 0.0 0.72525. 810 -0.50 0.0 2.900; 811 14.50 0.0 2.90026. 910 -0.50 0.0 5.800; 911 14.50 0.0 5.80027. 1010 -0.50 0.0 7.975; 1011 14.50 0.0 7.97528. *29. MEM INCIDENCE30. 101 101 102 10831. 201 201 202 20832. 301 301 302 30833. 401 401 402 40834. 501 501 502 50835. *36. 701 701 702 70837. 801 801 802 80838. 901 901 902 90839. 1001 1001 1002 100840. *41. 109 110 101; 110 109 11142. 209 210 201; 210 209 21143. 309 310 301; 310 309 31144. 409 410 401; 410 409 41145. 509 510 501; 510 509 51146. *47. 709 710 701; 710 709 71148. 809 810 801; 810 809 81149. 909 910 901; 910 909 91150. 1009 1010 1001; 1010 1009 101151. *52. 2101 101 701 210953. 2201 201 801 220954. 2301 301 901 230955. 2401 401 1001 240956. *57. 3101 701 201 310958. 3201 801 301 320959. 3301 901 401 330960. 3401 1001 501 340961. *62. MEMBER PROPERTIES63. *DUMMY MEMBER64. 101 TO 110 501 TO 510 PRIS YD 0.05 ZD 0.0565. 701 TO 710 801 TO 810 901 TO 910 PRIS YD 0.05 ZD 0.0566. 1001 TO 1010 PRIS YD 0.05 ZD 0.0567. 209 210 309 310 409 410 PRI YD 0.05 ZD 0.0568. *69. 301 TO 308 401 TO 408 201 TO 208 -70. PRIS AX 1.3645 IX 1E-10 IY .4673 IZ .288271. * DIAPHRAGM72. 2201 TO 2301 BY 100 2209 TO 2309 BY 100 -73. 3201 TO 3301 BY 100 3209 TO 3309 BY 100 -74. PRIS AX 0.52932 IX 1E-10 IY 0.01429 IZ 0.0591075. 2101 2401 2109 2409 -76. 3101 3401 3109 3409 PRIS AX 0.17732 IX 1E-10 IY 0.009599 IZ 0.00071577. * SLAB78. 2102 TO 2108 2202 TO 2208 2302 TO 2308 2402 TO 2408 -79. 3102 TO 3108 3202 TO 3208 3302 TO 3308 3402 TO 3408 -80. PRIS AX 0.3850 IX 1E-10 IY 0.09826 IZ 0.00155381. *82. SUPPORTS83. 201 301 401 PINNED84. 209 309 409 FIXED BUT FX FZ MX MY MZ85. *86. CONSTANTS87. E 3.0E688. DEN 2.489. *90. LOAD 1 SIDL91. MEMBER LOAD92. ***WEARING COAT93. * 0.2*(2.9/2+1.225) = 0.535 T/M94. * 0.2*2.9 = 0.58 T/M95. 201 TO 210 401 TO 410 UNI GY -0.53596. 301 TO 310 UNI GY -0.5897. **CRASH BARRIER98. 101 TO 110 501 TO 510 UNI GY -0.5099. *100. LOAD 2 SELF WT OF DIAPHRAGM (WT. 0.88X0.40X2.4=0.845 T/M)101. MEMBER LOAD102. 2201 TO 2301 BY 100 3201 TO 3301 BY 100 2209 TO 2309 BY 100 -103. 3209 TO 3309 BY 100 UNI GY -0.845104. *105. PERFORM ANALYSIS119. LOAD LIST 1120. PRINT SUPPORT REACTIONJOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z201 1 .00 9.67 .00 .00 .00 .00301 1 .00 .54 .00 .00 .00 .00401 1 .00 9.67 .00 .00 .00 .00209 1 .00 9.67 .00 .00 .00 .00309 1 .00 .54 .00 .00 .00 .00409 1 .00 9.67 .00 .00 .00 .00121. LOAD LIST 2122. PRINT SUPPORT REACTIONJOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z201 2 .00 .92 .00 .00 .00 .00301 2 .00 3.06 .00 .00 .00 .00401 2 .00 .92 .00 .00 .00 .00209 2 .00 .92 .00 .00 .00 .00309 2 .00 3.06 .00 .00 .00 .00409 2 .00 .92 .00 .00 .00 .00123. FINISH

LLNOTE NO. DN-18SHEET NO.1. STAAD SPACE ANALYSIS OF SUPERSTRUCTURE FOR LIVE LOAD 70R WHEELED2. INPUT WIDTH 793. UNIT MTON MET4. *5. JOINT COORDINATE6. *7. 101 0.0 0.0 0.000 109 14.0 0.0 0.0008. 201 0.0 0.0 1.450 209 14.0 0.0 1.4509. 301 0.0 0.0 4.350 309 14.0 0.0 4.35010. 401 0.0 0.0 7.250 409 14.0 0.0 7.25011. 501 0.0 0.0 8.700 509 14.0 0.0 8.70012. *13. 701 0.0 0.0 0.725 709 14.0 0.0 0.72514. 801 0.0 0.0 2.900 809 14.0 0.0 2.90015. 901 0.0 0.0 5.800 909 14.0 0.0 5.80016. 1001 0.0 0.0 7.975 1009 14.0 0.0 7.97517. *18. 110 -0.50 0.0 0.00; 111 14.50 0.0 0.019. 210 -0.50 0.0 1.450; 211 14.50 0.0 1.45020. 310 -0.50 0.0 4.350; 311 14.50 0.0 4.35021. 410 -0.50 0.0 7.250; 411 14.50 0.0 7.25022. 510 -0.50 0.0 8.700; 511 14.50 0.0 8.70023. *24. 710 -0.50 0.0 0.725; 711 14.50 0.0 0.72525. 810 -0.50 0.0 2.900; 811 14.50 0.0 2.90026. 910 -0.50 0.0 5.800; 911 14.50 0.0 5.80027. 1010 -0.50 0.0 7.975; 1011 14.50 0.0 7.97528. *29. MEM INCIDENCE30. 101 101 102 10831. 201 201 202 20832. 301 301 302 30833. 401 401 402 40834. 501 501 502 50835. *36. 701 701 702 70837. 801 801 802 80838. 901 901 902 90839. 1001 1001 1002 100840. *41. 109 110 101; 110 109 11142. 209 210 201; 210 209 21143. 309 310 301; 310 309 31144. 409 410 401; 410 409 41145. 509 510 501; 510 509 51146. *47. 709 710 701; 710 709 71148. 809 810 801; 810 809 81149. 909 910 901; 910 909 91150. 1009 1010 1001; 1010 1009 101151. *52. 2101 101 701 210953. 2201 201 801 220954. 2301 301 901 230955. 2401 401 1001 240956. *57. 3101 701 201 310958. 3201 801 301 320959. 3301 901 401 330960. 3401 1001 501 340961. *62. MEMBER PROPERTIES63. *DUMMY MEMBER64. 101 TO 110 501 TO 510 PRIS YD 0.05 ZD 0.0565. 701 TO 710 801 TO 810 901 TO 910 PRIS YD 0.05 ZD 0.0566. 1001 TO 1010 PRIS YD 0.05 ZD 0.0567. 209 210 309 310 409 410 PRI YD 0.05 ZD 0.0568. *69. 301 TO 308 401 TO 408 201 TO 208 -70. PRIS AX 1.3645 IX 1E-10 IY .4673 IZ .288271. * DIAPHRAGM72. 2201 TO 2301 BY 100 2209 TO 2309 BY 100 -73. 3201 TO 3301 BY 100 3209 TO 3309 BY 100 -74. PRIS AX 0.52932 IX 1E-10 IY 0.01429 IZ 0.0591075. 2101 2401 2109 2409 -76. 3101 3401 3109 3409 PRIS AX 0.17732 IX 1E-10 IY 0.009599 IZ 0.00071577. * SLAB78. 2102 TO 2108 2202 TO 2208 2302 TO 2308 2402 TO 2408 -79. 3102 TO 3108 3202 TO 3208 3302 TO 3308 3402 TO 3408 -80. PRIS AX 0.3850 IX 1E-10 IY 0.09826 IZ 0.00155381. *82. SUPPORTS83. 201 301 401 PINNED84. 209 309 409 FIXED BUT FX FZ MX MY MZ85. *86. CONSTANTS87. E 3.0E6 ALL88. *89. DEFINE MOVING LOAD FILE DML.TXT90. **91. TYP 1 CLA 1.092. TYP 2 CL70R 1.093. *94. **** CASE 1 : CLASS 70R MOST ECCENTRIC95. LOAD GENERATION 10096. TYPE 2 -13.9 0.0 6.855 XINC 0.3097. *98. **** CASE 2 : CLASS 70R ONE WHEEL OVER G299. LOAD GENERATION 100100. TYPE 2 -13.9 0.0 6.280 XINC 0.30102. **** CASE 3 : CLASS 70R TRAIN SYMMETRIC TO G2103. LOAD GENERATION 100104. TYPE 2 -13.9 0.0 5.315 XINC 0.30105. *106. *** CASE 4 : CLASS A MOST ECCENTRIC107. LOAD GENERATION 100108. TYPE 1 -19.30 0.0 8.075 XINC 0.35109. *110. PERFORM ANALYSIS111. LOAD LIST 50 51 52112. PRINT SUPPORT REACTION LIST 409JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z409 50 .00 33.51 .00 .00 .00 .0051 .00 34.54 .00 .00 .00 .0052 .00 26.64 .00 .00 .00 .00113. LOAD LIST 64 65 66114. PRINT SUPPORT REACTION LIST 209JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z209 64 .00 -.99 .00 .00 .00 .0065 .00 -1.09 .00 .00 .00 .0066 .00 -.60 .00 .00 .00 .00115. LOAD LIST 250 251 252116. PRINT SUPPORT REACTION LIST 309JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z309 250 .00 46.17 .00 .00 .00 .00251 .00 48.08 .00 .00 .00 .00252 .00 35.48 .00 .00 .00 .00117. LOAD LIST 200 201 202118. PRINT SUPPORT REACTION LIST 309JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z309 200 .00 .00 .00 .00 .00 .00201 .00 -.32 .00 .00 .00 .00202 .00 -.13 .00 .00 .00 .00119. FINISH

NormalNOTE NO. DN-18SHEET NO.A. Design Data - Normal caseMax. Vertical Load Nmax =814880N (refer calculation of bearing loads)Min. vertical load Nmin =282480N (refer calculation of bearing loads)Horz. force in Long. dir. hl from supstr. =33333N (refer calculation of bearing loads)Horz. force inTrans. dir. ht from supstr. =0NRotation in Long. dir.abd =0.0022refer (refer calculation of bearing loads)Rotation in Trans. dir.ald=0radTranslation in long. dir. Dbd =3.50mmTranslation in Trans. dir. Dld =0mmConcrete grade of pedestal M30MpaPermissble stress in bearing so =7.5MpaIncreased permissible stress as per cl. 307.1 of IRC:21 subject to a maximum value f 10 Mpa as per cl. 916.3.510.00MpaAssuming that condition of required area will be satisfiedB. Bearing DataOverall length of bearing in trans. dir.lo380mmOverall width of bearing in long. dir. bo380mmSide cover c6mmThickness of individual layer of elastomer hi10mmThickness of top/bottom layer of elastomer he5mmshould be hi/2 subject to max of 6mmTotal no. of internal layers n6Thickness of steel laminate hs3mmEffective width b = bo -2c368mmEffective length l = lo -2c368mmEffective plan area A = l * b135424mm2Modulus of rigidity of ealstomer G1.0Mpa3. Design of Bearing1. Check for base PressureMaximum Base pressure on pedestal sm(max)= Nmax/A6.02Mpa 2.00MpaO.K2. Checks to be made if standard size is not used as per cl.916.3.31. Ratio of length to width lo/bo1.000< 22. Height of elastomer h = n*hi+2*he70mm bo/5 =76 bo/10 =38Also total ht. Of bearing ho = n*hi+2*he+ (n+1)*hs91mm3. Shape factor S = A/(l+b)*2*hi9.20should be >6 and 2.00MpaO.K2. Checks to be made if standard size is not used as per cl.916.3.31. Ratio of length to width lo/bo1.000< 22. Height of elastomer h = n*hi+2*he70mm bo/5 =76 bo/10 =38Also total ht. Of bearing ho = n*hi+2*he+ (n+1)*hs91mm3. Shape factor S = A/(l+b)*2*hi9.20should be >6 and 2.00MpaO.Kh=842. Checks to be made if standard size is not used as per cl.916.3.31. Ratio of length to width lo/bo1.000< 2550x360x1122. Height of elastomer h = n*hi+2*he70mm bo/5 =76726 and 2& lic is movement of bearing equal to Dbd or Dld for either directionO.KTotal horz. Force in long. direction Hl = hl + Vr * Dbd41612NTotal horz. Force in trans. direction Ht = ht + Vr * Dld0Ndeltabd=5.5mmShear strain in long. dir. gbd= Dbd/h+Hl/A0.36Shear strain in trans. dir. gld= Dld/h+Ht/A0.00deltabd=0.0654761905Shear strain of bearing gd= gbd or (gbd2+gld2)1/2 if gld is co-exixting =0.36 0.7hO.K4. Check for Rotation as per cl. 916.3.5HL0.361972824A=As per provisions of this clause total angle of rotation ad b*abi,max*n0.4274490145where ad = abd or incase of ald co-existing ad = (abd *b+ald *l)/b =0.001686abi,max = 0.5*sm*hi/b*S2 =0.0020.2+0.1x2.0109601333for which sm = 10 Mpa as per codal provision=0.4010960133b =sm (max)/100.406INCREASE THICKNESSTotal angle of rotation ad =0.0017 b*abi,max*n =0.003915O.K5. Check for Friction as per cl. 916.3.6As per provisions of this clause total shear strain gd< 0.2 + 0.1 smwhere sm is minimum bearing presssure sm(min)= Nmin/A2.10Mpa 2 MpaNow shear strain gd=0.357 0.2+0.1 sm=0.410O.K(calculated above)6. Check for Total Shear stress as per cl. 916.3.7As per provision of his clause tc + tg + ta 5 MpaHere,tc is shear stress due to axial compression = 1.5 * sm(max) /S0.66Mpatg is shear stress due to horizontal defromation = gd0.36Mpata is shear stress due to rotation=0.5*(b/hi)2*abior ta = 0.5*(b2*abi+l2*ali)/hi2 where ali co-existsnow abi is as calculated earlier 0.5 * sm * hi / (b*S2)=0.002also ali is as given by 0.5 * sm * hi / (l*S2)=0.000Therefore ta = 0.5*(b2*abi+l2*ali)/hi2 =1.09MpaNow total shear stress tc + tg + ta =2.115.0O.KCheck for pedestal sizeSide of pedestal in long. dir.680Side of pedestal required in trans. dir.680Min height of pedestal required to satisfy cl. 307.1 of IRC:21114

datahihs83Print out not to be taken103124166gradestress205256.2307.5358.5408.5