Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo...

33
Efficient Numerical Modeling of Random Rough Surface Effects in Interconnect Internal Impedance Extraction CHEN CHEN Quan Quan & WONG & WONG Ngai Ngai Department of Electrical & Electronic Engineering Department of Electrical & Electronic Engineering The University of Hong Kong The University of Hong Kong

Transcript of Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo...

Page 1: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

Efficient Numerical Modeling of Random Rough Surface Effects

in Interconnect Internal Impedance Extraction

CHEN CHEN QuanQuan & WONG & WONG NgaiNgai

Department of Electrical & Electronic EngineeringDepartment of Electrical & Electronic Engineering

The University of Hong KongThe University of Hong Kong

Page 2: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

2

OutlineOutlineBackground

Modeling (Effective Parameters)

Computation (Modified SIE Method)

Results

Conclusion

Page 3: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

3

Surface Roughness in InterconnectsSurface Roughness in Interconnects

Page 4: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

4

Sources of Surface RoughnessSources of Surface RoughnessUnintentional sourcesUnintentional sources–– Technology limitationsTechnology limitations–– Process variationsProcess variations

Intentional sourcesIntentional sources–– Electronic deposition Electronic deposition –– Chemical etchingChemical etching–– AnnealingAnnealing

Enhance the cohesion between metal and Enhance the cohesion between metal and dielectricdielectric

Page 5: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

5

Impact of Surface Roughness on Internal Impedance

Impact of Surface Roughness on Internal Impedance

Current under smooth surface Current under rough surface

More resistive lossLonger

current pathLargercurrent loop

Higher internal inductance

Higher resistance

Interaction between rough surface and currentInteraction between rough surface and current

Page 6: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

6

High Frequency EffectsHigh Frequency Effects•• Rough surface effects is insignificant in low Rough surface effects is insignificant in low frequencies frequencies (large skin depth, small roughness)(large skin depth, small roughness)

•• It becomes significant in high frequencies It becomes significant in high frequencies (comparable skin depth and roughness)(comparable skin depth and roughness)

Skin depth = 6.5microns when f = 0.1 GHz (From Intel)

Page 7: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

7

ModelingModeling

Model the impact of random rough surface on interconnect internal

impedance

Page 8: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

8

Effective Resistivity Effective Resistivity ρρee & Effective Permeability & Effective Permeability μμee

Capture the increase of resistance and internal Capture the increase of resistance and internal inductance caused by surface roughnessinductance caused by surface roughness

Current Extraction Tools

Layout Information

Rough Surface Module

Effective Resistivity & PermeabilityRough Surface

RLC Circuit

Effective ParametersEffective Parameters

Page 9: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

9

Analytical FormulationAnalytical FormulationFor effective resistivity

–– h h –– RMS height; RMS height; δδ-- skin depthskin depth

–– Widely used in practical design, BUTWidely used in practical design, BUT

–– Inaccurate Inaccurate (only h is considered)(only h is considered)

For effective permeability–Unavailable

2121 tan 1 .4e

hρ ρπ δ

−⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

Page 10: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

10

Numerical Formulation of ρeNumerical Formulation of ρe

Power loss equivalence Ps = Pr

{ }0

20

Re d ( )2 rSe zU z

HP

H l lρδδρ == ∫

Smooth surface power loss2

0

2s

H lP

ρδ

=

Rough surface power loss

( ){ }*0 Re d

2r S

HP zU zρ= ∫

V

Page 11: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

11

Numerical Formulation of μeNumerical Formulation of μe

{ }2 *

0 Im d ( )2r S

HW zU zμδ= ∫

{ }200

Im d ( )2 rSe

WH

zUlH

zl

μδμδ

== ∫

20

2s

H lW

μδ=

Smooth surface magnetic energy

Rough surface magnetic energy

Magnetic energy equivalence Ws = Wr

V

Page 12: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

12

Governing EquationGoverning Equation2

0 01 ( ) ( , ')d ( , ') ( ) d 12S cp

y z G z zzG z z U z H H zz n

∂ ∂⎛ ⎞= + + ⎜ ⎟∂ ∂⎝ ⎠∫ ∫

2( ) ( )( ) 1ˆ

y z H zU zz n

∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂⎝ ⎠

0( )H r H r S= ∈Boundary condition

(1)0 1( , ') ( ' )G z z H k z z= −

Surface unknown

Green’s function

Page 13: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

13

Modeling of Random Rough SurfaceModeling of Random Rough Surface

Described by Described by stationary stationary stochastic processstochastic process with with Probability Density Probability Density FunctionFunction and and Correlation FunctionCorrelation Function

2

1 2

1P ( ) exp( )22zyhhπ

= −

η --- correlation length

21 2

1 2 2( , ) exp( )g

z zC z z

η−

= −

Most rough surfaces in reality are randomMost rough surfaces in reality are random

Page 14: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

14

Conventional Statistical Solver-- Monte-Carlo Method

Conventional Statistical Solver-- Monte-Carlo Method

Input Layout information

Random Rough Surface Generator

Direct Integral Equation Solver

Computation Output Mean of the solution

S1 S2 S3 Sn-1 SnA large number of

surface realizations

R1 R2 R3 Rn-1 Rn

Corresponding solutions

Page 15: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

15

Limitations of Monte-Carlo methodLimitations of Monte-Carlo methodProbabilistic natureProbabilistic nature–– Mean value is also a random variableMean value is also a random variable

Slow convergenceSlow convergence–– More than 2500 More than 2500

runs to converge runs to converge within 1%within 1%

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Monte−Carlo runs

Co

nve

rgen

ce o

f m

ean

of ρ

e (%

)

Page 16: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

16

ComputationComputationEfficient Stochastic Integral Equation

(SIE) method

Page 17: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

17

Stochastic Integral EquationStochastic Integral Equation (SIE)(SIE) methodmethod–– Use mean value as unknownUse mean value as unknown–– OneOne--pass solution pass solution –– Deterministic natureDeterministic nature

Two stepsTwo steps– Zeroth-order approximation

(Uncorrelatedness assumption )– Second-order correction

Page 18: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

18

Zeroth-Order ApproximationZeroth-Order ApproximationDirectly applying ensemble average on both sides

2

0 01 ( ) ( , ')d ( , ') ( ) d 12S cp

y z G z zz G z z U z H H zz n

∂ ∂⎛ ⎞= + + ⎜ ⎟∂ ∂⎝ ⎠∫ ∫

1( ) ( ( )) ( )f x P f x f x+∞

−∞= ∫Ensemble average

2

0 01 ( ) ( , ')d ( , ') ( ) d 12S cp

y z G z zz G z z U z H H zz n

∂ ∂⎛ ⎞= + + ⎜ ⎟∂ ∂⎝ ⎠∫ ∫

Assuming the Green’s function G and the surface unknown U are statistically independent (Uncorrelatedness Assumption)

New unknown

Page 19: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

19

Inaccurate zeroth-order approximation

Zeroth-order ApproximationZeroth-order ApproximationMatrix equation format

AU L=

(0) 1U A L−=Cause: uncorrelatedness assumption

( , ') ( ) ( , ') ( )G z z U z G z z U z≠

(0) (0)TV L U=

2( , ) d d ( , ) ( , ; , )ik i k i k i k i k i kA G z z y y P y y G y y z z= = ∫∫

Deterministic quantities

( , ')G z z

( )U z

Page 20: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

20

Primitive Second-Order CorrectionPrimitive Second-Order CorrectionImproveImprove the accuracy of the mean Vthe accuracy of the mean V

(0) (2)V V V= +Second-order

correction term(2) ( )TV trace A D−=

(0) (0)( ) ( ) ( ) ( )Tvec D A A A A U U= − ⊗ − ⊗

Zeroth-order approximation term

Limit: Also timeLimit: Also time--consumingconsuming

2 2N NF

×

Page 21: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

21

Computational BottleneckComputational BottleneckHigh dimensional infinite integration in High dimensional infinite integration in FF

iknm ik mn ik mnF A A A A= −

4d d d d ( , , , ) ( , ) ( , )ik mn i k m n i k m n i k m nA A y y y y P y y y y G y y G y y= ∫∫ ∫∫Standard technique: Gauss Hermite quadrature– Complexity grows exponentially with the integral

dimension (Curse of dimensionality)

4-D infinite integration

( )1 dimension O N− →( )44 dimension O N− →

Page 22: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

22

5 10 15 20 25 307

7.5

8

8.5

9

9.5

10

10.5

11

11.5x 10

−5

Number of quadrature points

|<A

ijAm

n>|

Gauss HermiteAccurate Value

More than 30quadrature points for 1D integration

(81000 points for 4D)

No. of Points for Gauss Hermite QuadratureNo. of Points for Gauss Hermite Quadrature

Page 23: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

23

Improved Formulation of SIE (2D case)Improved Formulation of SIE (2D case)Translation invariance of GreenTranslation invariance of Green’’s functions function

2( , ) d d P ( , ) ( , )) (2Dik i k i k i k i kA G y y y y y y G y y= = ∫∫

( , ) ( , ) (0, )i k i i d dG y y G y y y G y= + =

1dˆd P ( ) ( ) (1( ) )ˆ Dd d dik d y y G yA G y= = ∫

ˆ( , ) ( )i j dG y y G y=

PP1d 1d –– Probability density function of yProbability density function of ydd

ThusThus

Page 24: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

24

Partial Probability Density FunctionPartial Probability Density Function

2 2

2 2 22 2

2 ( ) ( )1P ( , ) exp2 (1 )2 1

i i i d i di d

y cy y y y yy yh ch cπ

⎛ ⎞− + + += −⎜ ⎟−− ⎝ ⎠

2 2

2 2 22 2

21( , ) exp2 (1 )2 1

i i k ki k

y cy y yP y yh ch cπ

⎛ ⎞− += −⎜ ⎟−− ⎝ ⎠

( ) ( )

1d 2

2

2

P ( ) d P ( , )

1 exp4 12 1

d i i i d

d

y y y y y

yh ch cπ

= +

⎛ ⎞−= ⎜ ⎟⎜ ⎟−⎝ ⎠

Page 25: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

25

Improved Formulation of SIE (4D case)Improved Formulation of SIE (4D case)

4d d d d ( , , , ) ( , ) ( , )ik mn i k m n i k m n i k m nA A y y y y P y y y y G y y G y y= ∫∫ ∫∫

1 1 1 2 1 22dˆ ˆd d P ( , ) ( ) ( )d d d d d dik mn y y y yA A G y G y= ∫∫

1 2d k i d n my y y y y y= − = −LetLet

1 2 1 2 1 22d 4P ( , ) d d P ( , , , )d d d d i i d m m dy y y y y y y y y y= + +∫WhereWhere

Page 26: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

26

ResultsResults

Page 27: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

27

Numerical VS Analytical Formulation(Different Correlation Length)

Numerical VS Analytical Formulation(Different Correlation Length)

Page 28: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

28

SIE VS MIE (Mean ρe Ratio)SIE VS MIE (Mean ρe Ratio)

Gaussian surface (σ= 1μm)

Page 29: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

29

SIE VS MIE (Mean μe Ratio)SIE VS MIE (Mean μe Ratio)

Gaussian surface (σ= 1μm)

Page 30: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

30

CPU Time Comparison (Unit: second)

CPU Time Comparison (Unit: second)

MethodMethodh /h /δδ= 1= 1 h /h /δδ= 2= 2

MIEMIE

(1500run)(1500run)7160.37160.3 14484.714484.7

SIESIE

(Original)(Original)6367.36367.3 6544.76544.7

SIESIE

(Modified)(Modified)198.7198.7 200.3200.3

(Gaussian rough surface (Gaussian rough surface ------ σσ=1=1μμm, m, ηη=1 =1 μμm)m)

32X

Page 31: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

31

Conclusion

An efficient numerical approach for modeling the impact of surface

roughness on interconnect internal impedance

Conclusion

An efficient numerical approach for modeling the impact of surface

roughness on interconnect internal impedance

Page 32: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

32

Numerical effective parameters–Model the rough surface effects on internal

impedance –Take all statistical information into account

Modified SIE method–One-pass solution for mean values–Halve infinite integral dimension by partial

PDF formulation

ConclusionConclusion

Page 33: Efficient Numerical Modeling of Random Rough Surface ... · 15 Limitations of Monte-Carlo methodLimitations of Monte-Carlo method zProbabilistic nature ––Mean value is also a

33