Efficiency of pump

download Efficiency of pump

of 13

Transcript of Efficiency of pump

  • 8/9/2019 Efficiency of pump

    1/13

    Pump ED 101

    Centrifugal Pump Efficiency What, How, Why & When ?

    Joe Evans, Ph.D http://www.pumped101.com

    IntroductionInthistutorial,wewillinvestigateseveralaspectsofcentrifugalpumpefficiency. FirstI

    willdefineefficiencyandgivesomeexamples. Nextwewillexaminesomeofthe

    designcriteriathatultimatelydictatetheefficiencyexhibitedbyaparticularpump. We

    willalsotrytomakethatsomewhatnebulasquantity,knownasspecificspeed,more

    meaningful. Iwillalsoshowitseffectontheshapeofapumpsperformanceand

    powercurves.

    Finally,

    we

    will

    discuss

    the

    importance

    of

    (or,

    sometimes,

    unimportance)

    ofefficiencyasitrelatestoaparticularapplicationorprocess. Wewillalsoillustrate

    therelationshipofefficiency,head,andflowastheyapplytobothsteepandflat

    performancecurvesandtheirrolesinconstantandvariablespeedapplications. Wewill

    endwithabrieflookatthecombinedefficiencyofapumpanditsdriver.

    WhatisPumpEfficiency?Whenwespeakoftheefficiencyofaanymachinewearesimplyreferringtohowwell

    it

    can

    convert

    one

    form

    of

    energy

    into

    another.

    If

    one

    unit

    of

    energy

    is

    supplied

    to

    a

    machineanditsoutput,inthesameunits,isonehalfunititsefficiencyis50%. As

    simpleasthismayseem,itcanstillgetabitcomplexbecausetheunitsusedbyour

    Englishsystemofmeasurementcanbequitedifferentforeachformofenergy.

    Fortunately,theuseofconstantswillbringequivalencytothese,otherwise,diverse

    quantities.

    Acommonexampleofsuchamachineistheheatenginewhichusesenergyinthe

    formofheattoproducemechanicalenergy. Thisfamilyincludesmanymembersbut,

    theinternalcombustionengineisonewithwhichweareallfamiliar. Althoughthis

    machineis

    an

    integral

    part

    of

    our

    every

    day

    lives,

    its

    effectiveness

    in

    converting

    energy

    isfarlessthanwemightexpect. Theefficiencyofthetypicalautomobileengineis

    around20%. Toputitanotherway,80%oftheheatenergyinagallonofgasolinedoes

    nousefulwork. Althoughgasmileagehasincreased,somewhat,overtheyearsthat

    increasehasasmuchtodowithincreasedmechanicalefficiencyasincreasesinengine

    efficiencyitself. Dieselenginesdobetterjob,butstillmaxoutaround40%. This

    increaseisdue,primarily,toitshighercompressionratioandthefactthatthefuel,

    mailto:[email protected]://www.pumped101.com/http://www.pumped101.com/mailto:[email protected]
  • 8/9/2019 Efficiency of pump

    2/13

    underhighpressure,isinjecteddirectlyintothecylinderatthetopofthecompression

    stroke. Gasolineengines,ontheotherhand,arelimitedtolowercompressionratios

    becausefuelentersthecylinderpriortothecompressionstroke.

    Inthepumpindustry,muchourwork involvestwoextremelysimple,yetefficient

    machines

    the

    centrifugal

    pump

    and

    the

    AC

    induction

    motor.

    The

    centrifugal

    pump

    convertsmechanicalenergyintohydraulic(flow,velocity,andpressure)energyandthe

    ACmotorconvertselectricalenergyintomechanicalenergy. Manymediumandlarger

    centrifugalsofferefficienciesof7590%andeventhesmalleronesusuallyfallintothe

    5070%range. LargeACmotors,ontheotherhand,canapproachanefficiencyof97%

    andanymotor,fivehpandabove,canbedesignedtobreakthe90%barrier.

    Theoverallefficiencyofacentrifugalpumpissimplytheratioofthewater(output)

    powertotheshaft(input)powerandisillustratedbytheequationbelow.

    =PW/PS whereisefficiency,Pwisthewaterpower,andPsistheshaftpower.

    IntheUS,PsisthepowerprovidedtothepumpshaftinbrakehorsepowerandPwis

    Pw=(QxH)/3960 whereQisflowinGPMandHisheadinfeet.

    Theconstant,3960,convertstheproductofflowandhead(footpoundsorthemore

    politicallycorrecttermpoundfeet)intoBHP. Theseequationspredictthatapump,that

    produces100GPMat30ofheadandispoweredbyamotorthatproduces1BHPwill

    haveanoverallefficiencyis75.7%atthatpoint. Thesecondequationwillalsoallowus

    tocomputetheBHPrequiredatanypointonapumpsperformancecurveifweknow

    theefficiency. Wewillseesomeexamplesofthisinthelastsectionofthistutorial.

    HowisPumpEfficiencyAttained ?Ifyouthinkaboutit,thecentrifugalpumphasalotincommontheinductionmotor

    whenitcomestothedesignphase. Thatcommonalityisthatbothhaveonlytwomajor

    componentsthatcanbemodifiedbythedesigner. Inthecaseofthemotoritistherotor

    andthestatorandforthepumpitistheimpellerandthevolute(ordiffuser). Ofcourse

    thefrictionproducedbybearingsandothermechanicalcomponents(seals,stuffingbox,

    etc)also

    affect

    pump

    efficiency,

    but

    the

    impeller

    and

    volute

    have

    the

    greatest

    influence.

    Letsstartourinvestigationofcentrifugalpumpefficiencywiththeimpeller.

    Thelawsofaffinitytellusquiteabitabouttheinnerworkingsofanimpeller. We

    knowthat,foranygivenimpeller,theheaditproducesvariesasthesquareofachange

    inspeed. Doublethespeedandtheheadincreasesbyafactoroffour. Ifyoukeep

    speedconstant,thesameruleholdstrueforachangeinitsdiameter. Theflowthrough

    animpellerfollowsasimilarrulebut,inthiscase,itschangeisdirectlyproportionalto

  • 8/9/2019 Efficiency of pump

    3/13

    thespeedordiameterchange doublethespeedordiameterandflowisdoubled.

    Actually,whenwetalkaboutachangeinrotationalspeedorimpellerdiameter,weare

    reallyreferringtoitsperipheralspeedorthespeed,infeetpersecond,ofapointonits

    outermostcircumference. Itisthisspeedthatdeterminestheabsolutemaximumhead

    andflowattainablebyanyimpeller(seetheUPandDownPuzzlerforanexplanation

    of

    the

    falling

    body

    equation

    and

    how

    it

    relates

    to

    centrifugal

    pump

    head).

    Theheadproducedbyanimpellerisalmostentirelydependentuponitsperipheral

    velocitybut,flowisinfluencedbyseveralotherfactors. Obviously,thewidthand

    depth(crosssectionalarea)oftheflowpassages(vanes)andthediameterofthe

    impellereyeareimportantconsiderationsastheydeterminetheeasewithwhichsome

    volumeofwatercanpassthroughtheimpeller. Otherfactorssuchasvaneshapealso

    influenceanimpellersperformance. But,ifyouwantedtodesignanimpellerfrom

    scratchwheretheheckdoyoustart? Doyoujusttakeawildguessaboutdimensions

    andshapes,makesomesamples,andthentestthem? Well,intheearlydaysthatis

    exactlywhat

    we

    did.

    Today,

    however,

    we

    can

    draw

    on

    years

    of

    experience

    and,

    at

    least,

    findasuitablestartingpointforourdesign. And,thatstartingpointissomethingcalled

    SpecificSpeed.

    SpecificSpeedisoftenconfusingtomanyofusbecausewhenweseethewordspeed,

    weimmediatelythinkimpellerspeed. Actually,itisjustanumber(often

    dimensionlessliketheReynoldsnumberwhichisusedtopredictturbulentflow)that

    referstoaparticularimpellerdesignorgeometrywithoutrespecttoitssize(capacity).

    Itusestheknowledgewehavegainedovertheyearstocategorizetheperformanceof

    variousimpeller

    designs

    based

    upon

    our

    application

    requirements.

    The

    chart

    below

    showstherelationshipofthenumericalvalueofspecificspeedtoaparticularimpeller

    design.

    Thelowervalues(500to1000)ontheleftdescribethechanginggeometryoftheradial

    vaneimpellerwhilethehighervalues(1000015000)ontherightequatetotrueaxial

  • 8/9/2019 Efficiency of pump

    4/13

    flowimpellers. Thoseinthemiddle(15007000)aretypicaloftheFrancisvaneand

    mixedflow(whichshowbothradialandaxialcharacteristics)impellers. Thecross

    sectionalpicturesonthechartshowthat,asspecificspeedincreases,theimpellerinlet

    oreyediameterincreasesandeventuallyapproachesorequalsthatofthevaneoutlet.

    Theflowpassagesalsoincreaseinsizeatacorrespondingrate.

    Ithinkyouwillagreethatwhilethisisanicecomparison,whatuseisittothepump

    designer? Well,therehappenstobeanequationthatrelatesspecificspeedandits

    correspondinggeometrytothoserealapplicationvaluesofhead,flow,androtational

    speed. Thatequationis

    Ns=nxQ/H0.75

    whereNsisthespecificspeed,nisthepumprotationalspeedinRPM,Qisflowin

    GPM,andHisheadinfeet. Wecanusethisequationtodeterminewhichimpeller

    designcanbestmatchtherequirementsofaparticularapplication.

    Suppose,forexample,weneedanimpellerthatwillproduce1000GPMat200feetof

    head. IfweenterthesevaluesinQandHandalsoenteramotorspeedof3600rpmwe

    obtainaspecificspeedof2140. Theimpellerwouldhaveageometrysimilartothe

    Francisvaneimpellerseenonthechartatthe2000point. An1800rpmmotorwould

    lowerthespecificspeedto1070andwouldhaveageometrysimilartotheradialvane

    impellershownbeneaththe1000point. At1200rpmspecificspeedis714andthe

    impellerwouldlooklikeahybridofthetwoimpellersseentotheleftofthechart.

    The

    chart

    below

    shows

    illustrates

    how

    specific

    speed

    can

    provide

    us

    with

    several

    predictionsastotheperformanceofaparticularimpellerdesign. Asaruleofthumb,

    impellerefficiencyreachesitsmaximumataspecificspeedbetween2000and3000

    althoughfavorableefficiencycanoccuratalmostanyspeed. Alsotheareaaroundthe

    BestEfficiencyPoint(BEP),ordesignpoint,tendstobeflatterandbroaderasspecific

  • 8/9/2019 Efficiency of pump

    5/13

    speeddecreases. (Impellerefficiencyalsoincreaseswithpumprotationalspeed,

    especiallyhighspeeds,butthatincreaseisnotaspronouncedatspeedsof3600rpmand

    below.) Specificspeedalsoeffectstheshapeoftheheadcapacitycurve. Lowspecific

    speeds(5002000)producerelativelyflatcurveswhilehighspeeds(5000+)produce

    extremelysteepcurves. Intermediatespeedsproducecurvesthatfallinbetweenthese

    extremes.

    These

    results

    are

    due

    to

    the

    vane

    shape

    (flat

    versus

    backwards

    curved)

    at

    variousspecificspeeds. (Wewilldiscusscurveshapeinmoredetailinthenextsection.)

    Finally,specificspeedprovidesuswithonemoreprediction thecharacteristicsofthe

    powercurve. Atspecificspeedsbelow3500,powerdropsasflowisreducedandisat

    itsminimumatshutoffhead. Thepowercurveremainsrelativelyflat,acrosstheentire

    headcapacitycurve,between4000and4500andrisestowardsshutoffatspecific

    speedsabove5000. Atspeedsabove9000thepowerandheadcapacitycurvesalmost

    paralleloneanother. Stateddifferently,powerisgreatestatshutoffandisatits

    minimumatfullflow.

    Oncea

    particular

    impeller

    geometry

    is

    chosen,

    the

    pump

    designer

    can

    go

    through

    a

    comprehensivemathematicalanalysisthatwillallowhimtoderivealloftheimpeller

    dimensionsandanglesnecessarytomeetthedesignpoint. Tosaytheleast,thisisan

    arduoustask. Ifyouwouldliketoreviewacomprehensiveexampleofhowthisis

    done,seepages2.23 2.31ofthesecondeditionofPumpHandbook(McGrawHill).

    Theshapeandspacingoftheimpellervanesobviouslyhavealargeeffectupon

    efficiency. Althoughtheidealpumpwouldhaveaninfinitenumberofvanes,thereal

    worldlimitsusto57fortypicalpumpsandevenfewerforpumpsthathandlelarger

    solids.Also,

    flow

    would

    be

    exactly

    parallel

    to

    the

    vane

    surfaces

    but

    that

    doesnt

    happeneither. Butoddlyenough,ifthedesignerfollowssomewelldocumentedrules,

    impellervaneefficiencylossesremainrelativelyflat(about2.5%)acrossaspecificspeed

    rangeof500to7000. Diskfriction,whichiscausedbycontactbetweenthepumpage

    andtheimpellershroudsandhubsurfaces,canreduceimpellerefficiencyanother4to

    15%atspecificspeedsbelow2000butdecreasesto2%orlessat3000andabove. So,

    dependinguponitsdesign,theimpellercanreduceoverallpumpefficiencybyaslittle

    as4.5%orasmuchas17.5%.

    Tongue

    Throat

    Area

    Thevolutealsoplaysaroleinpumpefficiency. Atspecific

    speedsbelow

    2000,

    its

    losses

    range

    from

    1

    to

    2.5%

    but

    losses

    can

    approach10%atspeedsover5000. Typically,volutedesign

    beginswiththethroat,asitscrosssectionalareawilldetermine

    theflowvelocityoutofthevolute. Flowthroughthethroatand

    otherportionsofthecasingfollowsthelawofconstantangular

    momentumsothedesignerwilltrytoavoidabruptchangesits

    nearlycirculargeometrywhilegraduallyincreasingitsvolume.

  • 8/9/2019 Efficiency of pump

    6/13

    Anothercriticalareaofthevoluteistheclearancebetweentheoutercircumferenceof

    theimpellerandthatofthevolutetongueorcutwater. Asthisdistancebecomeslarger,

    anincreasingvolumeofpumpageescapesentryintothevolutethroatandis

    recirculatedintothevolutecase. Thesmallestdistancepossible,thatdoesnotgiverise

    topressurepulsations,willproducethebestefficiency. Asaruleofthumb,5to10%of

    the

    impeller

    radius

    tends

    to

    be

    a

    safe

    value.

    In

    the

    next

    section

    we

    will

    discuss

    this

    in

    moredetailwhenwecomparetheefficienciesthatresultfromtrimminganimpeller

    versuschangingitsrotationalspeed.

    Itisdebatableastowhetherthevolumetricefficiencyofacentrifugalpumpisa

    functionofthevoluteortheimpeller(itisprobablyboth)butIwillincludeitseffect

    here. Volumetricefficiencyrepresentsthepowerlostdueleakageflowthroughthe

    wearrings,vanefrontclearances(semiopenimpeller),andbalancingholesintherear

    shroudofanimpeller. Asaruleofthumb,leakageincreaseswithadecreaseinspecific

    speed,flow,oracombinationofthetwo. Forexampleataspecificspeedof500anda

    flowof

    100

    GPM,

    leakage

    can

    account

    for

    as

    much

    as

    7%

    of

    the

    total

    power

    consumed.

    At2000GPMitisreducedtoabout2%. Athigherspecificspeedsandflowsitcanbeas

    lowas1%.

    Thefinalpieceofthepumpefficiencypuzzleisthatofmechanicallosses,although

    someoftheselossesarenotalwaysincludedinpublishedefficiencycurves. Inthecase

    ofaframemountedpump,theselossesarecausedbytheshaftbearingsandthe

    mechanicalsealorpacking. Forclosecoupledpumps,bearinglossesarefiguredinto

    themotorefficiency. Againtheruleofthumbfollowsthatofvolumetricefficiency,and

    lossesincrease

    as

    flow

    and

    /or

    specific

    speed

    decrease.

    If

    we

    use

    the

    same

    values

    of

    specificspeedandflow,asinthevolumetricexampleabove,wecouldexpectlossesof

    5%and1%foraframemountedpump. Athigherspecificspeedsandflows,

    mechanicallossesdropwellbelow1%.

    WhyandWhenisEfficiencyImportant?OK,nowweareallonthesamepageastothedefinitionofpumpefficiencyandwe

    havesomeideaofthepumpdesignersabilitytocontrolefficiencyduringthedesign

    phase. But,isitthemostimportantcomponentinpumpdesign? Shouldwealways

    shootfor

    the

    best

    possible

    efficiency

    when

    we

    design

    a

    pump?

    Theimportanceofpumpefficiencyisentirelyrelatedtotheuseofenergy. Asthecost

    ofelectricityandotherenergysourcescontinuetorise,itjustmakesgoodsensethatwe

    useitasefficientlyaspossible. Wheneverpossible,weshouldselectthemostefficient

    pumpavailableasitwillusuallyjustifyits,potentiallyhigher,firstcostduringitsuseful

    life. NoticethatIdidsaywheneverpossible.

  • 8/9/2019 Efficiency of pump

    7/13

    Whenisitnotsoimportant?

    Severalfactorscaninfluenceourdecisionabouttheimportanceofpumpefficiency.

    Sometimesitispurelyeconomic themarketmaynotbewillingtopaythepricefor

    higher

    efficiency.

    There

    are

    also

    times

    when

    a

    higher

    efficiency

    pump

    may

    not

    perform

    aswellasoneoflowerefficiency. And,thereareinstanceswherewejustcannotattain

    areasonableefficiencybasedontheheadandflowrequired. Letstakealookatseveral

    examples.

    Agoodexampleoftheroleofeconomicsistheresidentialpump. Theefficiencyofmost

    fractionalHPdomesticboosterandcirculationpumpsfallsintothe50%range(Their

    motorsarenotmuchbetter,butwewilladdressthatalittlelater). Thesepumpscanbe

    designedtooperateathigherefficienciesbut,thecostwouldscaremosthomeowners

    away. And,iftheyareusedonlyoccasionally,theenergysavingsmaynotjustifythe

    additionalcost.

    Unfortunatelythis,lowfirstcost,mindsetoftenspillsoverintosectorsthatcouldeasily

    justifybetterefficiency(certainsectorsoftheHVACmarketcometomind). For

    example,atypical,lowcostpumpwillnotincorporatesuctionwearringsand,as

    wearprogresses,moreandmoresuctionrecirculationoccursandefficiencydecreases.

    Theonlywaytofixthisistoreplacetheimpellerandpossiblythevolute. Incorporation

    ofsimple,flatwearringsintothevoluteandtheimpelleraddsonlyafewpercentage

    pointstothepumpcostbutallowslowercostefficiencymaintenanceasitisneeded.

    Small,twoportimpellersewagepumpsmustsacrificeacertainamountofefficiency

    inordertopasssolidswithoutclogging. Athreeorfourvaneimpellerwouldprovide

    farbetterefficiencybutthesizeofthesoliditpassedwouldbegreatlyreduced

    comparedtoatwovaneimpeller. Inthiscase,efficiencybecomessecondarytothe

    requirementsoftheapplication. Therecessedimpellersewagepumpalsoofferssome

    realadvantagesincertaininstallations,butisregardedbymanyasapoorchoice

    becauseofitsverylowefficiency(3550%). Itusesatwostepprocess(theimpeller

    createsavortexandthevortexcreatesflow)thatwastesquiteabitofenergybut,itwill

    passstringymaterialandlargerdiametersolidsthantwovanepumpsofequivalent

    size.In

    a

    small,

    commercial

    or

    municipal

    application

    (say

    5

    10

    HP)

    which

    is

    more

    costly wasting15 20%moreenergyinthecaseofthevortexpumportheweekly

    expenseofpullingastandardpumpforcleaning?

    Finally,thereareapplicationdesignpointswherereasonableefficiencycannotbe

    attainedbutapumpisstillrequired. Supposesomemilliondollarprocesslinecannot

    useapositivedisplacementpumpbut,instead,requiresacentrifugalpumpthatcan

  • 8/9/2019 Efficiency of pump

    8/13

    deliver20GPMat3000ofhead. Wouldwereallycareifasinglestagepumphadtobe

    drivenat23,000rpmandthatitsefficiencywaslessthan25%? Probablynot,andthere

    arefarmoreofthesetypesofapplicationsthanyoumightsuspect.

    Whenisitimportant?

    Themajorityofmunicipalandcommercial,clearwater,applicationsarenotrestricted

    bythelimitationsoutlinedaboveandthesepumpsshouldbeselectedwithefficiencyin

    mind. Ifapumpisgoingtooperateataconstantflowandhead,itshouldbeselectedto

    operateasclosetoitsBEPaspossible. Anexampleofthistypeofapplicationwouldbe

    apumpthatfeedsamunicipalwatertank. Sinceelevationandpipelinefrictionremain

    constant,thepumpcanbesizedtomeetitsrequirementatthebestpossibleefficiency.

    But,notallpumpingapplicationshaveaconstantflowandtheshapeofthe

    performancecurvecanoftenbeasimportantasBEPitself. Anexampleofthistypeof

    applicationis

    the

    constant

    speed

    booster

    pump.

    In

    these

    applications,

    a

    pressure

    reducingvalve(PRV)throttlesthepumpwhendemanddecreasesinordertomaintain

    someconstantpressure. Pressureonthepumpsideofthevalvefollowsthe

    performancecurvepressurewhileapreset,constantpressureismaintainedonthe

    dischargesideofthevalve. Whatpumpdesignbestfitsthisapplication?

    Thechartbelowshowstheperformancecurveforapumpthatcouldbeusedinthe

    boosterapplicationdescribedabove. Theapplicationcallsforapumpthatcanprovide

    aconstantpressureboostof130overaflowrangeof100to300GPM. Thenumber

    aboveeach

    of

    the

    flow

    points

    on

    the

    performance

    curve

    is

    the

    BHP

    required

    at

    that

    Constant Speed Pump 1

    15.2

    14.3

    13.7

    12.4

    11.1

    9.99.0

    80

    105

    130

    155

    180

    205

    230

    0 50 100 150 200 250 300 350 400

    Gallons Per Minute

    Head

    in

    feet

    pointandtheredlineisthedesiredsystempressure. TheBHPrequiredtooperatethis

  • 8/9/2019 Efficiency of pump

    9/13

  • 8/9/2019 Efficiency of pump

    10/13

    Asyoureviewvariouspumpcurvesfortheirfitinaconstantspeedboosterapplication,

    youwillnoticeanotherefficiencytrait. Theefficiencies

    oneithersideofBEParemorestableforsomepumps

    thanothers. Forexample,aparticularpumpwithaBEP

    of77%at400GPMisabletomaintain70%efficiency

    over

    a

    range

    of

    250

    to

    550

    GPM.

    Another

    pump,

    with

    a

    similarBEP,maydropbelow70%muchmorequickly.

    ThechangeinefficiencyaroundBEPhasalot todowith

    theimpellersvaneangleatitsentrance. AtBEP,flowis

    nearlyparallelwiththevanebut,asflowincreasesor

    decreasesitsentranceangleintothevanealsochanges.

    Smallchangesintheentranceangledesigncanaffect

    bothBEPandtheefficiencyvaluesoneitherside. The

    figureontherightshowshowtheentryanglechangesundervariousflowconditions.

    BEP HIGH

    LOW

    Now,suppose

    that

    these

    same

    two

    pumps

    were

    candidates

    for

    installation

    in

    a

    variable

    speedboostersystem(SeeVariableFrequency101ifyouarenotfamiliarwithVFD

    operation). Wouldourfinalselectionbedifferent? Thechartbelowshowstheresults

    whenPump2isoperatedunderVariableFrequencycontrol. Theheadrisefromfull

    flowtoshutoffisabout15%andwouldallowjusta4Hzreductioninspeedifweareto

    maintainaconstantpressureof130. Unfortunately,thisreductionisnotnearlyenough

    toachieveareasonablepowersavingsoverthatoftheconstantspeedbooster. At

    VFD Control Pump 2

    1714

    1211976

    1311

    108765

    108

    76544

    0

    50

    100

    150

    200

    250

    0 50 100 150 200 250 300 350 400

    Gallons Per Minute

    Head

    in

    feet

    60hz

    55hz

    50hz

    System

    flowsof200and100GPMpowersavingswouldbejust2and1HPrespectively. Also,

  • 8/9/2019 Efficiency of pump

    11/13

    thislimitedfrequencyrangewouldnotallowprecisecontrolofthepumpoveritsrather

    broadflowrangeandasignificantamountoffrequencyhuntingcouldoccur.

    But,Pump1hasaheadrisetoshutoffthatismuchgreaterandwhenoperatedunder

    VFDcontrol(shownbelow)itcanperformquitewell. From100GPMtofullflowitwill

    operate

    over

    a

    range

    of

    47

    to

    60

    hz

    and

    the

    power

    savings

    at

    each

    reduced

    flow

    point

    is

    significantlygreaterthanthatofPump2runningatconstantorevenvariablespeed.

    Variablespeedoperationoffersanadditionalbenefit. Theunbalancedhydraulicforces

    thatexistatlowerflowsintheconstantspeedboosteraregreatlyreduced. Sothesteep

    curveloosestotheflatcurvewheninstalledinconstantspeedboostersbutwinsina

    variablespeedapplication. Keepthisinmind whenevaluatingpumpsforbooster

    applications.

    VFD Control Pump 1

    910

    11

    12

    14

    14

    15

    78

    9

    10

    11

    11

    12

    5 66

    7

    8

    8

    9

    4 45

    56

    66

    0

    50

    100

    150

    200

    250

    0 50 100 150 200 250 300 350 400

    Gallons Per Minute

    Head

    in

    feet

    60hz55hz50hz45hzSystem

    Thereis,however,avariablespeedapplicationwhereflatcurvesexcel. Closedloop

    circulationisaverycommonapplicationintheHVACmarket. Intheseapplicationsthe

    pump

    sees

    no

    head

    due

    to

    elevation

    and

    all

    it

    has

    to

    overcome

    is

    the

    friction

    in

    the

    loop.

    Asflowisreduced,headduetofrictiontendstofallquicklyandpumpspeedcanbe

    greatlyreduced.

    Thechartonthefollowingpageshowstheenergysavingsthatcanbeattainedby

    utilizingflatcurvesinclosedloopapplications. Thesystemcurve(inred)showsthat

    thefrictioninthelooprangesfromabout55at1400GPMtoabout15at700GPM.

    Thisequatestoaspeedrangeof60to31hertzandresultsinapowersavingsof

  • 8/9/2019 Efficiency of pump

    12/13

    Closed Loop VFD Controlled

    2

    5

    11

    19

    29.7

    41.7

    55

    70

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0

    Gallons Per Minute

    Head

    in

    Ft

    60hz

    55hz

    50hz

    45hz

    40hz

    35hz

    30hz

    System3.1 hp 86% 31 hz

    22.4 hp 87% 60 hz

    8.6 hp 86% 44 hz

    approximately86%attheminimumflowof700GPM. Allpointsinbetweenshowa

    similarsavings.

    Anothercentrifugalpumpefficiencytraitisillustratedbythisclosedloopexample.

    Notice

    that

    the

    efficiency

    at

    700

    GPM

    is

    only

    1%

    less

    than

    that

    of

    the

    true

    BEP

    at

    1400

    GPM. Whenthespeedofacentrifugalpumpisreduceditsefficiency,atanycapacity

    pointonthe60hertzperformancecurve,followsthatcapacityatthelowerspeed. In

    otherwords,efficiencymovestotheleftwithcapacityasspeedisreduced. Thisalso

    occursinconstantpressurevariableflowapplicationsbutitismoreapparentin

    applicationswherebothheadandflowarevariable.

    Toacertainextent,wewillseethesameresultwhenanimpelleristrimmed

    efficiencywillmovetotheleftwithcapacity. But,atsomepoint,thedistancebetween

    theimpellerperipheryandthecutwatercausesunacceptablerecirculationand

    efficiencybegins

    to

    drop.

    Although

    small

    impeller

    trims

    can

    be

    effective,

    a

    change

    in

    rotationalspeedisthemostefficientmeansofchangingapumpscapacityandhead.

    And,itforthisreasonthatvariablespeedpumpingsystemswillcontinuetoevolve.

    CombinedEfficiency

    Finally,letstakealookatsomethingIcallcombinedefficiencyasitisprobablymore

    importantthanpumpefficiencyalone. Idefinethisefficiencyasthecombinationofthe

  • 8/9/2019 Efficiency of pump

    13/13

    hydraulicefficiencyofthepumpandthemechanical,heat,orelectricalefficiencyofthe

    devicethatisdrivingit. Inthecaseofanelectricmotordrivenpump,itiscalledthe

    wiretowaterefficiencyandreferstohowwellthetwomachinesworktogetherto

    producehydraulicenergyfromelectricalenergy. Thereasoncombinedefficiencyisso

    importanthastodowiththemathematicalrelationshipbetweenthetwoindividual

    efficiencies.

    SupposewehaveapumpwithaBEPof80%thatisdrivenbyamotorwithan

    efficiencyof90%. Ifyouweretoasktheaveragepersontocalculatethecombined

    efficiencyofthetwomachinestheywouldtypicallyaddthetwoefficienciestogether,

    dividebytwo,andgiveyouananswerof85%. Ifthisweretrue,combinedefficiency

    wouldbeanonissuebutunfortunately, itisnottheaveragebuttheproductofthetwo

    efficiencies. Individually,90%and80%lookprettydarngoodbutwhenyoumultiply

    onebytheother,theresultingefficiencydropsto72%! Still,overthelifeofan

    installation,arelativelysmallincreaseinthecombinedefficiencycanmakeabig

    differencein

    energy

    costs.

    TheComprehensiveEnergyPolicyAct(EPACT),thatbecamelawin1997,setsome

    minimumefficienciesforgeneralpurposemotorsfrom1200HPandspeedsof1200

    3600RPM. Higherhorsepower,lowerspeed,anddefinitepurposemotorswerenot

    requiredtomeettheseminimumefficiencies. Interestinglyenough,oneofthese

    definitepurposemotorsistheclosecoupledpump(CCP)motor. Thesemotorsare

    someofthemostcommonpumpdriversinuseandwhytheywereexcluded,Idonot

    know. Theirunregulated,efficienciesrangefrom80%at3HPtoabout89%at30HP.

    Mostmanufacturers

    do,

    however,

    offer

    higher

    efficiency

    models

    that

    range

    from

    86

    to

    94%overthesameHPrangeandtheirusecanmakeabigdifferenceinpumpenergy

    consumptionovertime.

    Youcouldprobablymakeaprettygoodcasethatpumpefficiencyisnottooimportant

    ifthepumpistobedrivenbyagasolineengine. Althoughan80%efficientpump

    shouldsavequiteabitofenergyoveronethatis65%efficient,thegasengine

    (approximately20%)bringstheirtotalsdownto16%and13%respectively. Itmaybe

    hardtojustifyahigherinitialpumpcostforsuchasmallenergysavings,unlessthe

    pumpisusedfrequentlyandforlongperiodsoftime.

    JoeEvans November2005