Effects of Grounding Configurations on Post-Contingency Performance of MTDC system: A 3-Terminal...

17
www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 1/15 50th International Universities Power Engineering Conference (UPEC 2015)September 1st - 4th, 2015 | Staffordshire University, UK All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2008-2015. http:www.fglongatt.org Dr Francisco M. Gonzalez-Longatt* Prof. M.A.M.M. van der Meijden Dr Jose Luis Rueda

Transcript of Effects of Grounding Configurations on Post-Contingency Performance of MTDC system: A 3-Terminal...

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 1/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

Dr Francisco M. Gonzalez-Longatt*

Prof. M.A.M.M. van der Meijden

Dr Jose Luis Rueda

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 2/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• The power injections (Pi)in a DC grid are controlledby the converters.

• On a MTDC grid asSupergrid, the power flowinto, or out of, eachconverter can bedynamically changedwithout anyreconfiguration of theHVDC grid.

• The objective of thispaper is to establish theeffects of groundingconfigurations on steady-state post-contingencyperformance of multi-Terminal HVDC System.

Created by Dr. F. Gonzalez-Longatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 3/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

Idc

U1

Idc

b. Metallic Returna. Ground Return Idc

c. Symmetric configuration

U2

+

- +

-

+

- +

-U1 U2

U1 U2

Idc

a. Ground ReturnIdc

2Idc

Idc

Idc

2Idc

b. Metallic Return

U1

+

-

+

-

+

-+

-U1

U2

U2

U1

+

-

+

-U1

U2

U2

+

-

+

-

Idc

a. Ground ReturnIdc

Idc

Idc

b. Metallic return

U1

+

-

+

-U1

+

-

+

-

+

-

+

-

+

-

+

-

U2

U2

U1

U1

U2

U2

Idc

+

-Udc

Monopole configurations

Homopolar configurations

Bipolar configurationsBack-to-Back configuration

@fglongatt

@fglongatt

@fglongatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 4/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

MTDC configuration:

series or parallel

MTDC parallel configuration:

radial or meshed

I1

I2

I3

I4

I1 + I2 + I3+ I4 = 0

U1

U2

U3

U4

U1 + U2 + U3 + U4 = 0

Idc

b. Series MTDCa. Parallel MTDC

+ -Udc

+

-

+-

+

-+-

IdcIdc

Idc

+ -Udc

I1

Udc

+

-

+

-

+

-

+

-

I3

I2 I4

Udc

Udc

Udc

Ixy

y

x

x

+

-Udc

+

-

+

-

+

-

Udc

I1 I3

I4+

-

UxI2

I4

b. Mesh configurationa. Radial configuration

@fglongatt

@fglongatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 5/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• System Configuration:

• A simple MTDC test system is used in this paper for demonstrativespurposes:3-terminal, ±200kVdc, VSC-HVDC.

• Network Model: DC cable between two nodes (e.g. i and j) arerepresented using a single series resistor Rij. DC side of converter stationsare modelled by an ideal dependant voltage source and ideal ground isrepresented as an ideal point where voltages is zero. All electricalquantities are represented using per unit systems. The mathematicmodelling of some grounding configuration of MTDC systems arepresented here.

GSC1

N1

GSC2

N2

N3

WFC1

PWF1 = 0.80 p.u

WF1

AC1

AC2R

12 =

0.0

.073

Test system:

Values of resistors Rij are shown in

p.u

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 6/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• Network Model:

Test system: Circuital representation

of monopole ideal ground return

2(+)R12

R23

R13

1(+)3(+)

U2

U1

U3

+-

+-

1(0)

2(0)

3(0)

+-

( ) (0)

1 1 1

( ) (0)

2 2 2

( ) (0)

3 3 3

U U U

U U U

U U U

The converter voltage (Ui) can be expressed

in terms of the terminal potentials:

Ui(+) represents electrical potential of the

transmission terminal and Ui(0) is used to define

potential of the neutral terminal.

For this specific case, monopolar configuration

with ideal ground return, the voltage at the neutral

point (0) is connected to ideal ground where the

electric potential is assumed zero, U(0) = 0, as

consequence: U(0) = U.

( ) (0) U U U

@fglongatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 7/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

The current injected (Ii) is written into a matrix form using the conductance matrix (G) of

the DC grid can be used:

( )

1 11 12 13 1

( )

2 21 22 23 2

( )

3 31 32 33 3

I G G G U

I G G G U

I G G G U

( )I GU I GU

where the DC current vector I = [I,1, I2, ...,Idc,ndc]T, U = [U1, U2, ...,Undc]

T is the DC voltage

vector and G is also known as the DC nodal admittance matrix (Gij, i, j = 1, …ndc).

The current injections I are not known prior to the power flow solution for the DC network.

The vector P = [P1, P2, ...,Pndc]T, which refers to power flow into the DC grid via the DC

terminals, is given by

where the symbol is entry-wise (point-to-point) matrix multiplication operator.

Equation is known as the power balance equation and it can be solved in order to obtain

the classical power flow solution of the MTDC system.

I = GU

P = U GU

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 8/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

2(+)R12

R23

R13

1(+)3(+)

U2

U1

U3

+-

+-

Rgnd1

1(0)

2(0)

Rgnd2

Rgnd3

3(0)

+-

Test system: Circuital representation

of monopole with real ground return

(Rgndi).

The potential of the neutral points (0) are calculated

based on the grounding resistors (Rgndi):

(0)

1 1 1

(0)

2 2 2

(0)

3 3 3

0 0

0 0

0 0

gnd

gnd

gnd

U R I

U R I

U R I

( )

1 1 1 1

( )

2 2 2 2

( )

3 3 3 3

0 0

0 0

0 0

gnd

gnd

gnd

U U R I

U U R I

U U R I

( ) (0)

1 1 1

( ) (0)

2 2 2

( ) (0)

3 3 3

U U U

U U U

U U U

(0) gndU R I

( ) gndU U R I

@fglongatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 9/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

( )

1 1 1 1

( )

2 2 2 2

( )

3 3 3 3

0 0

0 0

0 0

gnd

gnd

gnd

U U R I

U U R I

U U R I

( ) gndU U R I

1 1( )

gnd gnd

I R U R U( ) gndU U R IThe conductance matrix (G)

( )I GU( ) 1 U G I

1 11

gnd gnd

I R G I R U

1 11

gnd gnd

ones R G I R U

11 1

1

gnd gnd

I ones R G R UFinally the power balance

equations for this configuration

is described by:

11 1

1

gnd gndP = U ones R G R U

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 10/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

The power balance equations of other grounding configuration are created using the same

mathematical procedure presented before.

2(+)R12

2(-)

R23

R13

1(+)

1(-)

3(+)

3(-)

R12R23

R13

U2

U1

U3

+-

+-

+-

U1+-

+-

+-

U3

U2

Rgnd1

1(0)

3(0)

2(0)Rgnd2

Rgnd3

2(+)R12

2(-)

R23

R13

1(+)

1(-)

3(+)

3(-)

R12R23

R13

U2

U1

U3

+-

+-

+-

U1+-

+-

+-

U3

U21(0)

3(0)

2(0)

Test system: Circuital representation: Bipolar

ground return

Test system: Circuital

representation: Bipolar Metallic

return

@fglongatt

@fglongatt

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 11/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• The steady-state performance of a MTDC system is described bythe power flow, it is be described by a set of nonlinear algebraicequations:

• where G is the set of algebraic equations define the power-balanceat network nodes as shown in previous Sections, and X is statevector and Y is the vector of independent variable and Z is a vectorof control variables.

Bound constraints:

, , G X Y Z 0

min maxiU U U

Nonlinear equality constraints:

Inverter

mode

Umax

DC

volt

age,

Ud

c

Umin

Pmax0-Pmax

Uref

Rectifier

mode

DC Power, Pdc 1

dc ref ref dc

DC

U U P PR

Linear inequalities:

max

conv dc dc convI = Y U I

Power Balance Equations

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 12/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• VSC-HVDC terminals:

• Constant power control mode on the wind farm converter station(P3)

• DC voltage droop control on the grid side converter stations (U1

and U2, DC1 = 0.0005 and DC2 = 0.0002 p.u/MW), thus enablingN-1 security.

GSC1

N1

GSC2

N2

N3

WFC1

PWF1 = 0.80 p.u

WF1

AC1

AC2R

12 =

0.0

.073

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 13/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

A MATLAB® R2014a (64-bit) program (m-file) has been developed for this very

specific propose. Interior-point algorithm is used to solve the optimization problem in

this paper. Bound constraints are considered in all simulations in order to ensure a secure

system operation (0.90 < Udc < 1.10 p.u).

Numerical results of N-1 contingency analysis in DIgSILENT PowerFactory v15.2.4 are

used for comparative purposes.

(Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3).

1dc(+)

2dc(-)

3dc(-)

2dc(+)

3dc(+)

1dc(+)

3dc(-)

-106.0 kV-1.06003 p.u.

0.0 deg

2dc(-..

-105.5 kV-1.05533 p.u.

0.0 deg

1dc(-..

-104.7 kV-1.04712 p.u.

0.0 deg

3dc(+)

106.0 kV1.06003 p.u.

0.0 deg

2dc(+)

105.5 kV1.05533 p.u.

0.0 deg

1dc(+)

104.7 kV1.04712 p.u.

0.0 deg

3ac

100.0 kV1.00000 p.u.

0.0 deg

2ac

100.0 kV1.0000..0.0 deg

1ac

100.0 kV1.00000 p.u.

0.0 deg

fglongatt.org

PowerFactory 15.2.4

GROUNDING AND CONFIGURATION OF MTDC

Symetric Bipolar-Earth Return Multi-terminal HVDC Prof. Francisco M. Gonzalez-Longatt

[email protected]

Project: MTDC

Graphic: Grid

Date: 6/4/2015

Annex:

Grid: Summary Grid

Generation = 400.00 MW 0.00 Mvar 400.00 MVA External Infeed = -394.93 MW 0.00 Mvar 394.93 MVA

Inter Area Flow = 0.00 MW 0.00 Mvar Load P(U) = 0.00 MW 0.00 Mvar 0.00 MVA Load P(Un) = 0.00 MW 0.00 Mvar 0.00 MVA

Load P(Un-U) = 0.00 MW 0.00 Mvar Motor Load P = 0.00 MW 0.00 Mvar 0.00 MVA

Losses = 5.07 MW 0.00 Mvar Line Charging = 0.00 Mvar

Compensation ind. = 0.00 Mvar Compensation cap. = 0.00 Mvar Installed Capacity = 500.00 MW Spinning Reserve = 100.00 MW

Total Power Factor: Generation = 1.00 [-]

Load/Motor = 0.00 / 0.00 [-]

-0.0 kV-0.00000 p.u.

0.0 deg

-0.0 kV-0.00000 p.u.

0.0 deg

-0.0 kV-0.00000 p.u.

0.0 deg

Rb(.

.188..

Ra(.

.188..

Rgnd30.0G

ND

3

0.00.0

0.000

Rb(.

.11.1

Ra(.

.11.1

Rgnd20.0

GN

D2

0.00.0

0.000

GS

C2(-

)

-11.7-0.0

0.067

0.00.0

0.111

11.70.0

-0.111

WF

C1(-

)

-200.0-0.0

1.155

0.00.0

1.887

200.00.0

-1.887

GS

C1(-

)

209.10.0

1.207

0.00.0

-1.997

-209.10.0

1.997

Rb

199..

Ra

199..

Rgnd10.0

GN

D1

0.00.0

0.000

WF

C1(+

)

-200.0-0.0

1.155

200.00.0

1.887

0.00.0

-1.887

GS

C2(+

)

-11.7-0.0

0.067

11.70.0

0.111

0.00.0

-0.111

GS

C1(+

)

209.10.0

1.207

-209.10.0

-1.997

0.00.0

1.997

Cable

12(-

)19.5

-58.90.0

0.563

59.40.0

-0.563

Cable

23(-

)15.7

47.90.0

-0.452

-47.70.0

0.452

Cable

13(-

)49.7

-150.20.0

1.435

152.10.0

-1.435

Cable

12(+

)19.5

-58.90.0

-0.563

59.40.0

0.563Cable23(+)

15.7

47.90.0

0.452

-47.70.0

-0.452

Cable

13(+

)49.7

-150.20.0

-1.435

152.10.0

1.435

WF180.0

400.00.0

2.309

V~

AC2

23.30.0

0.135

V~

AC1

-418.3-0.0

2.415

DIg

SIL

EN

T

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 14/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• Minimal numerical discrepancies between the DIgSILENTPowerFactory and proposed method. The largest numericaldifference in post-contingency states is below 0.002 p.u, asconsequence, the proposed method can be used with minordiscrepancies.

NodeVoltage (p.u)

DIgSILENT

Voltage (p.u)

MATLABContingency

3dc(-) -1.0791 -1.0791 Cable13(-)

2dc(-) -1.0600 -1.0598 Cable13(-)

1dc(-) -1.0510 -1.0508 Cable23(-)

3dc(+) 1.0791 1.0791 Cable13(+)

2dc(+) 1.0600 1.0598 Cable13(+)

1dc(+) 1.0510 1.0508 Cable23(+)

DC cable outage is an important contingency because create an important change on the

power flows (magnitudes and directions) in the DC-transmission system and post-

contingency is interesting from the grounding point of view.

SIMULATION RESULTS OF N-1 CONTINGENCY ANALYSIS: CABLES OUTAGE. BIPOLAR EARTH

RETURN CONFIGURATION

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 15/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• Case I: bipolar ideal earth return (Rgnd =0).

• Case II, bipolar earth return (Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3)

• Case III: bipolar (no ground return).

Simulations are based on simple contingency, DC cable outage.

• Case I, ideal return: the lowest post contingency DC voltages.

• It should be noticed the use of bipolar configuration without any grounding connection

provides the highest post-contingency DC voltages.

• It must recognised the benefits of using earth path return in asymmetrical DC systems.

• There are two major positive impacts: it helps to control post-contingency dc voltages

and also provided alternative current path helping on the power flow distribution on

weakly connected DC terminals.

Node Case I Case II Case III Contingency

3dc(-) -1.0783 -1.0791 -1.0884 Cable13(-)

2dc(-) -1.0590 -1.0598 -1.0706 Cable13(-)

1dc(-) -1.0512 -1.0508 -1.0595 Cable23(-)

3dc(+) 1.0783 1.0791 1.0884 Cable13(+)

2dc(+) 1.0590 1.0598 1.0706 Cable13(+)

1dc(+) 1.0512 1.0508 1.0595 Cable23(+)

RESULTS COMPARISON OF N-1 CONTINGENCY ANALYSIS: GROUNDING

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 16/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org

• Selection of final grounding scheme and grounding resistorsrequires a complete DC system analysis.

• Grounding configuration affects the performance of the MTDCsystem virtually in any possible mode: normal (asymmetricaloperation) and abnormal operation (faults), steady-state anddynamic.

• This paper has two contribution

1. to introduce a simple optimization-based-approach to calculate the steady-state post-contingency of MTDC systems and

2. to use that approach in order to illustrate basic effects of groundingconfigurations on steady-state post-contingency performance.

• A 3-terminal HVDC system is used to formulate the maintheoretical framework for performance prediction on post-contingency steady-state of MTDC system as well as fordemonstrative purposes.

www.fglongatt.org

Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 17/1550th

Inte

rnat

iona

l Uni

vers

ities

Pow

er E

ngin

eerin

g C

onfe

renc

e (U

PE

C20

15)S

epte

mbe

r

1st -

4th,

201

5 | S

taffo

rdsh

ire U

nive

rsity

, UK

All

right

s re

serv

ed. N

o pa

rt o

f thi

s pu

blic

atio

n m

ay b

e re

prod

uced

or

dist

ribut

ed in

any

form

with

out

perm

issi

on o

f the

aut

hor.

Cop

yrig

ht ©

200

8-20

15. h

ttp:w

ww

.fglo

ngat

t.org