Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of...

26
Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey N. Bordenyuk and Alexander V. Benderskii* Department of Chemistry Wayne State University Detroit, MI 48202 by Champika N. Weeraman

Transcript of Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of...

Page 1: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Effect of nanoscale geometry on molecular conformation:

Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles

Achani Yatawara, Andrey N. Bordenyuk and Alexander V. Benderskii*

Department of ChemistryWayne State University

Detroit, MI 48202

by

Champika N. Weeraman

Page 2: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Nanoscale geometry – molecular conformation

►Expect a relationship between the substrate geometry (nano scale) and conformation of the adsorbed molecule

Page 3: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

vs.vs.

Nanoscale geometry – molecular conformation

Flat surface

Curved surface

Page 4: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Molecular conformation in nanostructured materials

Bio sensors-bio markers

Aerosols

Gratzel-solar cells

Page 5: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

P E ENL ( ) ( , , ) : ( ) ( )( ) 1 22

1 2 1 2

I PSFGNL

2 2 2 ( )

( )2 0

Sum-frequency generation (SFG) originates from induced polarization

g

e

Virtual State

2 ( )IR

1 ( )VIS ( )SFG

In media without inversion symmetry

SFG= IR+ vis

S()

SFG - CCD image

Spectrally narrow (temporally long) Vis pulse

IR

IR

vis

vis

Broad-band IR pulse

(temporally short)

+

( )2 0 In media with inversion symmetry

Vibrational sum frequency generation (VSFG)

►Broad band VSFG

Page 6: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Case II:

gauche defects

Case I:

all trans (zig-zag)

strong CH3 transitions,weak CH2 transitions

Flat Surface

Experiment

More CH2 transitions

Curved surface

Increase surface curvature

Change of Molecular conformationSFG sensitivity ?

8000

6000

4000

2000

0S

FG

inte

nsity

(a.

u.)

30002950290028502800IR frequency (cm

-1)

d+ r+ d- r+FR r-

►Strong CH3 stretch transitions (r+,r+FR,r-)

►Weak CH2 stretch transitions (d+,d-)►predominantly trans zig-zag molecule arrangement with few gauche defects

Chain length~1.6 nm

Page 7: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

TEM images:1-DDT capped Au and AgNPs(I) Gold nanoparticles

(II) Silver nanoparticles

20 nm

(b)

20 nm

(c)

100 nm

(d)

20 nm

(a)

<d>=1.8 nm<d>=1.8 nm <d>=2.9 nm<d>=2.9 nm <d>=7.4 nm<d>=7.4 nm <d>=23 nm<d>=23 nm

20 nm

(a)

20 nm

(b)

100 nm

(c)

100 nm

(d)

20 nm

(a)

20 nm

(b)

<d>=1.8 nm<d>=1.8 nm <d>=3.6 nm<d>=3.6 nm <d>=7.9 nm<d>=7.9 nm <d>=24.6 nm<d>=24.6 nm

Meliorum Technologies, Inc.

Page 8: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

d+ r+ d- r-op

VSFG 1-DDTcapped AuNps (SSP polarization)

► Both CH2 stretch and CH3 stretch transitions easily observable

► Increase of relative intensity of CH2 stretch vs. CH3 stretch with decreasing particle size

4

3

2

1

0

VS

FG

inte

nsity

(a.

u)

30002950290028502800

Frequency (cm-1

)

23 nm

7.4 nm

2.9 nm

1.8 nm

Page 9: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

SFG Spectral Fitting: Quantitative analysis of SFG spectra

Bj = amplitudeΓj = Lorentzian line widthωj = transition frequencyANR= nonresonant contribution

Intensity of mode j; X BSSP j j,( )2 2 2

I X I ISFG SSP IR SSP IR IR IR vis vis ( ) ( ) ( ) ( )( ) 2 2

Intensity of SFG signal (SSP polarization, SFG-Vis-IR)

Effective non linear susceptibility: Multi-Lorentzian app.

X A eB

iSSP IR NRi j

j

( ) ( )( )

2

I R Гj

Гj

Page 10: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Size dependent SFG spectragauche defects

Chain length ~1.6 nm

d+/r+

1.1

1.0

0.9

0.8

0.7

0.6

Am

plitu

de r

atio

2520151050Mean Diameter (nm)

Chain length ~1.6 nm

d-/r-

3.0

2.5

2.0

1.5

1.0

0.5

0.0A

mpl

itude

rat

io2520151050

Mean Diameter (nm)

Page 11: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

VSFG 1-DDT capped AgNPs (SSP polarization)VSFG 1-DDT capped AgNPs (SSP polarization)

4

3

2

1

0

Inte

nsit

y (a

.u)

300029502900285028002750

Frequency (cm-1

)

dd++ rr--(op)(op)dd--rr++

3.6 nm

7.9 nm

24.6 nm

1.8 nm►Transitions are broader than AuNPs(AuNPs: 10-12cm-1 AgNPs: 15-23cm-1)

► Weaker thiol-Ag bond compared to thiol-Au bond

2.0

1.5

1.0Am

plitu

de r

atio

2520151050Mean diameter (nm)

2.5

2.0

1.5

1.0

0.5d+/r+

d-/r-

Page 12: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

R

L

V aL0

x L R /

Cylindrical volumeCylindrical volume for alkyl chain for alkyl chain

Conical volumeConical volume between between spheres of radii spheres of radii RR and and R+LR+L

Additional volume Additional volume for for gauchegauche defects defects

ΦΦ = solid angle= solid angleLL = chain length= chain lengthRR = particle radius = particle radiusaa = area per head = area per head groupgroup

Size dependentSize dependent gauchegauche defectsdefects

V R L R 3

3 3( )Φ

( )RV V

Vx x

0

0

21

3

Trans- gaucheTrans- gauche free energy difference and Isomerization barrier are comparable to kT free energy difference and Isomerization barrier are comparable to kT

Geometrical modelGeometrical model

Page 13: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Size dependent gauche defects

R

L

RΦ20

0

1( )

3

V VR x x

V

/x L R

d+/r+

1.1

1.0

0.9

0.8

0.7

0.6

Am

plitu

de r

atio

2520151050Mean Diameter (nm)

d-/r-

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Am

plitu

de r

atio

2520151050

Mean Diameter (nm)

Page 14: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

0.6

0.4

0.2

Am

plitu

de r

atio

2520151050Mean diameter (nm)

0.5

0.4

0.3

0.2

0.1

0.0

d+/r+

d-/r-

dd++

rr--(op)(op)

dd--rr++

0.6

0.5

0.4

0.3

0.2

0.1

Am

plit

ude

rati

o

2520151050Mean diameter (nm)

1.2

1.0

0.8

0.6

0.4

0.2

d+/r+

d-/r-

VSFG spectra: Au and AgNPs (PPP polarization)

Gold nanoparticles Silver nanoparticles AuNPs

AgNPs

dd++

rr--(op)(op)dd--rr++

4

3

2

1

0

VS

FG

inte

nsit

y (a

.u.)

300029002800

Frequency (cm-1

)

1.8 nm

3.6 nm

7.9 nm

24.6 nm2.0

1.0

0.0

VS

FG

Int

ensi

ty (

a.u)

30002950290028502800

Frequency (cm-1

)

1.8 nm

2.9 nm

7.4 nm

23 nm

Page 15: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

z

y

C3vθ

α

ψIRvis

SFG P

S

φ

x

ijk ijk lm nlm n

lm nN U( ),

( )( , , )2 2

X N d d d fijk ijk( ) ( )( , , ) ( , , )2 2

X N d fijk ijk( ) ( )( ) ( )2 2

I X eff ( )2 2

Euler matrix Molecularhyperpolarizability

Orientation angle (θ) Azimuthal angle (ψ) Torsional angle (φ)

Distribution function

Assumed random distribution for φ and ψ angles

SFG intensity

From experimental geometry and beam polarization

Molecular orientation analysis

Page 16: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

d+

/r+

am

plitu

de ra

tio1801501209060300

c (deg)

A. SSP

B. PPP

Molecular orientation analysis

1.0

0.8

0.6

0.4

0.2

0.0

r+in

tens

ity

(SS

P)

1801501209060300

c (deg)

1.0

0.8

0.6

0.4

0.2

0.0

d+in

tens

ity

(SS

P)

1801501209060300

c (deg)

0 π

f(θ)

θθc

z

θc

θC3

z

AuNPsAuNPs

AgNPsAgNPs1.6

1.2

0.8Am

plit

ude

rati

o

2520151050Mean diameter (nm)

0.6

0.5

0.4

0.3

0.2

0.1d

+/r

+(SSP)

d+/r

+(PPP)

1.6

1.4

1.2

1.0

0.8

0.6Am

plit

ude

rati

o

2520151050Mean Diameter (nm)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

d+/r

+(SSP)

d+/r

+(PPP)

0 π

f(θ)

θθc

z

θc

θC3

z

Page 17: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Conclusions

►Alkylthiols on nanoscale materials (gold and silver Nps) possess significant amount of gauche defects comparing with the SAM on planar gold

► Increasing amount of gauche defects with decreasing particle size can be understood in terms of the conical volume available for the chain on a curved surface

► Vibrational sum frequency generation is a powerful spectroscopic tool to characterized the molecular conformation on nanostructured materials

Page 18: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

AcknowledgementAcknowledgementss

The GroupThe GroupAdvisor: Advisor: Prof. Alex V. BenderskiiProf. Alex V. Benderskii

Dr. Andrey N. BordenyukDr. Andrey N. Bordenyuk

Dr. Igor StiopkinDr. Igor StiopkinHimali D. JayethilakeHimali D. JayethilakeAchani K. YatawaraAchani K. YatawaraFadel Y. ShalhoutFadel Y. ShalhoutAdib J. SaminAdib J. Samin

WSU start-up grantWSU research grantNano@Wayne

ACS-PRFGrant No.40868-G6

NSF CAREER Grant No. 0449720

Funding

Professor Winters’ group-WSUDr. Charles Dezalah

ECE-WSUProf. G. AunerDr. J. Smolinski

CIF-WSUDr. Yi LiuDr. Sam Shinozaki

Page 19: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Surface curvature Chain lengthVSFG spectra: 5nm AuNPs VSFG spectra: 50nm AuNPs

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Inte

nsit

y (a

.u)

2960292028802840

Frequency (cm-1

)

C2-thiol

C12-thiol

C18-thiol

C6-thiolC6-thiol

C2-thiol

2.5

2.0

1.5

1.0

0.5

0.0

Inte

nsit

y (a

.u)

2960292028802840

Frequency (cm-1

)

C12-thiol

C18-thiol

Page 20: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

1.0

0.8

0.6

0.4

0.2

0.0

r+in

tens

ity

(SS

P)

1801501209060300

c (deg)

1.0

0.8

0.6

0.4

0.2

0.0

d+in

tens

ity

(SS

P)

1801501209060300

c (deg)

1.2

1.0

0.8

0.6

Am

plit

ude

rati

o

2520151050Mean Diameter (nm)

d+/r

+

1.6

1.2

0.8

Am

plit

ude

rati

o

252015105Mean diameter (nm)

d+/r

+

AuNPsAuNPs

AgNPsAgNPs

Page 21: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

dd++rr++

rr--(op)(op)

dd--

2.0

1.5

1.0

0.5

0.0

Abs

orba

nce

(a.u

)

30002950290028502800Frequency (cm

-1)

1.8 nm

2.9 nm

7.4 nm

23 nm

dd++ rr--(op)(op)

rr++dd--

2.5

2.0

1.5

1.0

0.5

0.0

Ram

an I

nten

sity

(a.

u)

30002950290028502800Raman Shift (cm

-1 )

1.8 nm

2.9 nm

7.4 nm

23 nm

IR and Raman spectra: 1-DDT gold nanoparticlesIR and Raman spectra: 1-DDT gold nanoparticlesIR spectraIR spectraRaman spectraRaman spectra

No size dependent spectral featuresNo size dependent spectral features

Page 22: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Possible interpretations: Possible interpretations: 1.1. Increasing fraction of Increasing fraction of gauchegauche

defects (SFG propenisty rules)defects (SFG propenisty rules)

2. Heterogeneity of local fields 2. Heterogeneity of local fields E(E(ωω))

E(ω, r)

r

No size-dependence in Raman spectra (should have same EM enhancement) Far off resonance:

λSPR~520 nm λSFG=665 nm

SFG Raman

IR

vis SFGpump Stokes

|v=0

|v=1

Page 23: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

SSP polarization

1000

500

0

VS

FG

Inte

nsity

(a.

u.)

30002950290028502800Frequency (cm

-1)

CdSe

Page 24: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

aac bbc ccc( ) ( ) ( ). , .2 2 23 4 0 1 0 0 aac bbc ccc

( ) ( ) ( ). , , .2 2 22 0 0 0 1 0 0

X L L L Xeffssp

y sfg y vis z IR yyz( ) , ( )( ) ( ) ( ) sin( )2 2

L L L Xz sfg x vis x IR sfg vis IR zxx( ) ( ) ( ) sin( ) co s( ) co s( )

X L L L Xeffppp

x sfg x vis z IR sfg vis IR xxz( ) , ( ) ( ) ( ) co s( ) co s( ) sin( )2

L L L Xx sfg z vis x IR sfg vis IR xzx( ) ( ) ( ) co s( ) sin( ) co s( )

L L L Xz sfg z vis z IR sfg vis IR zzz( ) ( ) ( ) sin( ) sin( ) sin( )

Molecular orientation analysis

Non-vanishing molecular hyperpolarizability C3v (r+)

Non-vanishing molecular hyperpolarizability C2v (d+)

Effective for polarization combination sfg-P, vis-P and IR-P X ( )2

Effective for polarization combination sfg-S, vis-S and IR-P X ( )2

Page 25: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

Molecular orientation analysis

0.110

0.105

0.100

0.095

0.090

0.085

Inte

nsi

ty r

atio

(d

+/r

+)

150100500θc degrees

SSP polarization PPP polarization

0.070

0.060

0.050

0.040

0.030

0.020In

tens

ity r

atio

(d

+/r

+)

15010050θc degrees

►Qualitatively explains less intense d+ modes in PPP spectra for broad distribution of tilt angle θ.

Page 26: Effect of nanoscale geometry on molecular conformation: Vibrational Sum-Frequency Generation of alkaynethiols on metal nanoparticles Achani Yatawara, Andrey.

800 nm40 nm bandwidth

803 nm26 nm bandwidth40 fs2 mJ/pulse, 1 kHz

Reflection geometry

IR output: 3-8 m 65-75 fs300 cm-1 bandwidth1-2 J/pulse

0.1 m precision

Shaped vis pulse:bandwidth 6 cm-1 Chirp control

Fs oscillator

Regenerative amplifier

2-pass amplifier

OPA with DFM

Optical delay stages

Sample

Monochromator

LN2-cooled CCD

Vis pulse shaping

Experimental Setup

OPA

Delay stages

Vis pulse shaping

Sample

CCD