EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005 EENG...

52
EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005 http://www.eng.yale.edu/courses/ eeng449bG EENG 449bG/CPSC 439bG Computer Systems Lecture 11 Power Issues and DVS
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005 EENG...

Page 1: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.1

2/17/05

February 17, 2005

Prof. Andreas Savvides

Spring 2005

http://www.eng.yale.edu/courses/eeng449bG

EENG 449bG/CPSC 439bG Computer Systems

Lecture 11

Power Issues and DVS

Page 2: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.2

2/17/05

Announcements

• Reading reference for this lecture– J. Pouwese, K. Lagendoen, H. Sips, “Dynamic

Voltage Scaling on a Low Power Microprocessor”, posted on the class website

• Midterm date discussion & conflicts with other classes

Page 3: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.3

2/17/05

Why worry about power?Intel vs. Duracell

• No Moore’s Law in batteries: 2-3%/year growth

Processor (MIPS)

Hard Disk (capacity)

Memory (capacity)

Battery (energy stored)

0 1 2 3 4 5 6

16x

14x

12x

10x

8x

6x

4x

2x1x

Improvement(compared to year 0)

Time (years)

Page 4: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.4

2/17/05

Current Battery Technology is Inadequate

• Example: 20-watt battery» NiCd weighs 0.5 kg, lasts 1 hr, and costs $20» Comparable Li-Ion lasts 3 hrs, but costs > 4x

more

Battery Rechargeable? Wh/lb Wh/litreAlkaline MnO2 NO 65.8 347Silver Oxide NO 60 500Li/MnO2 NO 105 550Zinc Air NO 140 1150NiCd YES 23 125Li-Polymer YES 65-90 300-415

Page 5: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.5

2/17/05

Comparison of Energy Sources

Power (Energy) Density Source of Estimates

Batteries (Zinc-Air) 1050 -1560 mWh/cm3 (1.4 V) Published data from manufacturers

Batteries(Lithium ion) 300 mWh/cm3 (3 - 4 V) Published data from manufacturers

Solar (Outdoors)

15 mW/cm2 - direct sun

0.15mW/cm2 - cloudy day. Published data and testing.

Solar (Indoor)

.006 mW/cm2 - my desk

0.57 mW/cm2 - 12 in. under a 60W bulb Testing

Vibrations 0.001 - 0.1 mW/cm3 Simulations and Testing

Acoustic Noise

3E-6 mW/cm2 at 75 Db sound level

9.6E-4 mW/cm2 at 100 Db sound level Direct Calculations from Acoustic TheoryPassive Human

Powered 1.8 mW (Shoe inserts >> 1 cm2) Published Study.

Thermal Conversion 0.0018 mW - 10 deg. C gradient Published Study.

Nuclear Reaction

80 mW/cm3

1E6 mWh/cm3 Published Data.

Fuel Cells

300 - 500 mW/cm3

~4000 mWh/cm3 Published Data.

Assume 1mW Average as definition of “Scavenged Energy”

Page 6: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.6

2/17/05

Trends in Total Power Consumption

• Frightening: proportional to area & frequency

DEC 21164

source : arpa-esto

microprocessorpower dissipation

Page 7: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.7

2/17/05

Power Metrics in Microprocessors

nJ/Instruction – Mostly for processors with the same instruction

sets– Does not capture the effect of operand size (e.g

8-bit addition vs. 32-bit addition operations

MIPS/Watt

mA – common among component data sheets

Remember:

2CV21

les)Energy(Jou

time Power (Joules) Energy

IV (Watts)Power

Page 8: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.8

2/17/05

Modeling the Battery Behavior

• Theoretical capacity of battery is decided by the amount of the active material in the cell

» batteries often modeled as buckets of constant energy • e.g. halving the power by halving the clock frequency is assumed to

double the computation time while maintaining constant computation per battery life

• In reality, delivered or nominal capacity depends on how the battery is discharged

» discharge rate (load current)» discharge profile and duty cycle» operating voltage and power level drained

Page 9: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.9

2/17/05

Battery Capacity

• Current in “C” rating: load current nomralized to battery’s capacity

» e.g. a discharge current of 1C for a capacity of 500 mA-hrs is 500 mA

from [Powers95]

Page 10: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.10

2/17/05

Battery Capacity vs. Discharge Current

• Amount of energy delivered is decreased as the current (rate at which power is drawn) is increased

» rated as ampere hours or watt hours when discharged at a specific rate to a specific cut-off voltage

– primary cells rated at a current which is 1/100th of the capacity in ampere hours (C/100)

– secondary cells are rated at C/20 or C/10

• At high currents, the diffusion process that moves new active material from electrolytes to the electrode cannot keep up

» concentration of active material at cathode drops to zero, and cell voltage goes down below cut-off

» even though active material in cell is not exhausted!

Page 11: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.11

2/17/05

Battery Energy Consumers

Page 12: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.12

2/17/05

Power Supply

Where does the Power Go?B

atte

ry

DC-DCConverter

Communication

RadioModem

RFTransceiver

Processing

ProgrammablePs & DSPs

(apps, protocols etc.) Memory

ASICs

Peripherals

Disk Display

Page 13: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.13

2/17/05

Power Consumption for a Computer with Wireless NIC

Display36%

Wireless LAN18%

Hard Drive18%

CPU/Memory21%

Other7%

Page 14: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.14

2/17/05

Energy Consumption ofWireless NICs (Wavelan)

Specs Measured

2 Mbps(Bronze)

Sleep ModeIdle ModeReceive ModeTransmit Mode

9 mA--------280 mA330 mA

14 mA178 mA 200 mA280 mA

11 Mbps (Silver)

Sleep ModeIdle ModeReceive ModeTransmit Mode

10 mA--------180 mA280 mA

10 mA156 mA190 mA284 mA

Page 15: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.15

2/17/05

Example: Power Consumption for Compaq’s iPAQ

206MHz StrongArm SA-1110 processor

320x240 resolution color TFT LCD

Touch screen

32MB SDRAM / 16MB Flash memory

USB/RS-232/IrDA connection

Speaker/Microphone

Lithium Polymer battery

PCMCIA card expansion pack & CF card expansion pack

* Note

CPU is idle state of most of its time

Audio, IrDA, RS232 power is measured when each part is idling

Etc includes CPU, flash memory, touch screen and all other devices

Frontlight brightness was 16

Page 16: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.16

2/17/05

Microprocessor Power Consumption

CMOS Circuits(Used in most microprocessors)

Dynamic ComponentDigital circuit switching inside

the processor

Static ComponentBias and leakage currents

O(1mW)

clk2

ddlddscddleakageddstandby fVCVIVIVIP

Static Dynamic

Page 17: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.17

2/17/05

Power Consumption in Digital CMOS Circuits

clk2

ddlddscddleakageddstandby fVCVIVIVIPower

standbyI

leakageI

scI

- current constantly drawn from the power supply

- determined by fabrication technology

- short circuit current due to the DC path between the supply rails during output transitions

lC - load capacitance at the output node

clkf - clock frequencyddV - power supply voltage

Page 18: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.18

2/17/05

Dynamic Voltage Scaling

• What can you do to conserve power on a processor?

• Dynamic power consumption is the dominant component

• Example: Transmeta’s Crusoe processor

Page 19: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.19

2/17/05

DVS on Low Power Processor

Maximum gain when voltage is lowered BUT lower voltage increases circuit delay

M

1k

2ddkdynamic VfCP

2TDD

DD

)V(VV

τ

CMOS transistor threshold voltageTransistor gain factor

Dynamic Power Component

Number of gates

Load capacitance of gate k

Propagation delay

Page 20: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.20

2/17/05

Voltage Scaling on LART

• Dynamically lower the processor voltage and frequency to reduce power consumption

• LART wearable board– StorngARM 1100 Processor 190MHz– Various I/O capabilities– 32 MB volatile memory– 4 MB non-volatile memory– Programmable voltage regulator

Page 21: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.21

2/17/05

Processor Envelope

At 1.5V Max clock frequency 251MHzMin frequency the processor functions correctly is 59MHz

Page 22: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.22

2/17/05

LART Power Measurement

• Note the measurement setup at Different levels on the board • Always provide hooks for measurement, testing and debugging during your design. Both for software and hardware!!!

Total Power Consumption on the LARTPlatform

Based on dhrystone benchmark

Page 23: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.23

2/17/05

System Support Requirements

• To manage DVS effectively, the computation requirements must be known in advance

• Predictive scheme– Try to learn that behavior based on the

computation profile

• Better scheme: Applications should be power aware

• Processor frequency and scaling should be changed without much delay

– This is specific to each processor– 150us for the LART processor

Page 24: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.24

2/17/05

Example: Power Aware Video Playback

• Annotate a H.263 video decoder with information on the clock speed required to decode a known video sequence

• Using a 12.6s video, 15fps

• Power consumption measurements for LART

– No-DVS: 198mW for CPU, 207mW for memory subsystem

– DVS: 100mW for CPU and 204mW for the memory subsystem

– 2X improvement, but 25% improvement when memory accesses are considered

Page 25: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.25

2/17/05

LART Memory Performance

• Memory access is optimal when high resolution memory access timing is available

• For LART the optimal memory pattern:– 148MHz– 92 MB/s memory bandwidth– Power consumption 514.2mW– Energy cost 5.6mJ/MB

Page 26: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.26

2/17/05

Memory Subsystem Power Consumption – Read Operation

Power consumption Memory Bandwidth

Optimal memory access waveforms

Page 27: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.27

2/17/05

Energy breakdown for read(based on 1MB read)

Regulator Loss-factor

Page 28: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.28

2/17/05

Power Breakdown for H.263 Decoder

Page 29: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.29

2/17/05

Reducing Power Consumptionis a multilevel task!

• Physical layer – Technology – reduce the surface of CMOS circuits

• Architecture/IC level– Several optimizations in the design (e.g parallelism and

pipelining)– Provide hooks for software driven power management (e.g

different power modes and clock speeds)

• OS Level– Smart schedulers, interval schedulers, DVS

• Application Level– Power aware applications that worn the OS and the

hardware about the features needed during application lifetime

– Sleep modes and DVS driven by applications

• Network Level– Networked devices may be able to apply low duty cycles, in

which some of the devices are asleep and others are awake

Page 30: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.30

2/17/05

Conclusions

• Interval based schedulers not so efficient– Interval-scheduler – reduce voltage after a pre-

specified idle period is detected

• Better leverage of DVS when the processor is aware of the application requirements

– Illustrated with the H.263 encoder

• Monitor different power consumption profiles across different sections of the platform and use them to make clever decisions about power-management

• What is missing:– Comments on power regulator efficiencies…

Page 31: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.31

2/17/05

Announcements

• Need to start deciding on the final projects.

• We need to discuss these with you individually at the end of class

• One page detailed proposal by March 3• This should include

– 1 paragraph motivation and description of your project

– 1 paragraph on the approach you are going to use and the tools

– 1 paragraph on evaluation» What is the strategy you will use to evaluate

the performance of your project.

Page 32: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.32

2/17/05

DVS Example

• Consider a processor with DVS• Frequency range 250 – 59MHz• Supply Voltage range 0.8V (@49MHz)

and 1.5V (@250MHz) • Assume that the processor can

compute at 1 MIPS per MHz.

Page 33: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.33

2/17/05

DVS Example 1

• What is the maximum energy saving the processor can achieve with dynamic voltage scaling?

• What is missing?

fCVP 2

9.146.37

5.562

59MHz0.8c

250MHz1.5 cSavingEnergy

2

2

Page 34: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.34

2/17/05

Task Execution Energy Cost

• A certain task needs to run on the processor. The task requires 200 Million Instructions to complete.

• Which power level will be the most efficient?

cc

c

s

s

12839.376.37E

450c0.85.562E

39.359

200T

8.0250

200T

590.8cP

2501.5c P

59

250

59

250

259

2250

Page 35: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.35

2/17/05

Power Consumption on Embedded Processors

• Different core I/O from Peripheral I/O – numbers here

– Cores scaling down to 0.8V. 1.8V devices are becoming common

– General Purpose I/O interfaces still at 3.0 – 3.3V» Makes power supply harder, additional

regulator inefficiency

• Sleep modes and associate cost of sleep and recovery SA-1100 modes

– Need time and energy to transition between states

Page 36: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.36

2/17/05

Example: SA-1100 CPU

• RUN• IDLE

– CPU stopped when not in use

– Monitoring for interrupts

• SLEEP– Shutdown on-chip

activity

RUN

IDLE SLEEP

400 mW

50 mW 0.16 mW

90 s

10 s 10 s 90 s

160 ms

Page 37: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.37

2/17/05

Duty Cycling: Exploiting Sleep Modes

• Imagine a processor with max power consumption 120mW

• Power supply voltage 2.5V• We need to power the device form a

2000mAh battery for 1 year• Sleep mode draws 20uA current• What is the duty cycle the device

needs to operate at to last for at least 1 year?

Page 38: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.38

2/17/05

Duty cycling

• 1 year has 365 x 24 = 8760 hours

W5702.5228VIP

2288760

2000I

avgavg

avg

A

yearh /38%434.02048000

20228

II

IIT

I)T1(ITI

sleepon

sleepavgon

sleepONONon avg

Page 39: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.39

2/17/05

Voltage Reduction is Better

• Example: task with 100ms deadline, requires 50ms CPU time at full speed– normal system gives 50ms computation, 50ms idle/stopped

time– half speed/voltage system gives 100ms computation, 0ms

idle– same number of CPU cycles but 1/4 energy reduction

Spe

ed

Time

T1 T2 T1 T2

Idle

Same work,lower energy

TaskTask

Page 40: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.40

2/17/05

Problem with Voltage Reduction

• Voltage gets dictated by the tightest (critical) timing constraint

» not a problem if latency not important– throughput can always be improved by pipelining, parallelism

etc.

» but, real systems have bursty throughput and latency critical tasks

Solution: dynamically vary the voltage!

Page 41: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.41

2/17/05

Active Idle

Efixed = 1/2CVdd2

Tframe Tframe

Fixed Supply

Active

Variable Supply

Evar = 1/2C(Vdd /2)2 = 1/4E fixed

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

Normalized Workload

Normalized Power

Fixed Supply

Variable Supply

from [Gutnik96] (VLSI Symposium)

Varying the Supply Voltage

Page 42: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.42

2/17/05

XYZ Node Frequency Scaling

Page 43: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.43

2/17/05

Code Optimizations for Low Power

• High-level operations (e.g. C statement) can be compiled into different instruction sequences

» different instructions & ordering have different power

• Instruction Selection– Select a minimum-power instruction mix for executing a piece

of high level code

• Instruction Packing & Dual Memory Loads– Two on-chip memory banks

» Dual load vs. two single loads» Almost 50% energy savings

Page 44: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.44

2/17/05

Code Optimizations for Low Power (contd.)

• Reorder instructions to reduce switching effect at functional units and I/O buses

– E.g. Cold scheduling minimizes instruction bus transitions

• Operand swapping– Swap the operands at the input of multiplier– Result is unaltered, but power changes significantly!

• Other standard compiler optimizations– Intermediate level: Software pipelining, dead code elimination,

redundancy elimination– Low level: Register allocation and other machine specific optimizations

• Use processor-specific instruction styles– e.g. on ARM the default int type is ~ 20% more efficient than char or

short as the latter result in sign or zero extension– e.g. on ARM the conditional instructions can be used instead of

branches

Page 45: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.45

2/17/05

Minimizing Memory Access Costs

• Reduce memory access, make better use of registers– Register access consumes power << than memory access

• Straightforward way: minimize number of read-write operations, e.g.

• Cache optimizations– Reorder memory accesses to improve cache hit rates

• Can use existing techniques for high-performance code generation

Page 46: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.46

2/17/05

Low-power Software Strategies

• Code running on CPU– Code optimizations for low power

• Code accessing memory objects– SW optimizations for memory

• Data flowing on the buses– I/O coding for low power

• Compiler controlled power management

CPU

Cache

Memory

Page 47: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.47

2/17/05

How can power consumption be reduced at the circuit design level

inside a processor?

Page 48: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.48

2/17/05

Example: Reference Datapath

from “Digital Integrated Circuits” by Rabaey

Critical path delay: Tadder + Tcomparator = 25 ns Frequency: fref = 40 MHz Total switched capacitance = Cref

Vdd = Vref = 5V Power for reference datapath = Pref = CrefVref

2fref

Page 49: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.49

2/17/05

Parallel Datapath

from “Digital Integrated Circuits” by Rabaey

The clock rate can be reduced by x2 with the same throughput: fpar = fref/2 = 20 MHz Total switched capacitance = Cpar = 2.15Cref

Vpar = Vref/1.7 Ppar = (2.15Cref)(Vref/1.7)2(fref /2) = 0.36Pref

Page 50: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.50

2/17/05

Pipelined Datapath

from “Digital Integrated Circuits” by Rabaey

fpipe = fref

Cpipe = 1.1Cref

Vpipe = Vref/1.7 Voltage can be dropped while maintaining the original throughput Pipe = CpipeVpipe2fpipe = (1.1Cref)(Vref/1.7)22fref = 0.37Pref

Page 51: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.51

2/17/05

Datapath Architecture-Power Trade-off Summary

DatapathArchitecture

Voltage Area Power

Original 5V 1 1Pipelined 2.9V 1.3 0.37Parallel 2.9V 3.4 0.34Pipeline-Parallel

2.0V 3.7 0.18

Page 52: EENG449b/Savvides Lec 10.1 2/17/05 February 17, 2005 Prof. Andreas Savvides Spring 2005  EENG 449bG/CPSC 439bG.

EENG449b/SavvidesLec 10.52

2/17/05

Back to Processor Architecture: ARM Performance

• Some possible avenues of optimizing performance and power consumption on the ARM

– Use the on-chip cache– Write code in 16-bit mode assembly

» Need only one memory access to fetch an instruction

– Execution in RAM vs. Flash– Write code in assembly

• Refer to the ARM assembly language handout for more references