EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05:...

6
1 EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser [email protected] Department of Electrical and Computer Engineering Montana State University - Bozeman Bond Model Silicon Atom Si 14 electrons with 4 valence 3 Filled orbitals do not interact The four outer valence electrons interact Semicconductors 4 Elements around Silicon III IV V 5 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si S Si Si Si Si Si Si S Si Si Si Si S Si Si S Si 6 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si S Si Si Si Si Si Si Si S Si Si Si Si Si S Si Si Si S Si Covalent Bonds: Shared electrons to fill orbital

Transcript of EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05:...

Page 1: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

1

EELE408 PhotovoltaicsLecture 05: Semiconductor Basics

Dr. Todd J. [email protected]

Department of Electrical and Computer EngineeringMontana State University - Bozeman

Bond Model

Silicon Atom

Si

14 electrons with 4 valence

3

Filled orbitals do not interact The four outer

valence electrons interact

Semicconductors

4

Elements around Silicon

III IV V

5

Si

Si

SiSi Si

SiSi

Si

Si

Si

Si

Si

SiSi

Si

Si

Si

Si

Si

SiSi

Si

Si

Si Si

Si

Si

SSi

Si

Si

Si Si

Si

SSi

Si

Si Si

SSi

Si SSi

6

Si Si

Si

Si SiSi

Si Si

Si

Si

Si

Si

Si

Si

Si

Si Si

Si

Si

SiSi

Si

Si

Si S

Si

Si

SiSi

Si

Si

Si

S

Si

SiSi

Si

Si

S

SiSi

Si

SSi

Covalent Bonds:

Shared electrons to fill orbital

Page 2: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

2

Intrinsic Silicon

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

7

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Poor conductor: No free electrons to carry currentNeed to engineer electrical properties (conduction)

Valence V: n-type doping

III IV V

8

Extra Negative Electrons

Si Si Si Si Si Si Si

Si Si As Si Si Si Si

Si Si Si Si Si As Si

9

Si Si Si Si Si As Si

Si As Si Si Si Si Si

Si Si Si Si Si Si Si

Each N‐type dopant brings an extra electron to the lattice

Valence III: p-type doping

III IV V

10

Extra Positive Holes

Si Si Si Si Si Si Si

Si B Si Si B Si Si

Si Si Si Si Si Si Si

11

Si Si Si Si Si Si Si

Si Si Si B Si Si Si

Si Si Si Si Si Si Si

Each P‐type dopant is short an electron, creating a hole in the lattice

Bond Model

• Electrons from broken bonds are free to move

• Electrons from neighboring bonds can also move into the ‘hole’ created by a broken bond, allowing the broken bond or ‘hole’ to propagate as if had a positive charge– Bubble in a liquid

12

Page 3: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

3

Band Model

Orbital Shells

• The positions of the electrons around the nucleus are quantized to specific energy levels or Shells

• The orbital determines the energy of the electron

r

qV

0

2

4

14

n = 1

n = 2

n = 3

0

Energy of Electrons

Energy

M4d

4f

N

5s5p

5d

5f

O

5g

2s2pLower Electron 

Energy: More Tightly Bound to Nucleus

15

n

1s

n=1

K

2s2p

L

n=2

3s3p

3d

n=3

4s4p

n=4 n=5 n=6

Higher Electron Energy: Less Bound to Nucleus

Orbitals fill from the bottom up.

Silicon Electron Configuration

[Ne]3s23p2

M

(n=3)

s

(l = 0)

p

(l = 1)

d

(l = 2)(m = ‐1) (m = 0) (m = 1)(m = ‐2) (m = 2)

16

K

(n=1)

L

(n=2)

s

(l = 0)

s

(l = 0)

p

(l = 1)

Splitting of Energy Levels in a Crystalline Lattice

EnergyDiscreteEnergy States

Continuum ofEnergy States

Allowed

Forbidden

Si

Si

17

Interatomic Distanced

Band gaps

Allowed

Allowed

Forbidden

Forbidden

Allowed and forbidden energy levels at atomic spacing

Energy

EnergyGap

ConductionBand

ValenceBand

Band Diagram

This corresponds to an electron jumping from the valence band to the conduction b d

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Position

Thermal energy causes an electron to break its bond to the silicon lattice

band

The electron is now free to move through the silicon lattice

Page 4: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

4

Energy

EnergyGap

ConductionBand

ValenceBand

Band Diagram

Additional current is caused by the movement of the “hole”

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Position

Other electrons can then move into the voids or holes in the lattice left by the released electron

Energy

EnergyGap

ConductionBand

Valence

Band Diagram

Position

Band

It is easier to think of a positive hole moving in the valence band

Energy

EnergyGap

ConductionBand

ValenceBand

Intrinsic Concentration

There is an intrinsic concentration of electrons that are able to move that is a function of

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

Position

At absolute zero there is insufficient thermal energy to break any bonds so no electrons are in the conduction band

temperature

As the temperature rises electrons escape the silicon lattice

21

Energy

Energy

ConductionBand

Intrinsic Concentration

As the temperature rises more and more electrons are excited into the conduction band and the silicon becomes more conductive with an equal concentration of electrons in the valence band and holes in the conduction band

22

Position

gyGap

ValenceBand

310

219

/101)300(

6884exp

3001038.9375275

cmKTn

T

TKKTn

i

i

Empirical equation for

near room temperature

Energy

Energy

ConductionBand

N-Type DopingDoping the silicon lattice with atoms with 5 valence electrons (V) create sites in the band diagram that require little energy to break the bond to the dopant atom and become free to move in the lattice or in other words move into the conduction band.

23

Position

gyGap

ValenceBand

As As As As As As As As As As As As As

N type Material

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Majority Charge Carriers are Negative electrons

24

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Few holes

Page 5: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

5

Energy

Energy

ConductionBand

P-Type Doping

Doping the silicon lattice with atoms with 3 valence electrons (III) create sites in the band diagram that require little energy to trap an electron into the dopant atom. Holes are created in the valence band that are free to move.

25

Position

gyGap

ValenceBand

B B B B B B B B B B B B B

P type Material

-------

Majority Charge Carriers are Positive holes

26

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Few electrons

Equilibrium Carrier Concentration

• Law of Mass Action– At equilibrium the product of the majority and minority carrier

concentration is a constant

– n0 is the equilibrium electron concentration

– p0 is the equilibrium hole concentration

200 inpn

27

– ni is the intrinsic concentration

N-Type Carrier Concentration

• At room temperature in an N-type material, the electron concentration is approximately the donor doping concentration

D

i

D

N

np

Nn2

0

0

28

– ND is the donor doping concentration

P-Type Carrier Concentration

• At room temperature in a P-type material, the hole concentration is approximately the acceptor doping concentration

A

i

A

N

nn

Np2

0

0

29

– NA is the acceptor doping concentration

Energy

Energy

ConductionBand

Minority Concentration Dependence

Low Doping High Doping

30

Position

gyGap

ValenceBand

Montana State University30

As the doping concentration increases the concentration of minority carriers decreases.

Page 6: EELE408 Photovoltaics Lecture 05: Semiconductor Basics 05... · EELE408 Photovoltaics Lecture 05: Semiconductor Basics Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical

6

Energy Levels of Elements in the Band Gap of Silicon (Traps)

Li Sb P As S Pt Mn Ag Hg

0.033 0.0390.044 0.049

0.18

0.37 0.370.33 0.33

31

B Al Ga In Co Zn Cu Fe Au

0.0450.057

0.0650.16

0.390.31

0.55

0.24

0.37

0.52

0.40

0.55

0.53

0.35

0.54

0.340.36

Electrical conductivity in nonmetals

32

Silicon

• Thermal energy breaks bond and creates a free electron and a hole

• The concentration of holes equals the concentration of free electrons

• An applied field causes

Electric Field

+

+

33

An applied field causes electrons to contribute to electrical conduction

• Movement of electrons filling holes create net charge movement contributing to electrical conduction

+

+++

+ +

Conductivity of Semiconductor

• p: concentration of holes

• n: concentration of electrons

• h: hole mobility

• e: electron mobility

eh enep eh

34

11