EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf ·...

36
EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 1 EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic noise – Switched-capacitor integrators DDI integrators LDI integrators Effect of parasitic capacitance Bottom-plate integrator topology – Resonators – Bandpass filters – Lowpass filters Termination implementation Transmission zero implementation – Switched-capacitor filter design considerations – Switched-capacitor filters utilizing double sampling technique – Effect of non-idealities EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 2 Summary of last lecture • Continuous-time filters continued – Various Gm-C filter implementations – Comparison of continuous-time filter topologies • Switched-capacitor filters – Emulating resistor via switched-capacitor network – 1st order switched-capacitor filter – Switch-capacitor filter considerations: • Issue of aliasing and how to avoid it – Sample at high enough frequency so that the entire range of signals including the parasitics are at freqs < f s /2 – Use of anti-aliasing prefilters • Effect of sample and hold

Transcript of EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf ·...

Page 1: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 1

EE247Lecture 10

• Switched-capacitor filters– Switched-capacitor network electronic noise– Switched-capacitor integrators

• DDI integrators• LDI integrators• Effect of parasitic capacitance• Bottom-plate integrator topology

– Resonators– Bandpass filters– Lowpass filters

• Termination implementation• Transmission zero implementation

– Switched-capacitor filter design considerations– Switched-capacitor filters utilizing double sampling technique – Effect of non-idealities

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 2

Summary of last lecture• Continuous-time filters continued

– Various Gm-C filter implementations– Comparison of continuous-time filter topologies

• Switched-capacitor filters– Emulating resistor via switched-capacitor network– 1st order switched-capacitor filter– Switch-capacitor filter considerations:

• Issue of aliasing and how to avoid it– Sample at high enough frequency so that the entire range of

signals including the parasitics are at freqs < fs /2– Use of anti-aliasing prefilters

• Effect of sample and hold

Page 2: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 3

Switched-Capacitor Network Noise

• During φ1 high: Resistance of switch S1 (Ron

S1) produces a noise voltage on C with variance kT/C (lecture 1- first order filter noise)

• The corresponding noise charge is:

Q2 = C2V2 = C2. kT/C = kTC

• φ1 low: S1 opens This charge is sampled

vIN vOUT

CS1 S2

φ1 φ2

RonS1

C

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 4

Switched-Capacitor Noise

vIN vOUT

CS1 S2

φ1 φ2

RonS2

C

• During φ2 high: Resistance of switch S2 contributes to an uncorrelated noise charge on C at the end of φ2 : with variance kT/C

• Mean-squared noise charge transferred from vIN to vOUT per sample period is:

Q2=2kTC

Page 3: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 5

• The mean-squared noise current due to S1 and S2’s kT/C noise is :

• This noise is approximately white and distributed between 0 and fs /2 (noise spectra single sided by convention) The spectral density of the noise is:

S.C. resistor noise = a physical resistor noise with same value!

Switched-Capacitor Noise

( )2Q 2 2S ince i then i Qf 2k TCfs B st= → = =

22 2k TCfi B s 4k TCf B sf fs2

2 4k T1 i BSince R then : EQ f C f Rs EQ

= =Δ

= =Δ

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 6

Periodic Noise AnalysisSpectreRF

PSS pss period=100n maxacfreq=1.5G errpreset=conservativePNOISE ( Vrc_hold 0 ) pnoise start=0 stop=20M lin=500 maxsideband=10

SpectreRF PNOISE: checknoisetype=timedomainnoisetimepoints=[…]

as alternative to ZOH.noiseskipcount=large

might speed up things in this case.

ZOH1T = 100ns

ZOH1

T = 100ns

S1R100kOhm

R100kOhm

C1pFC1pF

PNOISE Analysissweep from 0 to 20.01M (1037 steps)

PNOISE1

Netlistahdl_include "zoh.def"ahdl_include "zoh.def"

Vclk100ns

Vrc Vrc_hold

Sampling Noise from SC S/H

C11pFC11pFC11pFC11pF

R1100kOhm

R1100kOhm

R1100kOhm

R1100kOhm

Voltage NOISEVNOISE1

NetlistsimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1p

Page 4: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 7

Sampled Noise Spectrum

Density of sampled noise including sinc distortion

Sampled noise normalized density corrected for sinc distortion

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 8

Total Noise

Sampled simulated noise in 0 … fs/2: 62.2μV rms

(expect 64μV for 1pF)

Page 5: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 9

Switched-Capacitor Integrator

-

+

Vin

Vo

φ1 φ2CI

Css

s ignal sampling

s0 I

s0 s I

for f f

f CV V dtinC

Cf Cω

×=

<<

= ×

-

+∫ φ1

φ2

T=1/fs

Main advantage: No tuning needed critical frequency function of ratio of capacitors & clock freq.

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 10

Switched-Capacitor Integrator

-

+

Vin

Vo

φ1 φ2CI

Cs

-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ1

φ2

T=1/fs

φ1 High Cs Charged to Vin

φ2 HighCharge transferred from Cs to CI

Page 6: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 11

Continuous-Time versus Discrete Time Analysis Approach

Continuous-Time

• Write differential equation• Laplace transform (F(s))• Let s=jω F(jω)

• Plot |F(jω)|, phase(F(jω)

Discrete-Time

• Write difference equation relates output sequence to input sequence

• Use delay operator z -1 to transform the recursive realization to algebraic equation in z domain

• Set z= e jωT

• Plot mag./phase versus frequency

[ ]

( ) ( )

o s i s

1o i

V ( nT ) V . . . . . . . . . .( n 1)T

V z V . . . . . . .Z z−

= −−

=

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 12

Discrete Time Design Flow• Transforming the recursive realization to algebraic

equation in z domain:– Use delay operator z :

s1s1/ 2s1s1/ 2s

nT ..................... 1............. z( n 1)T

.......... z( n 1/ 2 )T............. z( n 1)T

.......... z( n 1/ 2 )T

⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦

+

+

→→−→−→+→+

* Note: z = e jωTs = cos(ωTs )+ j sin(ωTs )

Page 7: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 13

Switched-Capacitor IntegratorOutput Sampled on φ1

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

Vo1

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 14

Switched-Capacitor Integrator

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

Vo1

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-3/2) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]Since Vo1= - QI /CI & Vi = Qs / Cs CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ]

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts (n+1/2)Ts

Page 8: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 15

Switched-Capacitor IntegratorOutput Sampled on φ1

sIsI

1s1I

o s o ss sI I inCo s o s sinCC1 1o o inC

CC 1in

C V (nT ) C V C V(n 1)T (n 1)T

V (nT ) V V(n 1)T ( n 1)T

V ( Z ) Z V ( Z ) Z V ( Z )

Vo Z( Z )ZV

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−−

− −

= −− −

= −− −

= −

= − ×

DDI (Direct-Transform Discrete Integrator)

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 16

z-Domain Frequency Response•LHP singularities in s-plane map into inside of unit-circle in z-domain

•RHP singularities in s-plane map into outside of unit-circle in z-domain

•The jω axis maps onto the unit-circle

•Particular values:

– f = 0 z = 1– f = fs/2 z = -1

f = 0

f = fs /2

LHP in s-domain

imag. axis in s-domain z-plane

Page 9: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 17

z-Domain Frequency Response

• The frequency response is obtained by evaluating H(z) on the unit circle at:

z = e jωT = cos(ωTs) + j sin(ωTs)

• Once z=-1 (fs /2) is reached, the frequency response repeats, as expected

• The angle to the pole is equal to 360° (or 2πradians) times the ratio of the pole frequency to the sampling frequency

(cos(ωTs),sin(ωTs))

2πffS

z-plane

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 18

Switched-Capacitor Direct-Transform Discrete Integrator

1s1I

s 1I

CC 1in

CC 1

Vo z( z )zV

z

−−−

= − ×

= − × −

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

Page 10: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 19

DDI IntegratorPole-Zero Map in z-Plane

z -1=0 z = 1on unit circle

Pole from f 0in s-plane mapped to z =+1

As frequency increases zdomain pole moves on unit circle (CCW)

Once pole gets to:z=-1 (f=fs /2)

frequency response repeatsz-plane

f = fs /2

f

f1

1

(z-1)increasing

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 20

DDI Switched-Capacitor IntegratorCI

Ideal Integrator Magnitude Error Phase Error

( )

( )

1s1I

j T / 2s sj T j T / 2 j T / 2I I

sI

sI

C j TC 1in

j jC CC C1

C j T / 2C

C j T / 2C j T

Vo z( z ) , z ezV

e ee1 since : s in 2 je e e

1j e 2 sin T / 2

T / 21 esin T / 2

ωω ω ω

ω

α α

ω

ω

α

ω

ωω ω

−−

−−

− −

= − × =

−= × = × =

= − × ×

= − × ×

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

Page 11: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 21

DDI Switched-Capacitor Integrator

Example: Mag. & phase error for:1- f / fs=1/12 Mag. error = 1% or 0.1dB

Phase error=15 degreeQintg = -3.8

2- f / fs=1/32 Mag. error=0.16% or 0.014dBPhase error=5.6 degreeQintg = -10.2

CI

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

DDI Integrator:magnitude error no problemphase error major problem

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 22

5th Order Low-Pass Switched Capacitor Filter Built with DDI Integrators

Example: 5th Order Elliptic FilterSingularities pushed towards RHP due to integrator excess phase

s-planeFine View

σ

Ideal PoleIdeal Zero

s-planeCoarse View

σ

ωs

-ωs DDI PoleDDI Zero

Page 12: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 23

Frequency (Hz)

Switched Capacitor Filter Build with DDI Integrator

( )ωjH

sf / 2 sf 2fs fContinuous-TimePrototype

SC DDI basedFilter

PassbandPeaking

Zeros lost!

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 24

Switched-Capacitor Integrator Output Sampled on φ2

CI

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

Sample output ½ clock cycle earlierSample output on φ2

Vo

Page 13: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 25

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-3/2) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]

Φ2 Qs [(n+1/2) Ts] = 0 , QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]

φ1 φ2 φ1 φ2 φ1

Vin

Vo2

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

Switched-Capacitor Integrator Output Sampled on φ2

(n+1/2)Ts

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 26

QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]Vo2= - QI /CI & Vi = Qs / Cs CI Vo2 [(n+1/2) Ts] = CI Vo2 [(n-1/2) Ts ] -Cs Vi [n Ts ]Using the z operator rules:

CI Vo2 z1/2 = CI Vo2 z-1/2 - Cs Vi

1 / 2s1I

CC 1in

Vo2 z( z )zV

−−−

= − ×

Switched-Capacitor Integrator Output Sampled on φ2

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

Page 14: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 27

LDI Switched-Capacitor Integrator

( )

( )

1/ 2s1I

j T / 2s e s 1j T j T / 2 j T / 2I I

sI

sI

C j TC 1 zin

C CC C1

CC

CC j T

Vo2 z( z ) , z eV

e e e

1j 2 sin T / 2

T / 21sin T / 2

ωω ω ω

ω

ω

ωω ω

−−

−− − +

− −

= − × =

= − × = ×

= − ×

= − ×

CI

Ideal Integrator Magnitude Error

No Phase Error! For signals at frequencies << sampling freq.

Magnitude error negligible

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

LDI

LDI (Lossless Discrete Integrator) same as DDI but output is sampled ½clock cycle earlier

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 28

Frequency Warping• Frequency response

– Continuous time (s-plane): imaginary axis– Sampled time (z-plane): unit circle

• Continuous to sampled time transformation– Should map imaginary axis onto unit circle– How do S.C. integrators map frequencies?

12s

S.C. 11

1s2

C zH ( z )C zint

C

C j sin f Tint π

−= −−

= −

Page 15: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 29

CT – SC Integrator ComparisonCT Integrator SC Integrator

int

s s

CRCf C

τ = =Identical time constants:

Set: HRC(fRC) = HSC(fSC)

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

12s

SC 11

1s2 s

C zH ( z )C zint

C

C j sin f Tint SCπ

−= −−

= −

RC1

12 RC

H ( s )s

jf

τ

π τ

= −

= −

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 30

LDI Integration

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

• “RC” frequencies up to fs /πmap to physical (real) “SC”frequencies

• Frequencies above fs /π do not map to physical frequencies

• Mapping is symmetric about fs /2 (aliasing)

• “Accurate” only for fRC << fs0 0.1 0.2 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fRC /fs

f SC/f s

1/π

Slope=1

Page 16: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 31

Switched-Capacitor Filter Built with LDI Integrators( )ωjH

Zeros Preserved

Frequency (Hz) 2fs ffsfs /2

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 32

Switched-Capacitor IntegratorParasitic Sensitivity

Effect of parasitic capacitors:

1- Cp1 - driven by opamp o.k.

2- Cp2 - at opamp virtual gnd o.k.

3- Cp3 – Charges to Vin & discharges into CI

Problem parasitic sensitivity

-

+

VinVo

φ1 φ2CI

CsCp3

Cp2

Cp1

Page 17: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 33

Parasitic InsensitiveBottom-Plate Switched-Capacitor Integrator

Sensitive parasitic cap. Cp1 rearrange circuit so that Cp1 does not charge/discharge

φ1=1 Cp1 grounded

φ2=1 Cp1 at virtual ground

Solution: Bottom plate capacitor integrator

Vi+

Cs-

+ Vo

CI

Cp1

Cp2

φ1 φ2

Vi-

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 34

Bottom Plate Switched-Capacitor Integrator

12

12

1s s1 1I I

s s1 1I I

C Cz zC C1 z 1 z

C Cz 1C C1 z 1 z

−−

− −

− −

− −

− −− −

Note: Different delay from Vi+ &Vi- to either output

Special attention needed for input/output connections

Vi+

Cs-

+ Vo

CIφ1 φ2

Vi-

Vi+on φ1

Vi-on φ2

Vo1on φ1

Vo2on φ2

φ1

φ2

Vo2

Vo1

Output/Inputz-Transform

Page 18: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 35

Bottom Plate Switched-Capacitor Integratorz-Transform Model

12

12

11 1

1 1

z z1 z 1 z

z 11 z 1 z

−−− −

− −

− −

−− −

121

z1 z

−−

12z−

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-

φ1

φ2

Vo2

Vo1

Vi+

Vi- 12z+ Vo2

Vo1

LDI

s IC C

s IC C−

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 36

LDI Switched-Capacitor Ladder Filter

CsCI

12

1z

1 z

−−

-+

+ - + -3

1sτ 4

1sτ 5

1sτ

12z

12z

+

12z

+12z

+

12z

CsCI

CsCI

−CsCI

−CsCI

CsCI

Delay around integrator loop is (z-1/2 . z+1/2 =1) LDI function

12

1z

1 z

−−

12

1z

1 z

−−12z

Page 19: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 37

Switched-Capacitor LDI Resonator

2s

ω

1s

ω−

C1 1f1 sR C Ceq1 2 2C1 3f2 sR C Ceq3 4 4

ω

ω

= = ×

= = ×

Resonator Signal Flowgraph

φ1 φ2

φ2 φ1

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 38

Fully Differential Switched-Capacitor Resonator

φ1 φ2

φ1 φ2

Page 20: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 39

Switched-Capacitor LDI Bandpass FilterUtilizing Continuous-Time Termination

0s

ω

0s

ω−

C C3 1f0 s sC C4 2C2Q CQ

ω = × = ×

=

Bandpass FilterSignal Flowgraph

CQ

Vi

Vo-1/QVo2Vi

Vo2

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 40

s-Plane versus z-PlaneExample: 2nd Order LDI Bandpass Filter

σ

jωs-plane z-plane

Page 21: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 41

Switched-Capacitor LDI Bandpass FilterContinuous-Time Termination

0.1 1 10f0

0

-3dBΔf

Frequency

Mag

nitu

de (d

B)

C1 1f f0 s2 C2f0f Q

C C1 Q1 fs2 C C2 4

π

π

= ×

Δ =

= ×

Both accurately determined by cap ratios & clock frequency

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 42

Fifth Order All-Pole LDI Low-Pass Ladder FilterComplex Conjugate Terminations

•Complex conjugate terminations (alternate phase switching)

Termination Resistor

Termination Resistor

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 22: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 43

Fifth-Order All-Pole Low-Pass Ladder FilterTermination Implementation

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 44

Sixth-Order Elliptic LDI Bandpass Filter

TransmissionZero

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 23: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 45

Use of T-Network

High Q filter large cap. ratio for Q & transmission zero implementationTo reduce large ratios required T-networks utilized

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 46

Sixth Order Elliptic Bandpass FilterUtilizing T-Network

•T-networks utilized for:• Q implemention• Transmission zero implementation

Q implementation

Zero

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 24: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 47

Switched-Capacitor Resonator

Regular samplingEach opamp busy settling only during one of the two clock phases

Idle during the other clock phase

φ1 φ2

φ2 φ1

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 48

Switched-Capacitor Resonator Using Double-Sampling

Double-sampling:

•2nd set of switches & sampling caps added to all integrators

•While one set of switches/caps sampling the other set transfers charge into the intg. cap

•Opamps busy during both clock phases

•Effective sampling freq. twice clock freq. while opamp bandwidth requirement remains the same

Page 25: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 49

Double-Sampling Issues

fclock fs= 2fclock

Issues to be aware of:- Jitter in the clock - Unequal clock phases -Mismatch in sampling caps.

parasitic passbands Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of

Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 50

Double-Sampled Fully Differential S.C. 6th Order All-Pole Bandpass Filter

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 26: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 51

Sixth Order Bandpass Filter Signal Flowgraph

γ

1Q

− 0s

ω

inV 1−

0s

ω−

1Q

−0s

ω0s

ω−

0s

ω−0

outV1γ−

γγ−

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 52

Double-Sampled Fully Differential 6th Order S.C. All-Pole Bandpass Filter

Ref: B.S. Song, P.R. Gray "Switched-Capacitor High-Q Bandpass Filters for IF Applications," IEEE Journal of Solid State Circuits, Vol. 21, No. 6, pp. 924-933, Dec. 1986.

-Cont. time termination (Q) implementation-Folded-Cascode opamp with fu = 100MHz used-Center freq. 3.1MHz, filter Q=55-Clock freq. 12.83MHz effective oversampling ratio 8.27-Measured dynamic range 46dB (IM3=1%)

Page 27: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 53

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain• Opamp finite bandwidth• Finite slew rate of the opamp

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 54

Effect of Opamp Non-IdealitiesFinite DC Gain

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-DC Gain = a

sI s 1

I

1

Cs C C

s C a

o

o a

1H( s ) f

s f

H( s )s

Q a

ωω

≈ −+ ×

−≈

+ ×

⇒ ≈ Finite DC gain same effect in S.C. filters as for C.T. filters

Page 28: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 55

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Assumption-Opamp does not slew (will be revisited)Opamp has only one pole exponential settling

Vo

φ2

T=1/fs

settlingerror

time

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 56

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

actual idealIk k 1

I s

I t

I s s

t s

C1 e e ZH ( Z ) H ( Z )

C CC f

where kC C f

f Opamp unity gain frequency , f Clock frequency

π

− − −⎡ ⎤− + ×≈ ⎢ ⎥+⎣ ⎦

= × ×+

→ − − →

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft

Vo

φ2

T=1/fs

settlingerror

time

Page 29: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 57

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

Magnitude deviation due to finite opamp unity-gain-frequency

Example: 2nd

order bandpass with Q=25

fc /ft

|Τ|non-ideal /|Τ|ideal (dB)

fc /fs=1/32fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 58

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

Example:For 1dB magnitude response deviation:1- fc/fs=1/12

fc/ft~0.04ft>25fc

2- fc/fs=1/32fc/ft~0.022

ft>45fc

3- Cont.-Timefc/ft~1/700

ft >500fc fc /ft

|Τ|non-ideal /|Τ|ideal (dB)

fc /fs=1/32fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Page 30: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 59

Effect of Opamp Finite Bandwidth Maximum Achievable Q

fc /ft

Max. allowable biquad Q for peak gain change <10%

C.T. filters

Oversampling Ratio

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 60

Effect of Opamp Finite Bandwidth Maximum Achievable Q

fc /ft

C.T. filters

Example:For Q of 40 required Max. allowable biquad Q for peak gain change <10%

1- fc/fs=1/32fc/ft~0.02

ft>50fc

2- fc/fs=1/12fc/ft~0.035

ft>28fc

3- fc/fs=1/6fc/ft~0.05

ft >20fcRef: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-

Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Page 31: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 61

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

Critical frequency deviation due to finite opamp unity-gain-frequency

Example: 2nd

order filterfc /ft

Δωc /ωc

fc /fs=1/32

fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 62

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

fc /ft

Δωc /ωc

fc /fs=1/32

fc /fs=1/12

Active RC

Example:For maximum critical frequency shift of <1%

1- fc/fs=1/32fc/ft~0.028

ft>36fc

2- fc/fs=1/12fc/ft~0.046

ft>22fc

3- Active RCfc/ft~0.008

ft >125fc

C.T. filters

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Page 32: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 63

Sources of Distortion in Switched-Capacitor Filters

• Distortion induced by finite slew rate of the opamp

• Opamp output/input transfer characteristic non-linearity

• Capacitor non-linearity• Distortion incurred by finite setting time of the

opamp• Distortion due to switch clock feed-through

and charge injection

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 64

What is Slewing?

oV

Vi+Vi-

φ2

Cs

-

+

Vin

Vo

φ2CI

Cs

CI

CL

Assumption:Integrator opamp is a simple class Atransconductance type differential pairwith fixed tail current Iss

Iss

Page 33: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 65

oV

Vi+Vi-

φ2

Cs

CI

CL

Iss

What is Slewing?Io

VinVmax

Imax =Iss

Slope ~ gm

VCs > VmaxOutput current constant Io=Iss Vo ramps up/down Slewing

After Vcs is discharged enough to have: VCs <Vmax Io=gm VCs Exponential or over-shoot settling

Io

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 66

Distortion Induced by Opamp Finite Slew Rate

Page 34: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 67

Ideal Switched-Capacitor Output Waveform

φ1

φ2

Vin

Vo

Vcs

Clock-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ2 High Charge transferred from Cs to CI

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 68

Slew Limited Switched-CapacitorOutput Settling

φ1

φ2

Vo-real

Vo-ideal

Clock

Slewing LinearSettling

Slewing LinearSettling

Page 35: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 69

Distortion Induced by Finite Slew Rate of the Opamp

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 70

Distortion Induced by Opamp Finite Slew Rate

• Error due to exponential settling changes linearly with signal amplitude

• Error due to slew-limited settling changes non-linearly with signal amplitude (doubling signal amplitude X4 error)

For high-linearity need to have either high slew rate or non-slewing opamp

( )( )

( )

o s

o s

2T2ok 2r s

2T2o3 r s

8 sinVHD S T k k 4

8 sinVHD S T 15

ω

ω

π

π

=−

→ =

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

Page 36: EE247 Lecture 10 - EECS Instructional Support Group Home Pageee247/fa06/lectures/L10_f06_3.pdf · EE247 Lecture 10 • Switched-capacitor filters – Switched-capacitor network electronic

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 71

Distortion Induced by Opamp Finite Slew Rate Example

-120

-100

-80

-60

-40

-20

1 10 100 1000

HD

3 [d

B]

(Slew-rate / fs ) [V]

f / fs =1/32

f / fs =1/12

Vo =1V V

o =2V

Vo =1V V

o =2V

EECS 247 Lecture 10: SC Filters © 2006 H. K. Page 72

Distortion Induced by Finite Slew Rate of the Opamp

• Note that for a high order switched capacitor filter only the last stage slewing will affect the output linearity (as long as the previous stages settle to the required accuracy)

Can reduce slew limited linearity by using an amplifier with a higher slew rate only for the last stageCan reduce slew limited linearity by using class A/B amplifiers

• Even though the output/input characteristics is non-linear the significantly higher slew rate compared to class A amplifiers helps improve slew rate induced distortion

• In cases where the output is sampled by another sampled data circuit (e.g. an ADC or a S/H) no issue with the slewing of the output as long as the output settles to the required accuracy & is sampled at the right time