EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active:...

21
1 EE241 Spring 2010 EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 19: Managing Leakage Announcements Homework #3 due April 8 Quiz #3 on April 13 Reading: Chapter 6, 8, 10, from Rabaey LPDE 2

Transcript of EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active:...

Page 1: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

1

EE241 Spring 2010EE241 - Spring 2010Advanced Digital Integrated Circuits

Lecture 19: Managing Leakage

Announcements

Homework #3 due April 8

Quiz #3 on April 13

Reading: Chapter 6, 8, 10, from Rabaey LPDE

2

Page 2: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

2

Outline

Last lectureDVS

Clock gating

This lectureLeakage reduction techniques

3

Leakage ManagementLeakage Management

Page 3: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

3

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

5

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Reducing Leakage

Using lower supply

Using higher thresholdsChannel doping

Body biasing

Reduces drive current

Using stack effectStacked devices

6

Sleep transistors

Using longer transistorsIncrease in active power

Page 4: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

4

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

7

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Leakage vs. Supply

0.8

0.9

1

50

60

0 2

0.3

0.4

0.5

0.6

0.7

0.8

Del

ay

(nor

mal

ized

)

20

30

40

En

erg

y (n

orm

aliz

ed)

Switching power

Leakage power

Delay

3-10x

8

0

0.1

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V DD [V]

0

10

Page 5: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

5

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

9

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Technology Options

Ion, HS, LP

Ioff,HP

Ioff,LP

Ig,HP

HP

LP (LOP)

10

180 130 90 65 45

Technology [nm]

Ig,LP

Page 6: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

6

Using Multiple Thresholds

11Yano, SSTCW’00

12

Page 7: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

7

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

13

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Longer Channels

6

7

8

nA

]

Leakage Current35%

•10% longer gates reduce leakage by 35%

0

1

2

3

4

5

0.1 0.15 0.2 0.25 0.3

Lea

kag

e C

urr

ent

[n

Switching energy10%

L

g y• Increases switching energy by 21% with W/L = const.

W/L = const.

14

Gate Length [um]Lnom

•Attractive when don’t have to increase W (memory)•Doubling L reduces leakage by 3x (in 0.13um)•Much stronger effect in 45nm!•Effect improves with more aggressive devices

Page 8: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

8

15

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

16

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDDVariable VTh

+ Input control

+ Variable VTh

Page 9: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

9

Stack Effect

Reduction (in 0.13μ):

17Narendra, ISLPED’01

Stack Forcing

18

Tradeoffs:• W/2 – ¼ of drive current, same loading• 2W – 4x loading, same drive current

Narendra, ISLPED’01

Page 10: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

10

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

19

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Input Control

20

May take many cycles to force the desired state in a block

Page 11: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

11

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

21

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Dynamic Sleep Transistor

VCCON: gate

Active modePMOS forward body bias

...

CC

Virtual VCC

ON: gateoverdrive

Noise on virtual supply

Dual-VT

core

22

ON: gateoverdrive VSS

Virtual VSS

Courtesy of J. Tschanz, Intel (ISSCC’03)

Page 12: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

12

Dynamic Sleep Transistor

VCCOFF: gate

PMOS reverse body biasIdle mode

...

Virtual VCCunderdrive

Virtual supply collapse

23

VSS

Virtual VSSOFF: gateunderdrive

Courtesy of J. Tschanz, Intel (ISSCC’03)

How to Size the Sleep Transistor?

Circuits in active mode see the sleep transistor as extra power line resistance

The wider the sleep transistor the betterThe wider the sleep transistor, the better

Wide sleep transistors cost areaMinimize the size of the sleep transistor for given ripple (e.g. 5%)

Need to find the worst case vectorSleep transistor is not for free – it will degrade the performance in active mode

24

performance in active modeCharging and discharging the virtual rails costs energy

Page 13: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

13

Sleep Transistor

High-VTH transistor has to be very large for low resistancein linear region. gLow-VTH transistor needs much less areafor the same resistance.

25Courtesy: R. Krishnamurthy, Intel

Sleep Transistor Layout

ALUSleep

transistor cells

Area overhead

PMOS 6%

26

PMOS 6%

NMOS 3%

Tschanz, ISSCC’03

Page 14: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

14

Sleep in Standard Cells

27Uvieghara, ISSCC’04

Sleep Transistor Grid

No sleep transistor PMOS & NMOSsleep transistors

Virtual VCC Virtual VSS

VCC M4VCC M4

sleep transistors

28

VSSM4VSS

M4

M3 M3 M3 M3Tschanz, ISSCC’03

Page 15: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

15

Preserving State

Virtual supply collapse in sleep mode will cause the loss of state in registers

Putting the registers at nominal VDD would preserve the state

These registers leak

The second supply needs to be routed as well

Can lower VDD in sleep

29

Some impact on robustness, noise and SEU immunity

State preservation and recovery

Register Design

SLEEP High VT

SLEEP High VT

SLEEP High VT

SLEEP High VT

30

g T

CLK

High VT

[Mutoh95]

Page 16: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

16

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

31

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Shared-Well Dual Supply

wer

[mW

]

40

50

60

-42%

[pJ]

Room temp.

600

700

800

Single-supply

Dual supply

1.16GHz

VDDL=1.4VEnergy:-25.3%

In 180nm

VDDL [V]

Leak

age

Pow

0

10

20

30

40

1.0 1.2 1.4 1.6 1.8 2.0

VDDHDomain

VDDLDomain

VDDH

Ener

gy [

TCYCLE [ns]

200

300

400

500

0.6 0.8 1.0 1.2 1.4 1.6

pp y(VDDH=1.8V)Delay :+2.8%

VDDL=1.2VEnergy:-33.3% Delay :+8.3%

32VDDH circuit

VDDL

VSS

VDDL circuit

Shimazaki, ISSCC’03

Page 17: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

17

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

33

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Dynamic Body Bias

Similar concept to dynamic voltage scalingControl loop adjusts the substrate bias to meet the timingtiming

Can be used just as runtime/sleep

Limited range of threshold adjustments (<100mV)Limited leakage reduction (<10x)No delay penalty

C i d b f d bi

34

Can increase speed by forward bias

Energy cost of charging/discharging the substrate capacitance(but doesn’t need a regulator)

Page 18: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

18

Dynamic Body Bias

35

Dynamic Body Bias

450mVFBB

VCC

PMOSbody

PMOSForward body bias

Active mode

... ...

450mVFBB

VSS

body

NMOSbody

bias

NMOSbias

PMOSbodyVHIGH

Forward body bias (FBB)

Local VCC tracking

Idle mode

Dual-VT

core

36

PMOSbias

... ...NMOS

bias

500mVRBB

500mVRBB

VCC

VSS

NMOSbody

VLOW

Reverse body bias (RBB)

Triple well needed

Tschanz, ISSCC’03

Page 19: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

19

Body Bias Layout

Sleep transistor LBGsALU core LBGs

ALUNumber of ALU core LBGs

30

Number of sleep transistor LBGs

10

PMOS device width 13mm

ALU

37

Area overhead 8%

Sleep transistor LBGs

ALU core LBGs

1

Leakage Power Savings vs. Decap

Virtual VCC1.32V, 75°Cwer

0 2

0.4

0.6

0.8

1.32V75°C

Overhead: charging &

Dual-VTcore

lized

leak

age

po

in id

le m

od

e

40%

Low-leakage 133nF decap on

virtual VCC

No decap on virtual VCC

38

0

0.2

0.01 1 100 10000

Minimize capacitance on virtual VCC

g gdischarging of virtual VCC

capacitance

Idle time

10ns 1s 100s 10ms10sNo

rmal 90%

Page 20: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

20

Decoupling Capacitor Placement

Longertime

OxideleakageDual-VT

core

Reducedleakage

timeconstant

Dual-VTcore

39

Decap on full supply Decap on virtual supply

Performance

Convergence time

Oxide leakage savings

20%

Total Active Power Savings(Fixed activity: = 0.05)

0.5 5 50 500 5000 50000

Number of consecutive active cycles (TON)

5%

10%

15%

20%

ota

l po

we

r sa

vin

gs

Body bias (1.28V): active: FBB, idle: ZBB

PMOS sleep transistor (1.32V)

otal

pow

er s

avin

gs Max 18%

Max 8%

40

0%

5%

10 100 1000 10000 100000 1000000Number of idle cycles

To

Reference: 450mV FBB to core with clock gating, 1.28V, 4.05GHz, 75°C

Number of consecutive idle cycles (TOFF)

Power savings for TOFF > ~100 idle cycles

To

Page 21: EE241 - Spring 2010bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s10/Lectures/Lectu… · active: FBB, idle: ZBB PMOS sleep transistor (1.32V) o tal power savings Max 18% Max 8%

21

Techniques Summary

80

100

Standby supply reduction3 4 l k d ti

Reduced VDD

20

40

60

Il ea

k(n

orm

aliz

ed

)

Sleep transistor - up to~25x leakage reduction

~3-4x leakage reduction

Reverse bias~3x leakage

reduction

Standby supply + reverse bias~10x leakage reduction

Off-transistorload line

41

0

20

0 0.2 0.4 0.6 0.8 1

VDD [V]

Next Lecture

Optimal supplies and thresholds

42