EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In...

18
1 EE241 Spring 2011 EE241 - Spring 2011 Advanced Digital Integrated Circuits Lecture 5: Transistor Models: I-V, Q-V, leakage leakage Outline Device I-V, Q-V models Reading: Rabaey, LPDE, Ch. 2, papers from the website 2

Transcript of EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In...

Page 1: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

1

EE241 Spring 2011EE241 - Spring 2011Advanced Digital Integrated Circuits

Lecture 5: Transistor Models: I-V, Q-V, leakageleakage

Outline

Device I-V, Q-V models

Reading: Rabaey, LPDE, Ch. 2, papers from the website

2

Page 2: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

2

Device ModelsDevice Models

Drain Current

Current model

2

l Saturation condition

LEVV

VVLEC

L

WI

CThGS

ThGSCoxeffDSat

2

2

4

LEVV

LEVVV

CThGS

CThGSDSat

Page 3: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

3

Velocity Saturation

l In 0.13m technology, ECL is about 0.5VGS + 0.7V

l Can calculate VDSat (VTh ~ 0.25V)

VGS [V] 0.2 0.4 0.6 0.8 1.0 1.2

VDSat [V] 0 0.13 0.26 0.37 0.46 0.55

DSat ( Th )

l For VGS – VTh << ECL, (VGS < 1V)VDSat is close to VGS-VTh

5

DSat GS Th

l For large VGS, VDSat would start bending upwards toward ECL, but we won’t even notice it with 1.2V supply.

l Therefore ECL can be frequently approximated with a constant term (ECL = 1.2V in 0.13m)

Velocity Saturation

7001 2V

200

300

400

500

600

I DS

[V]

0 6V

0.8V

1.0V

1.2V

6

0

100

0 0.2 0.4 0.6 0.8 1 1.2

V DS [V]

0.4V

0.6V

Page 4: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

4

Output Resistance

Slope in I-V characteristics caused by:Channel length modulation

Drain-induced barrier lowering (DIBL)

Both effects increase the saturation current beyond the saturation point

The simulations show approximately linear

Substrate current induced body effect

7

dependence of Ids on Vds in saturation.

[BSIM 3v3 Manual]

Output Resistance

Channel length modulationAs the drain voltage increases beyond the saturation

lt V th t ti i t li htl l t voltage Vdsat, the saturation point moves slightly closer to the source (L)The equation is modified by replacing L with LTaylor expansion Ids = Idsat(1 + Vds/VA)

VGS

8

L

S D

VDSG

Vdsatn n

Page 5: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

5

Output Resistance

DIBLIn a short channel device, source-drain distance is comparable to the depletion region widths, and the drain voltage can modulate the threshold

VTh = VTh - Vds

Taylor expansion

9

ChannelL (D)0 (S)

Long channel

Short channel Vds = 0.2V Vds = 1.2V

[Taur, Ning]

Other Models: Alpha Power Law Model

Simple model, sometimes useful for hand analysis

ThGSoxDS VVCL

WI

2l Parameter is between

1 and 2.

l In 0.13 - 0.25m

10

technology ~ 1.2.

[Sakurai, Newton, JSSC 4/90]

Page 6: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

6

Alpha Power Law Model

This is not a physical model

Simply empirical:p y pCan fit (in minimum mean squares sense) to variety of ’s, VTh

Need to find one with minimum square error – fitted VThcan be different from physical

Can also fit to 1

11

Can also fit to = 1

What is VTh?

K(VGS –VTHZ) Model ( = 1)

Drain current vs. gate-source voltage

8 0E-04

4.0E-04

6.0E-04

8.0E 04

I DS

[A

]

12

0.0E+00

2.0E-04

0 0.2 0.4 0.6 0.8 1 1.2

V GS [V]VTHZ

Page 7: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

7

Application of Models: NAND Gate

2-input NAND gate VDD

Out

B

A

13

Sizing for equal transistions:• P/N ratio (-ratio) of 1.6 about• Upsizing stacks by a factor proportional to the stack height

Transistor Stacks

With transistor stacks, VDS,VGS reduce.Unified model assumes outVUnified model assumes VDSat = const.For a stack of two, appears that both have exactly double Rekv of an inverter with the same width

14

Therefore, doubling the size of each, should make the pull down R equivalent to an inverter

Page 8: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

8

Velocity Saturation

As (VGS-VTh)/ECL changes, the depth of saturation changes

LEVV

VVLEC

L

WI

CThGS

ThGSCoxeffDSat

2

2

l For VGS, VDS = 1.2V, ECL is 1.3V l With double length, ECL is 2.6V (in this model)

15

l Stacked transistors are less saturatedl VGS-VTh = 0.95V, IDSat ~ 2/3 of inverter IDSat (63%)l Therefore NAND2 should have pull-down sized 1.5Xl Check any library NAND2’s

Velocity Saturation

How about NAND3?

IDSat = 1/2 of inverter IDSat (instead of 1/3)

How about PMOS networks?

NOR2 – 1.8x, NOR3 – 2.4x

What is ECL for PMOS?

16

Page 9: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

9

Saturation Currents

Model Usage

WDelay estimates with VDD >> VTH

Long channel devices (rare in digital)

Delay estimates in a wider range of VDD’s

DS GS THZ

WI K V V

L

2

oxDS GS TH

CWI V V

L

22

oxDS GS TH

CWI V V

L

17

Universal model, easy to remember, does not handle stacks correctly

Handles stacks correctly

2

2Dsat

DS ox GS TH DsatVW

I C V V VL

2

2C GS THox

DSGS TH C

E L V VCWI

L V V E L

Transistor Leakage

Page 10: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

10

Transistor Leakage

2.5

3

3.5

1m

Subthreshold slope

0

0.5

1

1.5

2

IDS

[uA

]

100u

1u

10u

19Leakage current is exponential with VGS

VDS = 1V

-1

-0.5

0 10 20 30 40 50 60 70 80 90 100

VGS [V]

100n

0 10.5

Transistor Leakage (130nm)

6

8

2

4

I DS

[nA

]

20

Two effects:• diffusion current (like a bipolar transistor)• exponential increase with VDS (DIBL)

00 0.2 0.4 0.6 0.8 1 1.2 1.4

V DS [V]

Page 11: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

11

Transistor Leakage (45nm PTM)

100

120

20

40

60

80ID

S [n

A]

21

Another view of DIBL>10x increase in leakage

0

20

0 20 40 60 80 100 120

VDS[V]

0. 0. 0. 0. . .

Subthreshold Current

Subthreshold behavior can be modeled physically

qkTVds

qkTmThVgV

ds eeq

kT

L

WI 1

2

[Taur Ning]

22

S

dsVThVgsV

ds W

WII

100

0

Or: [Taur, Ning]

Page 12: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

12

Leakage Components

23Courtesy of IEEE Press, New York. 2000

Leakage Components

1. pn junction reverse bias current

2. Weak inversion

3. Drain-induced barrier lowering (DIBL)

4. Gate-induced drain leakage (GIDL)

5. Punchthrough

6. Narrow width effect

7. Gate oxide tunneling

8. Hot carrier injection

24

j

Page 13: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

13

Leakage Components

Drain-induced barrier lowering (DIBL)Voltage at the drain lowers the source potential barrier

Lowers VTh, no change on S

Gate-induced drain leakage (GIDL)High field between gate and drain increases injection of carriers into substrate -> leakage (band-to-band leakage)

25

Transistor C-V

Page 14: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

14

MOS Transistor as a Switch

Discharging a capacitor• Can solve:

DS DS DSi i v

DSDS DS

dvi C v

dt

+

-

vDSiDS

vGS

C

27

• Prefer using equivalent resistances• Find tpHL

• Find equivalent C, R ,

( )dDS DSpHL

DS GS DS

C v vt

i v v

MOS Capacitances

Gate Capacitance

CGSO = CGDO

= C xdW

p

Overlap Capacitance

28

= CoxxdW

= CoW(often lump fringe capinto it)

Page 15: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

15

MOS Capacitances

Gate capacitanceNon-linear channel capacitance

Linear overlap, fringing capacitances

Miller effect on overlap, fringing capacitance

Non-linear drain diffusion capacitancePN junction

Wiring capacitances

29

g pLinear

Gate-Channel Capacitance

G

CGC

G

CGC

G

CGC

S D S D S D

Cut-off Resistive Saturation

CGB CGS CGD

30

+ overlap

Page 16: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

16

Gate and Drain CapacitancesGate capacitance

0.13um Cgs/um vs. Vgs

1 2E 15

1.4E-15

1.6E-15

1.8E-15

2.0E-15

0.13um Cdb/um vs . V ds

1 60E 15

1.80E-15

2.00E-15

db

(F

)

Drain capacitance

0.0E+00

2.0E-16

4.0E-16

6.0E-16

8.0E-16

1.0E-15

1.2E-15

0.0 0.4 0.8 1.2

Vgs [V]

Cgs

[F

]

NMOS VDS=VDD

PMOS VDS=VDD

NMOS VDS=0

PMOS VDS=0

310.00E+00

2.00E-16

4.00E-16

6.00E-16

8.00E-16

1.00E-15

1.20E-15

1.40E-15

1.60E-15

0.0 0.4 0.8 1.2

Vds (V)

Cd

NMOS VGS=0

PMOS VGS=0

Gate Capacitances

Gate capacitance is non-linearFirst order approximation with CoxWL (CoxL = 1.5fF/m)pp ox ( ox )

Need to find the actual equivalent capacitance by simulating it

Since this is a linear approximation of non-linear function, it is valid only over the certain range

Different capacitances for HL LH transitions and power

32

Different capacitances for HL, LH transitions and power computation

Drain capacitance non-linearity compensatesBut this changes with fanout

Page 17: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

17

Gate Capacitance vs. VTh, VDD

33

Nose, Sakurai, ISLPED’00

Gate Capacitance with Scaling

High-k allows for EOT scaling, increases Cgate

But some of it is masked by But some of it is masked by fringe/overlap caps

Scaling advantageTransconductance increases

If fringe cap can be controlled, win on power

34

Page 18: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/.../Lecture5-Models2.pdf · 3 Velocity Saturation l In 0.13 m technology, ECL is about 0.5VGS + 0.7V l Can calculate VDSat (VTh ~ 0.25V

18

Next Lecture

Delay modeling

35