EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

236
11-Aug-14 1 11-Aug-14 1 EE2001 CIRCUIT ANALYSIS (2014/2015 Session) Lecture 1 to 6 Dr Er Meng Joo Professor School of EEE Office : S1-B1c-90 Tel : 67904529 E-mail : [email protected] https://ntulearn.ntu.edu.sg

Transcript of EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

Page 1: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 1/236

11-Aug-

11-Aug-14 1

EE2001

CIRCUIT ANALYSIS

(2014/2015 Session)

Lecture 1 to 6

Dr Er Meng JooProfessor

School of EEEOffice : S1-B1c-90Tel : 67904529

E-mail : [email protected]://ntulearn.ntu.edu.sg

Page 2: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 2/236

11-Aug-

11-Aug-14 2

CONSULTATION HOURS

Academic Year 2014/2015 (Semester 1)

S/No Day of Week Time

1. Monday 3.30 pm – 4.30 pm

2. Thursday 3.30 pm – 4.30 pm

3. Friday 3.30 pm – 4.30 pm

Page 3: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 3/236

Page 4: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 4/236

11-Aug-

Learning Objective

• This courses focuses on the fundamental principles

of circuit theorems and circuit elements, DC/AC andthree-phase circuits, transient and steady-stateresponses, circuit analysis using Laplace Transforms

• In this course, we will learn various techniques(“tools”) to analyze the operation of real circuits.

• Our major concern is the analysis of circuits, i.e. thestudy of the behavior of the circuit, not the creationof circuits, i.e., the engineering design of the circuit.

11-Aug-14 4

Page 5: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 5/236

11-Aug-

Learning Outcome

• This course equips students with the knowledge for

the analysis of DC and AC linear circuits.

• Students would be able to set up independentequations of linear circuits and solve them using thetechniques and skills acquired in this course.

A sound knowledge of the analytical techniqueslearnt in this course can serve as good foundationof the study of linear control systems, powernetworks, electronics and communication systemsin later years.

11-Aug-14 5

Page 6: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 6/236

11-Aug-

11-Aug-14 6

New CA Weightage System

1. CA weightage is 40 % and final-examinationweightage is 60 %.

2. Two laboratory modules (L2001A and L2001B)are integrated in EE2001.

3. Summary:

Quiz Two take-

homeassignments (5% each)

Practical works

(L2001A andL2001B-5 %each)

Final

examination

20 % 10 % 10 % 60 %

Page 7: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 7/236

11-Aug-

Quiz

• The Quiz mark contributes to 20 % of the final mark

• One quiz will be conducted after the recess week duringthe tutorial class i.e. Week 8 (6 to 10 Oct., 2014).

• Topics to be tested: Tutorials 1 to 6.

• Students can only take Quiz in their respective tutorialgroups.

• Students must present their ID with photo for takingattendance.

• Zero marks will be given for absentees without validreasons or MC’s.

• Absentees must inform the tutor through email withinthe same day or earlier of the Quiz to request for amake-up quiz.

11-Aug-14 7

Page 8: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 8/236

11-Aug-

Assignments

• Two take-home assignments.

• Assignment questions will be distributed by tutors during

the tutorial class.

• One from Part 1 (5%) and another from Part II (5%).

• Assignment 1 will be given out in Week 6 while Assignment 2 will be given out in Week 9.

• Students will be given two weeks to complete eachassignment

• Students have to submit solutions to their respectivetutors on or before the end of two weeks i.e. Week 8 and11 for Assignments 1 and 2 respectively.

• Late submissions will not be entertained.

• Marked assignments will be returned to students.

11-Aug-14 8

Page 9: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 9/236

11-Aug-

Laboratory Modules

• Two laboratory modules are integrated in thiscourse.

• L2001A: Circuit Theorems and Time Responses of Passive Networks (5%).

• L2001B: Two-port Network Parameters andTransient Response of a General Second-order

Circuit (5%).

• Each laboratory module contributes to 5 % of thefinal mark.

11-Aug-14 9

Page 10: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 10/236

11-Aug-

11-Aug-14 10

Text Book :

Charles K. Alexander and Matthew N.O. Sadiku, “Fundamentals of ElectricCircuits”, McGraw Hill, 5th Edition.

TK454.A375 2013 x5, Lee Wee Nam

Library, Reserves.

Page 11: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 11/236

11-Aug-

11-Aug-14 11

References:

1. James W. Nilsson and Susan A. Riedel, “ElectricCircuits”, 9th Edition, Pearson/Prentice- Hall,2011. TK454.N712 2011 x7, LWNL, Reserves.

2. William H. Hart, Jr., Jack E. Kemmerly andSteven M. Durbin, “Engineering Circuit

Analysis”, 8th Edition, McGraw-Hill, 2012.

TK454.H426 2012 x2, LWNL, Reserves.

3. M. Nahvi and J.A. Edminister, “Schaum’s OutlinesElectric Circuits”, 5th Edition, McGraw-Hill, 2011 .TK454.E24 2011 x1, LWNL, Reserves.

Page 12: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 12/236

11-Aug-

11-Aug-14 12

Outline

2. Basic Concepts

3. Basic Laws

4. Methods of Analysis

5. Circuit Theorems

6. Operational Amplifiers

1. Introduction

Page 13: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 13/236

11-Aug-

Introduction

• Electric circuit theory is one of the fundamental

theories upon which all branches of electricalengineering are built.

• Many branches of electrical engineering, such aspower, electric machines, control, electronics,communications and instrumentation are basedon electric circuit theory.

• In electrical engineering, we are often interested

in transferring energy from one point to another.

11-Aug-14 13

Page 14: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 14/236

11-Aug-

Introduction• An interconnection of electrical devices is

required for transfer of energy.

• Such interconnection is referred to as an electric circuit and each component of the circuit isknown as an element .

• An electric circuit is an interconnection of electric elements.

11-Aug-14 14

Page 15: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 15/236

11-Aug-

A Simple Electric Circuit

It consists of three basic elements: abattery, a lamp and some connectingwires.

11-Aug-14 15

Page 16: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 16/236

11-Aug-

A Notch Filter with Op-amps

11-Aug-14 16

Page 17: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 17/236

11-Aug-

An Amplifier Circuit for a Microphone

11-Aug-14 17

Page 18: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 18/236

11-Aug-

11-Aug-14 18

Outline

2. Basic Concepts

3. Basic Laws

4. Methods of Analysis

5. Circuit Theorems

6. Operational Amplifiers

1. Introduction

Page 19: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 19/236

11-Aug-

Units

• When taking any

measurements, wemust use units toquantify values.

• We use theInternational Systems of Units (SI for short)

• Prefixes on SI unitsallow for easyrelationships betweenlarge and small values.

19

Page 20: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 20/236

11-Aug-

Basic Concepts

• In carrying out circuit analysis, we often

deal with currents, voltages or power.We start with a brief description of these quantities.

Electric Charge and Current

• Electric charge and its movement arethe most basic items of interest inelectrical engineering.

11-Aug-14 20

Page 21: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 21/236

11-Aug-

• Charge : An electric property of matter,

measured in coulombs. Like charges repeland unlike charges attract each other.The magnitude of the electron’s charge is1.602 x 10-19 coulomb (unit is C).

• Current : Measures movement of charges. Current is measured in amperes(designated as A). One ampere is themovement of charges through a surfaceat the rate of 1 C/sec.11-Aug-14 21

Concept of Charge and Current

Page 22: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 22/236

11-Aug-

Relationship Between Charge and Current

• The relationship between current i ,

charge q and time t is

• The direction of current flow is taken by convention as opposite to the directionof electron flow.

11-Aug-14 22

Page 23: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 23/236

11-Aug-

Two Methods of Representing a Current

Conventional currentflow:

(a) + ve current flow

(b) – ve current flow

11-Aug-14 23

(a) (b)

Page 24: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 24/236

11-Aug-

Type of Current

• A Direct Current (dc) is a

current that remains constantwith time and is denoted byI .

• A common source of DC is abattery.

• An Alternating Current (AC) is

a current that variessinusoidally with time and isdenoted by i .

• Mains power is an example of AC

11-Aug-14 24

Page 25: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 25/236

11-Aug-

Concept of Voltage• We are interested in the potential difference (voltage )

between two points, not the absolute potential of a

point.

• The voltage between two points a and b in acircuit is the energy (or work) needed to move a unitcharge from a to b .

• The relationship between the energy w (in joules, J)

and the charge (in C) is

.

• Thus, voltage (measured in volts, V) is the energyrequired to move a unit charge through an elementand one V = one J/C.

11-Aug-14 25

Page 26: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 26/236

11-Aug-

• The + and – signs are used to designate which point is atthe assumed higher potential (the + point).

• The can be interpreted as follows: The potential atpoint a with respect to point b is .

• An arrow is used to point to the terminal of assumedhigher potential (the + point).

• Suppose 9 . We may say that there is a 9-Vvoltage rise from b to a or equivalently a 9-V voltage drop from a to b .

11-Aug-14 26

Concept of Voltage

Page 27: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 27/236

11-Aug-

Type of Voltage

• A constant voltage is called a dc voltage and isrepresented by V whereas a sinusoidally time-

varying voltage is called an ac voltage and isrepresented by v .

• A dc voltage is commonly produced by a battery.

• An AC voltage is produced by an electric generator.

• Note: Electric voltage is always across the element or between two points.

11-Aug-14 27

Page 28: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 28/236

11-Aug-

Concept of Power and Energy

• Although current and voltage are the two basic

variables in an electric circuit, they are notsufficient for circuit analysis. Power and energycalculations are also needed.

• Power: Power is the rate of absorbing orsupplying energy (measured in Watts (W)), i.e.

where p is the power, w is the energy(in Joules) and t is time (in sec).

11-Aug-14 28

Page 29: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 29/236

11-Aug-

• The relationship between power p andvoltage v and current i is given by

• The power absorbed or supplied byan element is the product of voltageacross the element and the currentpassing through it.

11-Aug-14 29

Relationship Between Power, Voltage and Current

Page 30: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 30/236

11-Aug-

Passive Sign Convention

• By convention, we say that anelement being supplied power has

positive power.

• A power source such as a batteryhas negative power.

• Passive sign convention is

satisfied if the direction of currentis selected such that currententers through the terminal that ismore positively biased.

30

Page 31: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 31/236

11-Aug-

Passive Sign Convention

• Consider the element (represented by a block)

as shown:

• It has two terminals (also called nodes).

• It conducts current from one node to the otherand in the process voltage drop occurs acrossthe element in the direction of current flow(shown by arrow).

11-Aug-14 31

Page 32: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 32/236

11-Aug-

• The terminal at which the current enters acquires+ve polarity with respect to the terminal at

which the current exits.

• We assume that the current enters the terminalof higher potential.

• We use the passive sign convention. Theword “passive” means that the element isassumed to absorb power. The power assumes a+ve sign when the current enters the +vepolarity of the voltage across an element.

11-Aug-14 32

Passive Sign Convention

Page 33: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 33/236

11-Aug-

Element Absorbing Power

• The (actual ) current flows into the +veterminal of the element:

4 2 8

• The element is absorbing 8 W of power.

11-Aug-14 33

Page 34: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 34/236

Page 35: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 35/236

11-Aug-

Basic Circuit Elements

• An element is the basic building block of a circuit.

• An electric circuit is simply an inter-connection of the elements.

• Circuit analysis is the process of determiningvoltages across (or the current through) the

elements of the circuit.

• There are two types of elements found in electriccircuits: passive and active elements.

11-Aug-14 35

Page 36: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 36/236

11-Aug-

Passive and Active Elements

• An active element is capable of generating energywhile a passive element is not.

• Passive elements: resistors, capacitors and inductors.

• Active elements: generators, batteries andoperational amplifiers.

Most important active elements: voltage or currentsources that deliver power to the circuit.

• Two kinds of sources: independent anddependent sources.

11-Aug-14 36

Page 37: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 37/236

11-Aug-

Independent Source

• An ideal independent source is anactive element that provides aspecified voltage or current that iscompletely independent of othercircuit elements.

11-Aug-14 37

Page 38: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 38/236

Page 39: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 39/236

11-Aug-

Symbols for Independent Voltage Source

(a) Used for constant ortime-varying voltage

(b) Used for constantvoltage (dc).

11-Aug-14 39

Page 40: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 40/236

11-Aug-

Independent Current Source

• An ideal independent current source isan active element that provides aspecified current completelyindependent of the voltage across thesource.

• The current source delivers to thecircuit whatever voltage is necessary tomaintain the designated current.

11-Aug-14 40

Page 41: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 41/236

11-Aug-

• Note that the arrow

indicates the directionof current flow (acurrent source requiresthat a direction bespecified).

• The terminal voltage is

determined by thecondition of the circuitto which it is connected.

11-Aug-14 41

Symbols for Independent Current Source

Page 42: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 42/236

11-Aug-

Dependent Source

• An ideal dependent (or controlled)

source is an active element in whichthe source quantity is controlled byanother voltage or current elsewhere inthe circuit.

• Dependent sources are used a greatdeal in electronics to model both dc andac behavior of transistors, especially inamplifier circuits.

11-Aug-14 42

Page 43: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 43/236

11-Aug-

Type of Dependent Source

• A dependent source has its outputcontrolled by an input value.

• Symbolically represented as adiamond

• Four types:

A voltage-controlled voltagesource (VCVS).

A current-controlled voltage

source (CCVS). A voltage-controlled currentsource (VCCS).

A current-controlled currentsource (CCCS).

43

Page 44: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 44/236

11-Aug-

Example 1

• The source on the right-hand side is a

current-controlled voltage source.• The value of the voltage supplied is 10i V

(not 10i A) as it depends on the current i through element C .

11-Aug-14 44

Page 45: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 45/236

Page 46: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 46/236

11-Aug-

Power Absorbed or Delivered in a Circuit

The algebraic sum of power in a circuit is zero i.e.

Total power supplied + Total power absorbed = 0

Example 3

Calculate the power supplied or absorbed by eachelement in the following circuit.

11-Aug-14 46

Page 47: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 47/236

11-Aug-

20 5 100 W , power supplied.

12 5 60 W, power absorbed

8 6 48 W, power absorbed

For , note that the voltage is 8 V (+ve at the top), thesame as the voltage for since both the passiveelement and the dependent source are connected to thesame terminals. Since the current flows out of the +veterminal,

8 0.2 8 0.25 8 W

Note : Power supplied + Power absorbed

= -100-8+60+48 = 0.

11-Aug-14 47

Page 48: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 48/236

11-Aug-

11-Aug-14 48

Outline

2. Basic Concepts

3. Basic Laws

4. Methods of Analysis

5. Circuit Theorems

6. Operational Amplifiers

1. Introduction

Page 49: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 49/236

11-Aug-

Basic Laws

• Ohm’s Law

• Kirchoff’s Current Law

Kirchoff’s Voltage Law

• Some commonly used techniques

11-Aug-14 49

Page 50: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 50/236

11-Aug-

Ohm’s Law

• A resistor is a device that resists theflow of current flow. It is the simplestpassive element.

• Resistors can be used to control currentflow in a circuit.

• The physical property or ability to resistelectric current is known as resistance (represented by the symbol R ) and ismeasured in ohms (designated as Ω).

11-Aug-14 50

Page 51: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 51/236

11-Aug-

Resistor and its circuit symbol

11-Aug-14 51

Circuit Symbol of Resistor

Page 52: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 52/236

11-Aug-

Resistivity

• Materials tend to resist the flow of

electricity through them.• This property is called “resistance”.

• The resistance of an object is a functionof its length, l , cross sectional area, A and the material’s resistivity, :

52

l R

Page 53: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 53/236

11-Aug-

Resistivity of Common Materials

53

Page 54: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 54/236

11-Aug-

Ohm’s Law

• Ohm’s law states that the voltage v across a

resistor is directly proportional to the current i flowing through the resistor i.e. ∝ .

• Ohm defines the constant of proportionality fora resistor to be the resistance, R .

• The mathematical form of Ohm’s law is

11-Aug-14 54

Page 55: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 55/236

11-Aug-

Application of Ohm’s law

• To apply Ohm’s law, we must pay careful

attention to the current direction and voltagepolarity.

• The direction of current i and the polarity of voltage must conform with the passive signconvention i.e. the current flows from a higherpotential to a lower potential so that .

11-Aug-14 55

Page 56: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 56/236

11-Aug-

Short Circuit and Open Circuit

• Since the value of R can range from zero to

infinity, it is important that we consider thetwo extreme possible values of R.

A short circuit is a circuit element with resistance approaching zero, R = 0.

An open-circuit is a circuit element with resistance approaching infinity, R = .

11-Aug-14 56

Page 57: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 57/236

11-Aug-

Short Circuit and Open Circuit

For a short circuit,

0 , i.e. thevoltage is zero butthe current could beanything.

11-Aug-14 57

For an open circuit,

0 , i.e. the

current is zero thoughthe voltage could beanything.

Page 58: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 58/236

11-Aug-

Conductance

• A useful quantity in circuit analysis is

the reciprocal of resistance R , known asconductance,

.

• Conductance is the ability of an elementto conduct electric current and is

measured in Siemens (S).

11-Aug-14 58

Page 59: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 59/236

11-Aug-

Power Dissipated by a Resistor

• The power dissipated by a resistor can

be expressed as

• The power dissipated in a resistor isalways +ve i.e. a resistor alwaysabsorbs power from the circuit.

11-Aug-14 59

Page 60: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 60/236

11-Aug-

Example 1

In the following circuit, calculate the current

i , the conductance G and the power p .

11-Aug-14 60

Page 61: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 61/236

11-Aug-

Solution:

6 10 6

1

1

510 0.210 0.2

180

11-Aug-14 61

Page 62: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 62/236

11-Aug-

Branches, Nodes and Loops• Branch

A branch represents a single two-terminal element

like a voltage source or a resistor.

• Node

A node is the point of connection between two or morebranches. A node is indicated by a dot in a circuit.

• Loop

A loop is a closed path formed by starting at a node,passing through a set of nodes and returning to thestarting node without passing through any node morethan once.

11-Aug-14 62

Page 63: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 63/236

11-Aug-

Example 2

Consider the following circuit:

We can redraw the circuit as shown:

11-Aug-14 63

Page 64: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 64/236

11-Aug-

• The circuit has 5 branches: the 10-V voltagesource, the 2-A current source and the 3

resistors.• The circuit has 3 nodes: a, b and c .

• A node is indicated by a dot in a circuit.

• Note that the 3 points that form node b areconnected by wires and therefore constitute asingle point. The same is true for the 4 pointsthat form node c .

• abca with the 2 Ω resistor is a loop.

• bcb with the 2 Ω and 3 Ω resistors is a loop.

• bcb with the 3 Ω resistor and the 2- A current

source is a loop.

11-Aug-14 64

Page 65: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 65/236

11-Aug-

• Mesh

A mesh is a loop which does not contain any

other loops within it (it is an independent loop). For the above example: abca with the 2 Ω resistor

is a mesh; bcb with the 2 Ω and 3 Ω resistors is amesh; bcb with the 3 Ω resistor and the 2- A current source is a mesh.

In a circuit with b branches and n nodes, the

number of meshes is 1. For the above example, 5 3 1 3.

Independent loops result in independent sets of equations (to be used later).

11-Aug-14 65

Page 66: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 66/236

11-Aug-

Series and Parallel Connection

• Two or more elements are in series if

they exclusively share a single node andconsequently carry the same current.

• Two or more elements are in parallel if they are connected to the same twonodes and consequently have the samevoltage across them.

11-Aug-14 66

Page 67: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 67/236

11-Aug-

• The 10-V source and the 5 Ω resistor are in series asthe same current flows through them.

• The 2 Ω and 3 Ω resistors and the 2-A current sourceare in parallel because they are connected to the sametwo nodes b and c and consequently have the samevoltage across them.

11-Aug-14 67

Series and Parallel Connection

Page 68: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 68/236

11-Aug-

Example 3

How many branches and nodes does thethe following circuit have ? Identify theelements that are in series and parallel.

11-Aug-14 68

Page 69: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 69/236

11-Aug-

Solution:

• There are 5 branches and 3 nodes in thecircuit.

• The 1 Ω and 2 Ω resistors are in parallel.

• The 4 Ω resistor and the 10-V source arealso in parallel.

11-Aug-14 69

Page 70: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 70/236

11-Aug-

Kirchoff’s Current Law

• Kirchoff’s Current Law (KCL) states thatthe algebraic sum of the currents

entering any node is zero.

• Consider the node in the figure. Applying KCLyields

11-Aug-14 70

Page 71: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 71/236

11-Aug-

11-Aug-14 71

• An alternative form of KCL: The sum of

the currents entering a node is equal to the sum of the currents leaving the node .

• KCL is based on conservation of charge.

Page 72: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 72/236

Page 73: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 73/236

Page 74: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 74/236

11-Aug-

• Kirchoff’s Voltage Law (KVL) states that thealgebraic sum of all voltages around a loop

in a specified direction is zero.

Express the loop current in the clockwise (CW)direction (preferred direction).

• We take voltage rise as –ve and voltage drop as+ve.

• KVL is based on conservation of energy.

11-Aug-14 74

Kirchoff’s Voltage Law

Page 75: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 75/236

11-Aug-

• Begin at the -source and go CW

around the loop applying KVL:

• An alternative form of KVL: Around a loop in a clockwise direction, the sum of voltage rises equals to the sum of voltage drops.

11-Aug-14 75

Kirchoff’s Voltage Law

Page 76: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 76/236

11-Aug-

Example 5

Consider the voltage sources as shown.

Applying KVL (in the CW direction) 0

11-Aug-14 76

Page 77: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 77/236

11-Aug-

• To avoid violating KVL, a circuit cannot contain two different voltages sources in parallel unless their terminal voltages are the same.

Valid Invalid Invalid

11-Aug-14 77

Page 78: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 78/236

11-Aug-

Example 6

• Determine and in the following

circuit.

• Express the current in the CW direction.

11-Aug-14 78

Page 79: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 79/236

Page 80: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 80/236

11-Aug-

Series Resistor and Voltage Divider

• For 2 resistors connected in series, the

equivalent resistance of these two resistors is the sum of the individual resistances , i.e., .

11-Aug-14 80

Page 81: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 81/236

11-Aug-

• The above two circuits are equivalent asthey have the same v-i relationship at the

terminals a-b i.e.

because

.

• An equivalent circuit is useful in simplifyingthe analysis of a circuit.

• For N resistors connected in series, we

have ⋯ .

11-Aug-14 81

Equivalent Resistance

Page 82: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 82/236

11-Aug-

• For the above circuit with 2 resistors connected

in series, we have

• The method is known as the voltage divider. Voltages across the two resistors can be easilydeduced by this method.

11-Aug-14 82

Voltage Divider

Page 83: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 83/236

11-Aug-

Example 7

Using the voltage divider as shownabove, calculate so that 0.75

when 100 Ω.

We have

0.75.

So,

0.75 ⟹ 300 Ω.

11-Aug-14 83

Page 84: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 84/236

11-Aug-

Parallel Resistor and Current Divider

• For 2 resistors connected in parallel, the

equivalent resistance of these two resistors is the product of their resistances divided by their sum, i.e.

.

11-Aug-14 84

Page 85: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 85/236

Page 86: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 86/236

11-Aug-

• For the circuit with 2 resistors connected in parallel, wehave

• The circuit is known as the current divider.

• Note that when 0 (a short circuit has occurred), 0 and i.e. the input current will bypass

and flow through the short-circuited path.

11-Aug-14 86

Current Divider

Page 87: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 87/236

11-Aug-

Example 8

• Calculate the equivalent resistance R ab in thefollowing circuit:

• The 3 Ω and 6 Ω resistors are in parallel asthey are connected to the same two nodes c and b . Their combined resistance is

3 Ω||6 Ω

2 Ω

11-Aug-14 87

Page 88: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 88/236

11-Aug-

• Also, the 12 Ω and 4 Ω resistors are in

parallel as they are connected to the same

two nodes d and b . Hence, 12 Ω||4 Ω

3 Ω

• The 1 Ω and 5 Ω resistors are in series;hence, their equivalent resistance is 1 + 5 =6 Ω. With these combinations, we have thefollowing circuit.

11-Aug-14 88

Page 89: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 89/236

11-Aug-

• The 3 Ω and 6 Ω resistors in parallel gives 2 Ω.This 2 Ω equivalent resistance is now in series

with the 1 Ω resistance to give a combinedresistance of 1 + 2 = 3 Ω. With these, we

have the following circuit.

• The 2 Ω and 3 Ω resistors in parallel gives1.2 Ω. This 1.2 Ω resistor is in series with the10 Ω resistor so that 10 1.2 11.2 Ω.

11-Aug-14 89

Page 90: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 90/236

11-Aug-

Example 9

Find and in the following circuit.Calculate the power dissipated in the 3 Ω

resistor.

11-Aug-14 90

Page 91: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 91/236

11-Aug-

• First, we need to find the total current i . The6 Ω and 3 Ω resistors in parallel gives 2 Ω. The

circuit can be simplified to

Using Ohm’s law,

2 A and 2 4 V . Also,

. The power

dissipated by the 3Ω resistor is

4

5.33 W.

11-Aug-14 91

Page 92: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 92/236

11-Aug-

Y- Δ (Wye-Delta) Transformation

• There are cases in circuit analysis where theresistors are neither in parallel nor in series(see the following bridge circuit).

• Many circuits of the type shown can besimplified to a three-terminal equivalentcircuit shown next.

11-Aug-14 92

Page 93: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 93/236

11-Aug-

• These are the Y or Tee (T) network and ∆ orpi (Π) network as shown below.

Y or T network

∆ or Π network

11-Aug-14 93

Y- Δ (Wye-Delta) Transformation

Page 94: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 94/236

11-Aug-

Δ to Y conversion ( Δ known)

• If it is more convenient to work with a Y network in a place where the circuit contains a ∆

configuration, then we superimpose a Y network on the existing ∆ network and find the equivalentresistances in the Y network.

• To obtain the equivalent resistances in the Y network, we compare the two networks and makesure that the resistance between each pair of nodes in the ∆ network is the same as theresistance between the same pair of nodes in the Y network. For example, for terminals 1 and 2, Y and Δ || .Then, we set Y Δ .

11-Aug-14 94

Page 95: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 95/236

11-Aug-

• The conversion formula for a delta to wye

transformation is:

95

1

2

3

b c

a b c

c a

a b c

a b

a b c

R R R

R R R

R R R

R R R

R R R

R R R

Δ to Y conversion ( Δ known)

Page 96: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 96/236

11-Aug-

• The conversion formula for a wye to

delta transformation is:

96

1 2 2 3 3 1

1

1 2 2 3 3 1

2

1 2 2 3 3 1

3

a

b

c

R R R R R R R

R

R R R R R R R

R

R R R R R R R

R

Y to Δ Conversion (Y known)

Page 97: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 97/236

11-Aug-

Example 10

Obtain the equivalent resistance forthe circuit shown and use it to findcurrent i .

11-Aug-14 97

Page 98: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 98/236

11-Aug-

Note that there are 2 Y networks (one at n andone at c ) and 3 delta networks (can , abn , cnb ).

We only need to transform one Y network comprising the 5Ω, 10 Ω and 20 Ω resistors to a ∆ network. We let 10Ω , 20Ω , 5Ω and we obtain the following using theconversion formulae:

35 Ω

17.5 Ω

70 Ω

11-Aug-14 98

Page 99: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 99/236

11-Aug-

With the Y converted to ∆ , the equivalentcircuit (with the voltages source removedfor now) is shown as follows:

11-Aug-14 99

Page 100: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 100/236

11-Aug-

1

Combining the 3 pairs of resistors in parallel, weobtain

70||30 = 21 Ω, 12.5||17.5 = 7.292 Ω,

15||35 = 10.5 Ω

so that the equivalent circuit is as shown.

Hence , 7.292 10.5 ||21 9.632 Ω.

Then,

. 12.458 A.

11-Aug-14 100

Page 101: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 101/236

Page 102: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 102/236

11-Aug-

1

Methods of Analysis

• Nodal Analysis

• Mesh Analysis

11-Aug-14 102

Page 103: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 103/236

11-Aug-

1

Overview

• With Ohm’s and Kirchoff’s law established, theymay now be applied to circuit analysis.

• Two techniques will be presented in this chapter:

Nodal analysis, which is based on Kirchoff Current Law (KCL)

Mesh analysis, which is based on Kirchoff Voltage Law (KVL)

• Any linear circuit can be analyzed using these two

techniques.• The analysis will result in a set of simultaneous

equations which may be solved by Cramer’s rule orcommercial software such as MATLAB.

103

Page 104: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 104/236

11-Aug-

1

Nodal Analysis

• It is based on the application of KCL.

• It uses node voltages as the circuitvariables.

• In nodal analysis, we are interested infinding the node voltages.

11-Aug-14 104

Page 105: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 105/236

11-Aug-

1

Nodal Analysis Without Voltage Sources

• To simplify matters, we begin with a circuit with n nodes without voltage sources. The nodal analysisof the circuit is as follows:

Select a node as the reference node. Assignvoltages , , … , to the remaining n- 1

nodes. The voltages are referenced withrespect to the reference node .

Apply KCL to each of the (n –1) non-reference

nodes. Use Ohm’s law to express the branchcurrents in terms of the node voltages.

Solve the resulting simultaneous equations toobtain the unknown node voltages.

11-Aug-14 105

Page 106: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 106/236

Page 107: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 107/236

Page 108: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 108/236

11-Aug-

1

Example 1

Calculate the node voltages in the circuit asshown. Node 0 is the reference node ( 0),while node 1 and 2 are assigned voltages and respectively. These node voltages are

defined with respect to the reference node.

11-Aug-14 108

Page 109: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 109/236

11-Aug-

1

Redraw the circuit by adding , and as the currentsthrough resistors , and respectively.

Applying the KCL to each non-reference node:Node 1: 0 (1)

Node 2: 0 (2)

11-Aug-14 109

Page 110: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 110/236

11-Aug-

1

Now apply Ohm’s law to express the unknown currents, and in terms of the node voltages:

,

,

,

Using these in (1) and (2) gives

0

0

Rearranging these yields

11-Aug-14 110

Page 111: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 111/236

11-Aug-

1

We can now solve for the node voltages and

using the elimination method or Cramer’s rule.

The equations can be rewritten into the matrix form:

A X B

Here, is a 2x2 matrix and and are 2x1 columnvectors. We can then use the Cramer’s rule to solve forthe node voltages and .

11-Aug-14 111

Page 112: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 112/236

Page 113: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 113/236

11-Aug-

1

Redraw the circuit as shown. Note that the labeling ofcurrents is arbitrary.

Applying the KCL and Ohm’s law:Node 1: 0 ⟹ 5

0

Node 2: 0 ⇒

10 5

11-Aug-14 113

Page 114: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 114/236

11-Aug-

1

The two equations can be written as follows:

5 (1)

5 (2)

=

1 5

5

5

5

=

2 5

5

5 = 5

⟹ =

=

=13.33 ; =

=20

11-Aug-14 114

Page 115: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 115/236

11-Aug-

1

Example 3

Determine the nodal voltages of the

following circuit.

11-Aug-14 115

Page 116: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 116/236

11-Aug-

1

Redraw the circuit as follows:

Node 1:

3 0 ⇒ 3

0 (1)

Node 2: 0,

0 (2)

Node 3: 2 0,

0 (3)

11-Aug-14 116

Page 117: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 117/236

11-Aug-

1

Equations (1) – (3) can be written as follows:

3

0

0

In matrix form, we have

3

0

0

11-Aug-14 117

Page 118: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 118/236

11-Aug-

1

Here, is a 3x3 matrix, and are 3x1column vectors.

Using Cramer’s rule, we have

5

128

1

0

0

11-Aug-14 118

Page 119: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 119/236

11-Aug-

1

2

3

0

0

3

32

3

3

0

0

3

32

4.8 ,

2.4

2.4 .

11-Aug-14 119

Page 120: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 120/236

11-Aug-

1

We now consider how voltage sources

affect nodal analysis.Consider the following circuit.

11-Aug-14 120

Nodal Analysis Without Voltage Sources

Page 121: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 121/236

11-Aug-

1

• If a voltage source is connected between thereference node and a non-reference node ,

the voltage at the non-reference node isequal to that of the voltage source, i.e., 10 V.

• If the voltage source (dependent orindependent) is connected between 2 non-

reference nodes , the 2 non-reference nodesform a supernode.

• We apply both KCL and KVL to determine thenode voltages.

11-Aug-14 121

Page 122: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 122/236

11-Aug-

1

• In the circuit shown above, nodes 2 and 3form a supernode (indicated by the region

enclosed by the broken line).• We analyze the circuit with a supernode using

the same 3 steps mentioned before exceptthat the supernode is treated differently inthat we apply KCL to both the nodes bynoting that all currents flowing into the regionsum to zero.

• At the supernode of the circuit shown, 0

0 (1)

11-Aug-14 122

Page 123: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 123/236

11-Aug-

1

• The voltage source inside the supernodeprovides a constraint equation , i.e. it

constrains the difference between the nodevoltages at these two nodes to be equal tothe voltage of the source i.e.

5 (2)

• The constraint equation is needed to solve for

the unknown node voltages.

11-Aug-14 123

Page 124: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 124/236

11-Aug-

1

Equation (1) gives

(3)

Using (2) and 10 V gives

5

⟹ 9.2 V and 5 4.2 V.

11-Aug-14 124

Page 125: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 125/236

11-Aug-

1

Example 4

Consider the following circuit, find the

node voltages.

11-Aug-14 125

Page 126: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 126/236

11-Aug-

1

• The supernode contains the 2-V source,

nodes 1 and 2 and the 10Ω resistor asshown in the following circuit.

11-Aug-14 126

supernode

Page 127: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 127/236

11-Aug-

1

Applying KCL to the supernode gives

2 7 0

Expressing and in terms of the nodevoltages gives

2

7 0 ⟹

5

or 20 2 (1)

The constraint equation provided by the voltage

source in the supernode is 2 (2)

Using (2) in (1) gives

3 22 ⇒ 7.33

and 2 5.33 . 127

Page 128: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 128/236

11-Aug-

1

11-Aug-14 128

Note that the 10 Ω resistor does not make anydifference because it is connected across the

supernode.

Note: Nodal analysis is a straightforward analysis technique when only current sources are present and voltage sources are easily accommodated with the supernode concept.

Page 129: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 129/236

11-Aug-

1

Mesh Analysis

• Recall that a mesh is a loop that does not

contain any other loops within it .• The current through the mesh is known

as the mesh current .

• Mesh analysis provides another generalprocedure for analyzing circuits usingmesh currents as the circuit variables.

• Mesh analysis applies KVL to findunknown currents and is only applicableto planar circuits .

11-Aug-14 129

Page 130: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 130/236

11-Aug-

1

• A planar circuit is one that can be

drawn in a plane with no branchescrossing one another; otherwise, it isnonplanar .

A nonplanar circuit

11-Aug-14 130

Page 131: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 131/236

11-Aug-

1

• A circuit that is drawn with crossingbranches still is considered planar if itcan be redrawn with no crossoverbranches.

11-Aug-14 131

Page 132: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 132/236

Page 133: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 133/236

11-Aug-

1

Comments

• The direction of the mesh currents isarbitrary; it can be Clockwise (CW) orCounter Clockwise (CCW) and thechoice will not affect the validity of thesolution.

• We assume the mesh current flows CW.

11-Aug-14 133

Page 134: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 134/236

11-Aug-

1

Example 5

Consider the following circuit:

11-Aug-14 134

Page 135: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 135/236

Page 136: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 136/236

11-Aug-

1

Applying KVL to each mesh:

Mesh 1: 0 (1)

Mesh 2: 0 (2)

The branch currents can be calculated asfollows:

, ,

11-Aug-14 136

Page 137: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 137/236

11-Aug-

1

Example 6

Use mesh analysis to find the current

in the following circuit:

11-Aug-14 137

Page 138: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 138/236

11-Aug-

1

Need to find , first.

Applying KVL to each mesh:

Mesh 1: 24 10 12 0⟹ 11 5 6 12

Mesh 2: 24 4 10 0

⟹ 5 19 2 0

Mesh 3: 4 12 4 0

⟹ 2 0

Solving for the mesh currents gives 2.25 , 0.75 and 1.5 . Then,

2.25 0.75 1.5 .11-Aug-14 138

Page 139: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 139/236

11-Aug-

1

• Case 1: When a current source exists

only in one mesh.

Consider the following circuit:

11-Aug-14 139

Mesh Analysis With Current Sources

Page 140: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 140/236

11-Aug-

1

• It is clear that 5 A (thus we eliminatemesh 2 from consideration).

• The mesh equation for mesh 1 is

10 4 6 0 ⟹ 2 .

Note: We could have calculated the currenti

using nodal analysis, but we have to find the

node voltage v first (using

5

0) and then find the current using i 10

v/4 . In this case, mesh analysis is simpler.

11-Aug-14 140

Page 141: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 141/236

Page 142: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 142/236

11-Aug-

1

• We create a supermesh by excluding thecurrent source and any elements connected

in series with it as shown. A supermesh results when two meshes have a (dependent or independent ) current source in common.The current source and the element connected in series with it is in the interior of the supermesh.

11-Aug-14 142

Page 143: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 143/236

11-Aug-

1

Applying KVL to the supermesh gives20 6 10 4 0

⟹ 6 14 20 (1)

11-Aug-14 143

Note: The voltages around the supermeshare in terms of the original mesh currents .

Page 144: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 144/236

11-Aug-

1

Applying KCL to a node in the branch where thetwo meshes intersect. At node 0 (or at the top

node), 6 (2)

The current source in the supermesh providesthe constraint equation (2). Using (2) in (1)gives 3.2 , 2.8 .

Note: Again, we could have used nodal analysisto find the currents i and i.

11-Aug-14 144

Page 145: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 145/236

11-Aug-

1

Selecting an Appropriate Approach

• In principle, both the nodal analysis andmesh analysis are useful for any givencircuit.

• What is the more efficient method forsolving a circuit problem?

• There are two factors that dictate the bestchoice:

The nature of the particular network is thefirst factor

The second factor is the informationrequired

145

Page 146: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 146/236

Page 147: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 147/236

11-Aug-

1

• If the network contains:

Many parallel connected elementsCurrent sources

Supernodes

Circuits with fewer nodes than meshes

• If node voltages are what are being solved for.

• Non-planar circuits can only be solved using

nodal analysis.• This format is easier to solve by a computer.

147

When to Use Nodal Analysis ?

Page 148: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 148/236

Page 149: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 149/236

11-Aug-

1

Circuit Theorems

• Linearity Property

• Superposition

• Source Transformation

• Thevenin’s Theorem

• Norton’s Theorem

• Maximum Power Transfer

11-Aug-14 149

Page 150: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 150/236

Page 151: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 151/236

11-Aug-

1

• The resistor is a linear element because

it satisfies both the scaling and theadditivity properties.

• For , if is plotted as a functionof , the result is a straight line i.e. thev-i relationship is linear.

11-Aug-14 151

Linearity Property

Page 152: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 152/236

11-Aug-

1

• In general, a circuit is linear if it has both theadditivity and scaling properties.

• A linear circuit is one whose output is directlyproportional to its input.

• A linear circuit consists of linearelements, linear dependent sources andindependent sources.

• A linear dependent source is a source

whose output current or voltage isproportional only to the first power of aspecified current or voltage variable in thecircuit (i.e. ∝ or ∝ .

11-Aug-14 152

Linearity Property

Page 153: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 153/236

11-Aug-

1

Example 1

For the circuit shown, find when 15 and

30 A.

11-Aug-14 153

Page 154: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 154/236

Page 155: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 155/236

11-Aug-

1

Superposition

• The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

• The superposition principle helps us to

analyze a linear circuit with more than oneindependent source by calculating thecontribution of each independent sourceseparately.

11-Aug-14 155

Page 156: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 156/236

11-Aug-

1

Steps to Apply Superposition Principle

1. Turn off all independent sources except onesource. Find the output (voltage or current)due to that active source using thetechniques learned previously.

2. Repeat step 1 for each of the otherindependent sources.

3. Find the total contribution by addingalgebraically all the contributions due to theindependent sources.

11-Aug-14 156

Page 157: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 157/236

11-Aug-

1

Points to Note:

• We consider one independent source at atime while all other independent sources are

turned off. This implies that we replace everyvoltage source by 0 V (or a short circuit), andevery current source by 0 A (or an opencircuit) i.e.

voltage source short circuit

current source open circuit

• One major disadvantage of usingsuperposition is that it involves more worksalthough it helps to reduce a complex circuitto simpler circuits.

11-Aug-14 157

Page 158: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 158/236

11-Aug-

1

Example 2

Use the superposition to find in the

following circuit.

11-Aug-14 158

Page 159: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 159/236

11-Aug-

1

Since there are two independent sources, let where and are the

contributions due to the 6-V voltage source andthe 3-A current source, respectively.

To obtain , we set the current source to zeroas shown.

11-Aug-14 159

Page 160: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 160/236

Page 161: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 161/236

Page 162: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 162/236

11-Aug-

1

Source Transformation

• A source transformation is the processof replacing a voltage source

inseries with a resistor by a currentsource in parallel with a resistor , orvice-versa.

Transformation of independent sources

11-Aug-14 162

Page 163: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 163/236

Page 164: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 164/236

11-Aug-

1

• Thus,

in order for the two

circuits to be equivalent.

• Source transformation requires that

.

• Note: The arrow of the current sourceis directed toward the positive terminalof the voltage source.

11-Aug-14 164

Page 165: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 165/236

11-Aug-

1

• Source transformation also applies todependent sources, provided wecarefully handle the dependent variable,

i.e.

.

Transformation of dependent sources11-Aug-14 165

Page 166: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 166/236

11-Aug-

1

Example 3

Use source transformation to find in

the following circuit.

11-Aug-14 166

Page 167: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 167/236

11-Aug-

1

• First transform the current and voltagesources to obtain the following circuit.

• Combining the 4Ω and 2Ω resistors in seriesand transforming the 12-V voltage sourcegives

11-Aug-14 167

Page 168: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 168/236

11-Aug-

1

Combine the 2-A and 4-A current sources to geta 2-A source.

Using current division,

2 0.4

and

8 8 0.4 3.2 11-Aug-14 168

Page 169: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 169/236

11-Aug-

1

Example 4

Find in the circuit shown using source

transformation.

11-Aug-14 169

Page 170: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 170/236

11-Aug-

1

Transform the dependent current source andthe 6-V independent source as shown. Note

that the 18-V voltage source is not transformedbecause it is not connected in series with anyresistors.

11-Aug-14 170

Page 171: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 171/236

Page 172: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 172/236

11-Aug-

1

Applying KVL around the loop gives 3 1 4 18 0 (1)

Applying KVL to the loop containing only the 3- V voltage source, the 1Ω resistor, and yields

3 1 0 ⟹ 3 (2)

Using (2) and (1) gives

15 5 3 0 ⟹ 4.5

11-Aug-14 172

Page 173: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 173/236

Page 174: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 174/236

11-Aug-

1

11-Aug-14 174

Thevenin’s Theorem

Page 175: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 175/236

11-Aug-

1

• Suppose Figs. 1(a) and 1(b) are equivalenti.e. they have the same v-i relationship attheir terminals.

• When the terminals a-b are made open-circuited (by removing the load), no currentflows so that the open-circuit voltage acrossthe terminals a-b in Fig. 1(a) must be equal

to the voltage source in Fig. 1(b) since thetwo circuits are equivalent. Thus, is the

open-circuit voltage across the terminals asshown i.e. .

11-Aug-14 175

How to Find V and R?

Page 176: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 176/236

11-Aug-

1

• Again, with the load removed and terminalsa-b open-circuited, we turn off allindependent sources. The input resistance (orequivalent resistance) of the dead circuit atthe terminals a-b of Fig. 1(a) must be equalto in Fig. 1(b) because the circuits areequivalent. Thus, is the input resistance

at the terminals when the independent

sources are turned off as shown i.e. .

11-Aug-14 176

How to Find V and R?

Page 177: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 177/236

Page 178: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 178/236

11-Aug-

1

• To find the Thevenin resistance , we

need to consider two cases.

• Case 1: If the circuit has no dependent sources , we turn off all independentsources. is the input resistance of the circuit seen between terminals a -b

as shown in Fig. 2(b).

11-Aug-14 178

How to Find R?

Page 179: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 179/236

11-Aug-

1

• Case 2: If the circuit has dependent sources ,we turn off all independent sources.Dependent sources are not turned off because they are controlled by circuitvariables. We apply a known voltage source(say, 1 V) at terminals a -b and determinethe resulting current . Then / as

shown.

• Alternatively, we may insert a known currentsource (say, 1 A) at terminals a-b asshown and find the terminal voltage and /.

11-Aug-14 179

How to Find R?

Page 180: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 180/236

11-Aug-

1

11-Aug-14 180

How to R?

Page 181: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 181/236

11-Aug-

1

• Consider a linear circuit terminated by a load as shown.

• The current through the load and thevoltage

across the load are easily

determined once the Thevenin equivalentcircuit at the load’s terminals is obtained asfollows:

,

11-Aug-14 181

Use of Thevenin Equivalent Circuit

Page 182: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 182/236

11-Aug-

1

Example 5

Find the Thevenin equivalent circuit of the

following circuit seem by the load i.e. tothe left of the terminals a-b . Find for 6 Ω and 26 Ω.

11-Aug-14 182

Page 183: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 183/236

11-Aug-

1

To find , remove the load. Turn off the 32-V

voltage source (replacing it with a short circuit)

and the 2-A current source (replacing it with anopen circuit). The circuit becomes

Thus,

4||12 1

1 4 Ω

11-Aug-14 1-183

Page 184: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 184/236

11-Aug-

1

To find , consider the circuit as shown.

Note that no current flows through the 1 Ω

resistor (since the load is removed).

We can use mesh analysis to find .Mesh 1: 32 4 12 0

Mesh 2: 2 A ⟹ 0.5 A

12 12 0.5 2 30 V

11-Aug-14 184

Page 185: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 185/236

11-Aug-

1

The Thevenin equivalent circuit is as shown.

The current through is

For 6Ω,

3 .

For 26Ω,

1 .

11-Aug-14 185

Page 186: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 186/236

Page 187: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 187/236

11-Aug-

1

The circuit contains a dependent voltagesource. To find , set the independent

current source equal to zero but leave thedependent voltage source alone. Furthermore,we excite the circuit with a voltage source 1 V across the terminals a-b as shown.

11-Aug-14 187

Page 188: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 188/236

11-Aug-

1

The aim is to find the current through theterminals a-b and then obtain /.

Applying mesh analysis to the circuit:

Mesh 1: 2 2 0 or

But 4 ⟹ 3

Mesh 2: 4 2 6 0

Mesh 3: 6 2 1 0

11-Aug-14 188

Page 189: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 189/236

11-Aug-

1

These equations can be written as follows:

3 0

2 12 6 0

6 8 1

But, we only need to solve for andsolving it gives

A ⟹

A

Hence,

/ 6Ω.

11-Aug-14 189

Page 190: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 190/236

11-Aug-

1

To get , we find in the circuit as shown.

Note that no current flows through the 2 Ω

resistor on the right (with load removed).

11-Aug-14 190

Page 191: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 191/236

11-Aug-

1

Applying mesh analysis:

Mesh 1: 5 A (1)

Mesh 2: 4 2 6 0 (2)

Mesh 3: 2 2 0 , ⟹

But 4 . (3)

From (1) – (3), we get12 2 20

3 20

11-Aug-14 191

Page 192: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 192/236

Page 193: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 193/236

11-Aug-

1

Norton’s Theorem

• Norton’s theorem states that a linear

two-terminal circuit can be replaced by an equivalent circuit consisting of a current source in parallel with a resistor , where is the short-circuit current through the terminals and is the input or equivalent resistance at the

terminals when the independent sources are turned off

11-Aug-14 193

Page 194: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 194/236

Page 195: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 195/236

Page 196: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 196/236

11-Aug-

1

• Thus, as shown.

• Dependent and independent sourcesare treated the same way as inThevenin’s Theorem.

11-Aug-14 196

How to Find and R?

Page 197: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 197/236

11-Aug-

1

• The Thevenin and Norton equivalent

circuits are related by a sourcetransformation.

• , ,

11-Aug-14 197

Thevenin vs Norton Equivalent

Page 198: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 198/236

11-Aug-

1

Example 7

Find the Norton equivalent circuit of the

circuit as shown at the terminals a-b .

11-Aug-14 198

Page 199: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 199/236

11-Aug-

1

We may find the same way as we find

in the Thevenin equivalent circuit. Setting the

independent sources to zero leads to thefollowing circuit:

5 8 4 8 5 20

4 Ω

11-Aug-14 199

Page 200: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 200/236

11-Aug-

2

To find , we short circuit terminals a and b as

shown.

The 5Ω resistor can be ignored because it has

been short-circuited. Applying mesh analysis:Mesh 1: 2 A

Mesh 2: 12 4 88 0,

⇒ 1 ⇒ 1

11-Aug-14 200

Page 201: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 201/236

11-Aug-

2

The Norton’s equivalent circuit is as shown.

11-Aug-14 201

Page 202: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 202/236

11-Aug-

2

Open-circuit and Short-circuit Tests

• The open-circuit and short-circuit tests

are sufficient to find any Thevenin or Norton equivalent circuit of a given circuit which contains at least one independent source.

• We have , , /.

11-Aug-14 202

Page 203: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 203/236

11-Aug-

2

Example 8

Use the open-circuit and short-circuit

tests to find the Thevenin equivalentcircuit of the following circuit acrossterminals a-b .

11-Aug-14 203

Page 204: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 204/236

11-Aug-

2

Find as the open-circuit voltage across

terminals a and b as shown.

11-Aug-14 204

Open-circuit Test

Page 205: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 205/236

11-Aug-

2

Applying mesh analysis:

Mesh 1:

5 A (1)

Mesh 2: 4 2 6 0 (2)

Mesh 3: 2 2 0 ⟹

But 4 (3)

From (1) – (3), we obtain

12 2 20

3 20

Solving for gives

A . We only need as

6. Hence, 6 20 V.

11-Aug-14 205

Page 206: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 206/236

11-Aug-

2

To find , we short circuit terminals a and b as

shown.

11-Aug-14 206

Short-circuit Test

Page 207: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 207/236

11-Aug-

2

The supernode contains the top two nodes, thedependent source and the 2 Ω resistor as shown.

At the supernode, applying KCL gives

5

0 (1)

The constraint equation is

2 (2)

Solving for from (1) and (2) gives

V and

A.

Thus,

6 Ω .

11-Aug-14 207

Page 208: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 208/236

11-Aug-

2

The Thevenin equivalent circuit is as shown:

11-Aug-14 208

Page 209: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 209/236

11-Aug-

2

Maximum Power Transfer

• Often we deal with small amount of

power in electronics and we want tomake full use of the power available.Obtaining the maximum power out of acircuit is very important.

• The Thevenin equivalent circuit is usefulin finding the maximum power a linear

circuit can deliver to a load.• We assume that we can adjust the load

resistance .

11-Aug-14 209

Page 210: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 210/236

11-Aug-

2

Condition for Maximum Power Transfer

• Suppose that the entire circuit is

replaced by its Thevenin equivalentcircuit except for the load as shown.

• The power delivered to the load is

(1)

11-Aug-14 210

Page 211: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 211/236

11-Aug-

2

• For a given circuit, and are

fixed. By varying the load resistance ,the power delivered to the load variesas shown.

11-Aug-14 211

Condition for Maximum Power Transfer

Page 212: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 212/236

Page 213: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 213/236

11-Aug-

2

• The maximum power delivered by a source tothe load occurs when is equal to i.e.

the Thevenin resistance at the terminals of theload.

• Using (2) in (1) yields the maximum power transferred (for :

• When , the power delivered to the loadis given by (1). i.e.,

11-Aug-14 213

Maximum Power Transfer

Page 214: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 214/236

Page 215: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 215/236

11-Aug-

2

Using the techniques of finding the Theveninresistance and the Thevenin voltage, we find

that 9 Ω and 22 V (exercise).

For maximum power transfer, 9 Ω

and the maximum power is

13.44 W

11-Aug-14 215

Page 216: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 216/236

Page 217: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 217/236

11-Aug-

2

Operational Amplifiers (Op-amps)

• Operational amplifiers are commonly used in

a large variety of electronic applications (acand dc signal amplification, active filters,oscillators, comparators and regulators).

• An op-amp is an active element of an electriccircuit.

• It acts like a voltage controlled voltagesource.

• Our focus is on the terminal behavior of theop-amp i.e. we are not interested in theinternal structure of the op-amp nor thecurrents and voltages that exist in thisstructure.11-Aug-14 217

Page 218: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 218/236

11-Aug-

2

• Op-amps are commercially available in

IC packages in several forms. Thefollowing figure shows a typical op-amppackage which is an eight-pin dual in-line package (DIP) as shown.

Op-amp package Pin configuration

11-Aug-14 218

Operational Amplifiers (Op-amps)

Page 219: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 219/236

11-Aug-

2

• Pin or terminal 8 is unused and terminals

1 and 5 are of little concern to us.

• The 5 important terminals are:

The inverting input, pin 2.

The non-inverting input, pin 3.

The output, pin 6.The positive power supply V+, pin 7.

The negative power supply V–, pin 4.

11-Aug-14 219

Pin Configuration of an Op-amp

Page 220: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 220/236

Page 221: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 221/236

11-Aug-

2

• The op-amp has two inputs and one

output.• The inputs are marked with minus (–)

and plus (+) to specify inverting andnon-inverting inputs respectively.

• An input applied to the non-invertingterminal will appear with the same

polarity at the output while an inputapplied to the inverting terminal willappear inverted at the output.

11-Aug-14 221

Circuit Symbol of an Op-amp

Page 222: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 222/236

11-Aug-

2

• The op-amp is typically powered by a

voltage supply as shown.

11-Aug-14 222

Operation of an Op-amp

Page 223: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 223/236

11-Aug-

2

• The power supplies are often ignored in

an op-amp circuit diagram for the sakeof simplicity. However, note that .

• The output voltage is limited by thevalues of the voltage sources i.e.

.

11-Aug-14 223

Operation of an Op-amp

Page 224: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 224/236

11-Aug-

2

Ideal Op-amps

• To facilitate the understanding and

analysis of op-amp circuits, we consideronly ideal op amps.

• An ideal op-amp is an amplifier with infinite open-loop gain, infinite input resistance and zero output resistance,i.e., it has the following characteristics:

Infinite open-loop gain, ∞.

Infinite input resistance, ∞.

Zero output resistance, 0.

11-Aug-14 224

Page 225: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 225/236

11-Aug-

2

• Because an op-amp has a very high open-

loop voltage gain, , negative feedback isusually considered to control the outputvoltage and to limit the voltage gain.

• A negative feedback is achieved when theoutput is fed back to the inverting terminalof the op-amp as shown.

• The voltage gain of the op-amp withnegative feedback is called closed-loopgain.

11-Aug-14 225

Ideal Op-amps

Page 226: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 226/236

11-Aug-

2

For circuit analysis, the ideal op-amp is as

shown.

11-Aug-14 226

Analysis of the Ideal Op-amp

Page 227: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 227/236

11-Aug-

2

• Two important characteristics of the ideal op-amp:

The currents into both the input terminals are zero, i.e. 0 , 0. This is due to the infinite input resistance.This implies that there is an open circuit between theinput terminals and current cannot enter the op amp.But, the output current is not necessarily zero, accordingto .

The voltage across the input terminals is equal to zero,i.e. 0 ⟹ .

• These two equations: (1) 0 & 0 and (2) are extremely important and should be

regarded as the key information to analyzing op-amp circuits.

11-Aug-14 227

Characteristics of the Ideal Op-amp

Page 228: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 228/236

11-Aug-

2

Example 1

For the following circuit, find the voltage

gain /.

11-Aug-14 228

Page 229: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 229/236

11-Aug-

2

• The non-inverting input is grounded,

is connected to the inverting inputthrough and the feedback resistor

is connected between the invertinginput and output.

• Applying KCL to node 1:

0 0 ⟹

0

11-Aug-14 229

Page 230: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 230/236

11-Aug-

2

But, 0 for an ideal op-amp since

the non-inverting terminal is grounded.Hence,

The circuit is an inverting amplifier whichreverses the polarity of the input signalwhile amplifying it.

11-Aug-14 230

Page 231: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 231/236

11-Aug-

2

Example 2

For the following circuit, find the voltage

gain /.

11-Aug-14 231

Page 232: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 232/236

11-Aug-

2

The input voltage is applied directly at

the non-inverting input terminal andresistor is connected between theground and the inverting terminal.

Applying KCL to the inverting terminalgives

0 0

0

11-Aug-14 232

Page 233: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 233/236

Page 234: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 234/236

Page 235: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 235/236

11-Aug-

2

The figure is redrawn as shown.

Note that .

Since 0, the 40 kΩ and 5 kΩ resistors are inseries, the same current flows through them.

Since is the voltage across the 5 kΩ resistor,

using the voltage division principle,

11-Aug-14 235

Page 236: EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

8/10/2019 EE2001 Part a EMJ 11 August 2014 One Slide Per Page(1)

http://slidepdf.com/reader/full/ee2001-part-a-emj-11-august-2014-one-slide-per-page1 236/236

11-Aug-