EE1320: Measurement Science

32
Challenge the future Delft University of Technology Lecture 3: Sensor Readout and Signal Conditioning EE1320: Measurement Science Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory May 7, 2013

Transcript of EE1320: Measurement Science

Page 1: EE1320: Measurement Science

Challenge the future

DelftUniversity ofTechnology

Lecture 3:Sensor Readout and Signal Conditioning

EE1320: Measurement Science

Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory

May 7, 2013

Page 2: EE1320: Measurement Science

2Measurement Science (EE1320) – Lecture 3

Course program 2013

week date topic

4.1 Tu 23/4 #1 intro measurements and meas. systems

Fr 26/4 #2 sensors

4.3 Tu 7/5 #3 sensor readout and signal conditioning

4.4 Tu 14/5 #4 instrumentation amplifiers

We 15/5 intermediate test

4.5 Tu 21/5 #5 analog-to-digital converters

4.6 We 29/5 #6 measurement instruments I

4.7 Tu 4/6 #7 measurement instruments II

We 5/6 intermediate test

4.8 Tu 11/6 tutorial

4.11 We 3/7 final exam

Lecturer: dr. ir. Michiel Pertijs

room HB 15.050, [email protected], 015-2786823

Page 3: EE1320: Measurement Science

3Measurement Science (EE1320) – Lecture 3

sensoranalog-to-

digitalconversion

DATA ACQUISITION

signalconditioning

measurementobject

Last time…

Sensors

transduction of informationfrom a (non-electrical) domainto the electrical domain

• self generating / modulating

• direct / tandem transduction

Page 4: EE1320: Measurement Science

4Measurement Science (EE1320) – Lecture 3

Today: sensor readout

and signal conditioning

• Why signal conditioning?

• Readout of

• thermocouples with a non-inverting amplifier

• photodiodes with a transimpedance amplifier

• capacitive sensors with a charge amplifier

• Additionally: effects of non-ideal properties of opamps

sensoranalog-to-

digitalconversion

DATA ACQUISITION

signalconditioning

measurementobject

Page 5: EE1320: Measurement Science

5Measurement Science (EE1320) – Lecture 3

Overview study material

• Regtien 12 (except 12.1.4, 12.1.5):

• Properties of opamps and basic opamp circuits (recap)

• Non-ideal properties of opamps

• Regtien 13.1.1, 13.1.2

• Integrator en differentiator

• Regtien 5.2: Signal models – equivalent error sources

Page 6: EE1320: Measurement Science

6Measurement Science (EE1320) – Lecture 3

Importance of signal conditioning

• Output signal of sensors is often not suitable for ADC input

• too small - input range ADC not used effectively

• too sensitive - load of sensor by ADC yields errors

• too much interference / noise - ADC saturates without filtering

• wrong format - e.g. resistive sensor on voltage-input

• Signal conditioning adapts the sensor signal to the ADC

• amplification (scaling)

• buffering

• filtering

• conversion

Page 7: EE1320: Measurement Science

7Measurement Science (EE1320) – Lecture 3

Importance of signal conditioning

- without scaling

unusedrange

Us,max

0000

0101

1111

t

t

Us

Do

Us

Dosensor ADCUs Do

Page 8: EE1320: Measurement Science

8Measurement Science (EE1320) – Lecture 3

How?often using

opamp circuits!

Importance of signal conditioning

- with scaling

0000

1111

t

t

Uv,max

Do

Us, Uv

Us

Do

Uv

amplifier ADCUv

sensorUs Do

Page 9: EE1320: Measurement Science

9Measurement Science (EE1320) – Lecture 3

Opamps –

remember them?

The output voltage Uo is:

A –1 V

B 2 V

C –2 V

D –10 V

1 kΩ

1 kΩ

1 V

+10 V

–10 VUo

Page 10: EE1320: Measurement Science

11Measurement Science (EE1320) – Lecture 3

Opamps –

remember them?

The output voltage Uo is:

A 1 V

B 2 V

C –2 V

D –10 V

1 kΩ

1 kΩ

1 V

+10 V

–10 VUo

Page 11: EE1320: Measurement Science

13Measurement Science (EE1320) – Lecture 3

Opamp – ideal behavior

• Amplifies differential input

voltage with very high

(ideally infinite) gain A

• Input currents are zero:

Regtien 12.1

0

0

→→

+

I

I

( )∞→

−⋅=⋅= −+

A

UUAUAU inout

Uin

Uout

I+

I−

A

Page 12: EE1320: Measurement Science

14Measurement Science (EE1320) – Lecture 3

Uin

Uout

I+

I−

Opamp – ideal behavior

• Feedback network

(with passive components)

determines transfer

• Stable negative feedback ⇒Uin → 0 (“virtual ground”)

• Zero-conditions at the input:

A

0→−= −+ UUU in

0

0

→→

+

I

I

FEEDBACK NETWORK

Regtien 12.1

Page 13: EE1320: Measurement Science

15Measurement Science (EE1320) – Lecture 3

Thermocouple readout using a

non-inverting amplifier

• Thermocouple senses

temperature difference:

• Sensitivity determined by

Seebeck coefficients

αa and αb:

• Example: chromel/alumel

(“type K” thermocouple)

Regtien 7.2.4

( )21 TTU abab −⋅= α

baab ααα −=

µV/K 40=abα

Metal a

Metal b

Metal c

Page 14: EE1320: Measurement Science

16Measurement Science (EE1320) – Lecture 3

Thermocouple readout using a

non-inverting amplifier

• Given:

• measurement range

0 ≤ T1 – T2 ≤ 100 K

• ADC input range0 ≤ Uo ≤ 1 V

• chromel/alumel coupleαab = 40 µV/K

• Determine the required gain

• Dimension the resistors e.g. R1 = 249 kΩ,R2 = 1 kΩ

Regtien 12.1.3

250K 100µV/K 40

V1 =⋅

=G

2

21

RRR

G+=

Metal a

Metal b

Metal a

Page 15: EE1320: Measurement Science

17Measurement Science (EE1320) – Lecture 3

Opamp offset voltage

• Ideal opamp: Uout = 0 when Uin = 0

• Actual opamps have an offset: Uout = 0 at Uin ≠ 0

• Offset voltage Uos: input voltage Uin for which Uout = 0

typical values:• standard opamp: ±1 mV• precision opamp: < ±10 µV

Regtien 12.2.2

Uout

Uout

Page 16: EE1320: Measurement Science

18Measurement Science (EE1320) – Lecture 3

Thermocouple readout with offset

• Given:

• opamp offset voltage

|Uos| < 1 mV

• chromel/alumel couple

αab = 40 µV/K

• Determine the maximum measurement error due to the

offset voltage

Metal a

Metal b

Metal a

Page 17: EE1320: Measurement Science

20Measurement Science (EE1320) – Lecture 3

sensoranalog-to-

digitalconversion

signalconditioning

measurementobject

Combining sources of error

• Sources of error can occur at many positions in the chain

• For instance: offset, distortion, crosstalk, cross sensitivity

• How to determine their combined effect on the measurement?

ε1 ε2 ε3 ε4ε5

Regtien 5.2

x y

Page 18: EE1320: Measurement Science

21Measurement Science (EE1320) – Lecture 3

sensoranalog-to-

digitalconversion

signalconditioning

measurementobject

Combining sources of error

• Determine the effect of the individual sources on the output

• If the system is linear (or can be linearized), then:

Regtien 5.2

ε1 ε2 ε3 ε4ε5

x∆y1

∆y5

∑∆=∆ itotal yy

∑∆=∆ 22itotal yy

for systematic sources of error (e.g. offset)

for uncorrelated stochastic sources of error (e.g. noise)

∆ytotal

Page 19: EE1320: Measurement Science

22Measurement Science (EE1320) – Lecture 3

sensoranalog-to-

digitalconversion

signalconditioning

measurementobject

Equivalent sources of error

Regtien 5.2

• Translate the output-referred error back to the input

• ∆xeq is called the equivalent input error

• Example: what’s the effect of ε3 on the measurement?

• Determine output error due to ε3 ⇒ ∆y3

• Translate this back to the input ⇒ ∆xeq,3

• ε3 causes an equally large error as an error ∆xeq,3 at the input would

ε1 ε2 ε3 ε4ε5

∆xeq ∆y1

∆y5

∆ytotal

DATA ACQUISITION

Page 20: EE1320: Measurement Science

23Measurement Science (EE1320) – Lecture 3

Photo diode

Typical sensitivityof a Si photodiode• Photons lead to a photocurrent Iph

• Characteristic properties:

• spectral sensitivity R [A/W]

• dark current Idark [A]

• quantum efficiency η [%]:

electrons / photon

λν ch

hE⋅=⋅=

Regtien 9.1.2

Page 21: EE1320: Measurement Science

24Measurement Science (EE1320) – Lecture 3

Photodiode readout using

a transimpedance amplifier

• transimpedance amplifier =

current-voltage converter

paragraaf 6.2

phfo IRU ⋅=

Page 22: EE1320: Measurement Science

25Measurement Science (EE1320) – Lecture 3

Photodiode readout using

a transimpedance amplifier

• Determine the required feedback resistance

Regtien 12.1.1

• Given:

• spectral sensitivity

Rspec = 0.5 A/W

• sensitive areaA = 1 mm2

• light intensity range0 ≤ P ≤ 1 W/m2

• ADC input range0 ≤ Uo ≤ 1 V

Page 23: EE1320: Measurement Science

27Measurement Science (EE1320) – Lecture 3

Opamp offset current

and bias current

• Ideal opamp:

• Practical opamps require bias current Ibias

• Moreover, input currents are not exactly equal:

offset current: Ios = Ibias1 – Ibias2

0 ,0 →→ −+ II

Regtien 12.2.2

values vary strongly depending on opamp type• MOS: pA ~ nA• bipolar: nA ~ µA

often highlytemperature dependent!

Ibias2

Ibias1

Page 24: EE1320: Measurement Science

28Measurement Science (EE1320) – Lecture 3

Modeling offset and bias current

with equivalent sources

Regtien 12.2.2

Ibias2

Ibias1Uos

Ibias1Ibias2

⇔⇔⇔⇔

Practical opampwith offset andbias currents

Ideal opampwithout offset and

bias currents

Page 25: EE1320: Measurement Science

29Measurement Science (EE1320) – Lecture 3

Photodiode readout

with offset and bias current

• Given:

• dark current photodiode

Idark ≤ 5 nA

• opamp offset voltage|Uos| < 1 mV

• opamp bias currentIbias < 10 nA

• opamp offset current|Ios| < 1 nA

• Rf = 2MΩ• Determine maximum offset voltage

at the output (in mV)

• Determine the equivalent input offset

in terms of the photocurrent (in nA)

Page 26: EE1320: Measurement Science

31Measurement Science (EE1320) – Lecture 3

Readout of capacitive sensors

using a charge amplifier

• Capacitive sensor:

• Cs changes due to

• displacement ∆d, ∆A• change in dielectric constant

• Example: humidity sensor

Regtien 7.2.3, 20.2.2 (Fig. 20.16)

∆d∆A

∆εr

dA

C rs ⋅⋅= εε0

moisture-sensitivepolymer

porouselectrode

Page 27: EE1320: Measurement Science

32Measurement Science (EE1320) – Lecture 3

Readout of capacitive sensors

using a charge amplifier

• Charge amplifier

• resembles an inverting amplifier

• Transfer:

• Requires AC voltage Ui (ω > 0)

Regtien 13.1.1

if

si

f

si

s

fo U

CC

UCjCj

UZZ

U −=−=−=ωω

Page 28: EE1320: Measurement Science

33Measurement Science (EE1320) – Lecture 3

Readout of capacitive sensors

with offset and bias current

• What is wrong??

Regtien 13.1.1

Page 29: EE1320: Measurement Science

35Measurement Science (EE1320) – Lecture 3

Readout of capacitive sensors

with offset and bias current

• “Tamed” integrator:

feedback resistance Rf

• DC transfer determined by Rf:

• For transfer

determined by Cf:

Regtien 13.1.1

( ) fosbiasoso RIIUU ⋅++−=∆

ffCR1>ω

if

so U

CC

U −=

Page 30: EE1320: Measurement Science

36Measurement Science (EE1320) – Lecture 3

Differential readout of

capacitive sensors

• Differential structure ⇒ Uo = 0 for x = 0• Differential structures eliminate

offsets and even-order non-linearities.

Why differential structure??

Page 31: EE1320: Measurement Science

37Measurement Science (EE1320) – Lecture 3

Summary

• Signal conditioning needed to adjust sensor output signal

to input of ADC

• Opamps are suitable building blocks for sensor readout

• non-inverting amplifier (example: thermocouples)

• transimpedance amplifier (example: photodiodes)

• charge amplifier (example: capacitive sensors)

• Opamp’s non-ideal properties influence the transfer

• offset voltage, bias current, offset current

• modeled with equivalent sources at input of opamp

• can be translated to equivalent input- or output-referred errors

Page 32: EE1320: Measurement Science

38Measurement Science (EE1320) – Lecture 3

What’s next?

• Study:

• Regtien chapter 12, sections 5.2, 13.1.1, 13.1.2

• Practice

• See the exercises on Blackboard!

• Questions, things unclear? Let me know!

[email protected]

Next time:

instrumentation amplifiers!