EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE [email protected].

17
EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE [email protected]

Transcript of EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE [email protected].

Page 1: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

EE130Electromechanics

2013

J. Arthur Wagner, Ph.D.

Prof. Emeritus in EE

[email protected]

Page 2: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.1 Electric Drive

System (ASD)

Example of load-speed requirement

ASD Load

L

0 1 2 3 4 5 6 7

100

sect

/ secL raddesired speed profile

Page 3: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.2 (Linear) motion of M

Mf Mef

MLf

x

; Mdx du fu adt dt M

; e Lf fdx duu adt dt M

Page 4: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Acceleration, Power

Input, Kinetic Energy

Write the formula for acceleration (sum of forces / mass) (2.2)Write the formula for power (Net force times velocity) (2.6)Write the formula for kinetic energy (Recall from physics) (2.9)

Page 5: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.3 (a) Pivoted lever (b) Holding torque for the lever

f

Mgtorque

r

f

o90

M

Torque = force x radius

Page 6: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Ex. 2.1

• M = 0.5 kg

• r = 0.3 m

• Calculate holding torque as a function of beta

• How do we work this?

Page 7: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Ex. 2.1• torque = force x radius

• force perp. to radius

• force = Mg

• perp. component = Mg cos (beta)

• torque = 0.5 kg 9.8 m/s^2 * 0.3 m cos(beta)

• = 1.47 Nm

• In a motor, the force is produced electromagnetically and is tangent to the cylindrical rotor. The rotor radius converts this force to torque on the shaft.

Page 8: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.4 Motor torque acting on an inertia load

emT LTMotorLoad

the inertia of a cylinder = ½ * M * r1^2 (2.20)M = cylinder massr1 = cylinder radiusTL = load torque, other than due to inertia

Page 9: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

An inertia Load

• Mostly inertia

• Mostly friction (a grinder)

• Mostly mechanical torque in steady state (a belt lifting gravel)

• All systems have some of both (an inertia plus other torque)

Page 10: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Inertia of a 14 in disk

• 14.5 oz /(16 oz/lb) / (2.2 lb / kg) = .412 kg

• d1 = 14 in * (.0254 m / in) = .356 m

• r1 = .356 / 2 = .178 m

• J = ½ * M * r1^2 = ½ *.412 * (.178)^2

• = 0.0065 kg m^2

Page 11: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Angular acceleration = torque / moment of inertia (2.23)

em L JT T T

em L JT T Tddt J J

Page 12: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.6 Motor and load with rigid coupling

MotorLoad

m

emT

emT

LT

m JT

eq

1

J

LT

Block diagram of acceleration equation.Two integrators to go to angular velocity and angular position

Page 13: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Ex. 2.3

• TL negligible, each cylinder has same inertia

• J of one cylinder = .029 kg m^2

• speed goes from 0 to 1800 rpm in 5 s

• Calculate the required electromagnetic torque.

• How do we work this? First, sketch a speed profile.

Page 14: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Ex. 2.3

• 1800 rpm * pi / 30 = 188.5 rad/s

• Jeq = 2 * .029 = 0.058 kg m^2

• acceleration = 188.5 rad/s / 5 s = 37.7 rad/s^2

• electromagnetic torque = J * accel =

• =.058 * 37.7 = 2.19 N m

Page 15: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Fig. 2.13 Combination of rotary and linear motion

Lfu

Motor

Jm

Tem

M

r

Jm motor inertia

M = mass of load

r = pulley radius

Page 16: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Rotary and Linear Motion

required to accelerate due to load motor

2mem m L

d dT J r M r f

dt dt

L

m2 m

L

d uf M f

dtu r

dT r f r M rf

dt

T due to load only

Page 17: EE130 Electromechanics 2013 J. Arthur Wagner, Ph.D. Prof. Emeritus in EE wagneretal@sbcglobal.net.

Homework Chapter 2, Due next Tuesday

• Problems 2.1, 2.11, 2.12, 2.13, 2.14