EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect...

38
EE 435 Lecture 42 References PLLs and VCOs

Transcript of EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect...

Page 1: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

EE 435

Lecture 42

• References

• PLLs and VCOs

Page 2: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Desired Properties of References

VBIASVREF

Voltage

Reference

Circuit

• Accurate

• Temperature Stable

• Time Stable

• Insensitive to VBIAS

• Low Output Impedance (voltage reference)

• Floating

• Small Area

• Low Power Dissipation

• Process Tolerant

• Process Transportable.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 3: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Voltage References

VBIASVREF

Voltage

Reference

Circuit

Observation – Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?

VDD, VT, VBE (diode) ,VZ,VBE,Vt ???

What variables which have units volts satisfy the desired properties of a

voltage reference?

How can a circuit be designed that “expresses” the desired variables?

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 4: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Voltage References

Consider the Diode

ID

VD

t

D

V

V

SD AeJI

t

G0

V

-V

m

SXS eTJJ~

pn junction characteristics highly temperature dependent through both

the exponent and JS

VG0 is nearly independent of process and temperature

V.VG 20610

q

kTVt

K

Vx.

K

V

x.

x.

q

koo

5

19

23

106148106021

10381

termed the bandgap voltage

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 5: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Voltage References

VBIASVREF

Voltage

Reference

Circuit

Observation – Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?

VDD, VT, VBE (diode) ,VZ,VBE,Vt ,VG0 ???

What variables which have units volts satisfy the desired properties of a

voltage reference? VG0 and ??

How can a circuit be designed that “expresses” the desired variables?

VG0 is deeply embedded in a device model with horrible temperature effects !

Good diodes are not widely available in most MOS processes !

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 6: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Voltage References

t

G0

V

-V

m

SXS eTJJ~

t

BE

t

G0

V

(T)V

V

-V

m

SXC eeTAJ(T)I

~

t

BE

V

V

SC AeJI

Bandgap Voltage Appears in

BJT Model Equation as well

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 7: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Standard Approach to Building

Voltage References

Negative

Temperature

Coefficient

(NTC)

K

Positive

Temperature

Coefficient

(PTC)

XOUT

XN

XP

Pick K so that at some temperature T0,

0T

KXX

0TT

PN

PNOUT KXXX

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 8: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Standard Approach to Building

Voltage References

Negative Temperature

Coefficient

V

T

Positive Temperature

Coefficient

T0

V

TT0

XN+KXP

0TT

PN

T

KXX

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 9: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

t

BE

t

G0

V

(T)V

V

-V

m

SXC eeTI(T)I

~

Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

mlnTAJVVIlnVV ESXtG0CtBE ~

ln

TI

Iln

q

kΔVVV

C1

C2BEBE1BE2

If the IC2/IC1 ratio is constant, the TC of ΔVBE is positive

ΔVBE is termed a PTAT voltage (Proportional to Absolute Temperature)

This relationship applies irrespective of how temperature dependent IC1 and IC2 may be

provided the ratio is constant !!

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 10: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

TI

Iln

q

kΔVVV

C1

C2BEBE1BE2

C1

C2BE1BE2

I

Iln

q

k

T

VV

25.8mVx3008.6x10VV 5

BE1BE2

At room temperature

CV/868.6x10

T

VV o5

K300TT

BE1BE2

o0

μ

If ln(IC2/IC1)=1

The temperature coefficient of the PTAT voltage is rather small

Page 11: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Q1

VBE1

Bandgap Voltage ReferencesConsider two BJTs (or diodes)

Q2

VBE2

C1

C2BE1BE2

I

Iln

q

k

T

VV

At room temperature

The temperature coefficient of the PTAT voltage is rather small even if large

collector current ratios are used

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000 100000 1000000

Collector Current Ratio

PT

AT

De

riv

ati

ve

mV

/C

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 12: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

t

BE

t

G0

V

(T)V

V

-V

m

SXC eeTI(T)I

~

Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

mlnTAJVVIlnVV ESXtG0CtBE ~

ln

t

G0BEBE

V

VVm-

q

k

T

V

If IC is independent of temperature, it follows that

C2.1mV/25mV

1.20.652.38.6x10

T

V o5

K300TT

BE

o0

.• •

• •

R

evie

w f

rom

last

lectu

re .•

• •

Page 13: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

If IC is independent of temperature, it follows that

C2.1mV/25mV

1.20.652.38.6x10

T

V o5

K300TT

BE

o0

If ln(IC2/IC1)=1

CV/868.6x10

T

VV o5

K300TT

BE1BE2

o0

μ

Magnitude of TC of PTAT source is much smaller than that of VBE source

PNOUT KXXX 0

T

KXX

0TT

PN

If K will be large

Page 14: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

If IC is independent of temperature, it follows that

C2.1mV/25mV

1.20.652.38.6x10

T

V o5

K300TT

BE

o0

mlnTAJVVIlnVV ESXtG0CtBE ~

ln

ESXtCtG0BE AJ~

lnVmlnTIlnVVV

If IC is reasonably independent of temperature, VBE will still provide a negative TC

Rewriting VBE equation

Page 15: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Bandgap Reference Circuits

• Circuits that implement ΔVBE and VBE or ΔVD

and VD widely used to build bandgap

references

VD1VD2

Page 16: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

VBE and ΔVBE with constant IC

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Temperature

Vo

lts

ΔVBE

VBE

Page 17: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

VBE plot for constant IC

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Temperature

Vo

lts

VBE

End Point

Fit Line

Page 18: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Comparison of VBE with constant

current and PTAT current

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600

Temperature

Vo

lts

Constant

Current

PTAT

Current

Page 19: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R

4

Q1

Q2

P.Brokaw, “A Simple Three-Terminal IC Bandgap Reference”, IEEE

Journal of Solid State Circuits, Vol. 9, pp. 388-393, Dec. 1974.

Page 20: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Most Published Analysis of Bandgap Circuits

0 2REF G0 BE0 G0

0 1

T JT kT kTV =V + V -V + m-1 ln +K ln

T q T q J

where K is the gain of the PTAT signal

Negative

Temperature

Coefficient

(NTC)

K

Positive

Temperature

Coefficient

(PTC)

XOUT

XN

XP

Page 21: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

2121 BEBEEVVRI

1212

RIIVVEEBEREF

3

OSC2DDC1

R

VVVI

4

C2DDC2

R

VVI

E11C1 IαI

E22C2 IαI β1

βα

VDD

VREF

R1

R2

R3 R4

Q1Q2

31

1OS

4

3

2

1

2

1BE1BE2BE2REF

RV

R

R

α

α1

R

RVVVV

31

OS

3

4E2E1

R

V

R

RII

1

2

Page 22: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

E11C1 IαI

E22C2 IαI

VDD

VREF

R1

R2

R3 R4

Q1Q2

4

3

2

1

2

1BE1BE2BE2REF

R

R

α

α1

R

RVVVV

3

4E2E1

R

RII

1

2

mlnTAlnVVlnIVV SXE1tG0C1tBE1 J~

mlnTAlnVVlnIVV SXE2tG0C2tBE2 J~

TR

R

A

Aln

q

kΔVVV

4

3

E2

E1BEBE1BE2

Page 23: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R4

Q1Q2

4

3

2

1

2

1BE1BE2BE2REF

R

R

α

α1

R

RVVVV

mlnTAlnVVlnIVV SXE1tG0C1tBE1 J~

mlnTAlnVVlnIVV SXE2tG0C2tBE2 J~

TR

R

A

Aln

q

kΔVVV

4

3

E2

E1BEBE1BE2

4

3

E2

E1

4

3

SXE22

1ttG0BE2

R

R

A

Aln

R

R

JAR

α

q

klnV lnTVm1VV ~

From the expression for VBE2 and some routine but tedious

manipulations it follows that

Page 24: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R4

Q1Q2

4

3

2

1

2

1BE1BE2BE2REF

R

R

α

α1

R

RVVVV

TR

R

A

Aln

q

kΔVVV

4

3

E2

E1BEBE1BE2

4

3

E2

E1

4

3

SXE22

1ttG0BE2

R

R

A

Aln

R

R

JAR

α

q

klnV lnTVm1VV ~

TR

R

α

α1

R

R

R

R

A

Aln

q

kmlnTIlnVV

R

R

A

Aln

q

kT

R

R

R

αlnVV

4

3

2

1

2

1

4

3

E2

E1SX2tG0

4

3

E2

E1

4

3

2

1tREF

~

It thus follows that:

Page 25: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R4

Q1Q2

4

3

2

1

2

1BE1BE2BE2REF

R

R

α

α1

R

RVVVV

TR

R

α

α1

R

R

R

R

A

Aln

q

kmlnTIlnVV

R

R

A

Aln

q

kT

R

R

R

αlnVV

4

3

2

1

2

1

4

3

E2

E1SX2tG0

4

3

E2

E1

4

3

2

1tREF

~

TlnTcTbaV 111REF

GO1 Va

2SK2

E2

E1

1

3

1

4

3

E2

E1

4

3

24

13

2

11

RI

A

A

R

Rln

αR

R

q

kln

A

A

R

Rln

αR

αR1

R

R

q

kb ~

m1q

kc1

Page 26: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R4

Q1Q2

TlnTcTbaV 111REF

GO1 Va

2SK2

E2

E1

1

3

1

4

3

E2

E1

4

3

24

13

2

11

RI

A

A

R

Rln

αR

R

q

kln

A

A

R

Rln

αR

αR1

R

R

q

kb ~

m1q

kc1

0lnT1cbdT

dV11

REF

1

1

c

b1

INF eT

INF11 lnT1cb

INF11REF TcaV

1mq

kTVV INF

G0REF

Page 27: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

First Bandgap Reference (and still widely used!)

VDD

VREF

R1

R2

R3 R4

Q1Q2

TlnTcTbaV 111REF

1mq

kTVV INF

G0REF

Bandgap Voltage Source

1.237000

1.237500

1.238000

1.238500

1.239000

1.239500

1.240000

200 250 300 350 400

Temperature in C

VR

EF

VGO 1.206

TO 300

VBEO2 0.65

m-1 1.3

k/q 8.61E-05

Page 28: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Temperature Coefficient

T

V

VNOM

T1 T2

VMin

VMax

12

MINMAX

TT

VVTC

610)12NOM

MINMAXppm

T(TV

VVTC

Page 29: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

TC of Bandgap Reference (+/- ppm/C)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

Temperature Range

TC

Page 30: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Bamba Bandgap Reference

D1D2

R1 R2

M1 M2M3

R4VREF

θ

VDD

VD1

R0

VD2

I1 I2

ID1 ID2

I3

[7] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, A. Atsumi,

and K. Sakkui, IEEE Journal of Solid-State Circuits, Vol. 34, pp. 670-674, May

1999.

Page 31: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Bamba Bandgap Reference

D1D2

R1 R2

M1 M2M3

R4VREF

θ

VDD

VD1

R0

VD2

I1 I2

ID1 ID2

I3BE1

R1

1

VI =

R

R2 R1I =I

BE R0

0

VI

R

2I

2 R0 R2I =I +I

3 2I =KI

4REF 3V =θI R

Substituting, we obtain

BE BEREF 4

1 0

V ΔVV =θKR +

R R

4 1REF BE BE

1 0

R RV =θK V + ΔV

R R

K is the ratio of I3 to I2

REF 11 11 11V a b T c TlnT

Page 32: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Kujik Bandgap Reference

D1D2

VREF

R0

VD2

I1 I2

ID1 ID2VD1

R1 R2

VX

[12] K. Kuijk, “A Precision Reference Voltage Source”,

IEEE Journal of Solid State Circuits, Vol. 8, pp. 222-226, June

1973.

Page 33: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

Kujik Bandgap Reference

D1D2

VREF

R0

VD2

I1 I2

ID1 ID2VD1

R1 R2

VX

BE R0

0

VI

R

2 R0I =I

REF 2 2 BE1V =I R +V

2REF BE BE1

0

RV = V +V

R

solving, we obtain

REF 22 22 22V a b T c TlnT

Page 34: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables
Page 35: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables
Page 36: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

lnREFV a bT cT T

Almost all of the published bandgap references have an output of the form:

Page 37: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables
Page 38: EE 505 CMOS and BiCMOS Data Conversion Circuitsclass.ece.iastate.edu/ee435/lectures/EE 435 Lect 42...Voltage References V BIAS V REF Voltage Reference Circuit Observation –Variables

End of Lecture 42