EDX WP UseofClutterDatainRFPlanning Aug08 Web

download EDX WP UseofClutterDatainRFPlanning Aug08 Web

of 11

Transcript of EDX WP UseofClutterDatainRFPlanning Aug08 Web

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    1/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 12008EDXWireless www.edx.com

    TechnologyWhitePaper

    TheApplication

    of

    Land

    Use/

    LandCover(Clutter)Datato

    WirelessCommunication

    SystemDesign

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    2/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 22008EDXWireless www.edx.com

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    HarryAnderson,TedHicks,JodyKirtnerEDXWireless,LLC

    Eugene,OregonUSA

    Introduction

    Landuse/landcover(LULC)datacanplayasignificantofroleindesigningwirelesscommunicationsystems. Itcan

    beusedtoimprovepredictionsofsignalattenuationandotherradiopropagationeffectsandtoassistinfinding

    theoptimallocationofnetworkbasestationsandotherwirelesssystemtransmitters. Itcanalsobeutilizedwhen

    projectingusage(traffic)trendsinanytypeofmobileornomadicsystem.

    Withliterallybillionsofdollarsbeingspentannuallyonbuildingwirelesscommunicationsystems,thereis

    significantincentivetouseengineeringtoolsthatcanaccuratelyandefficientlydesignandplansuchsystems.

    Therecurrentlyareanumberofsoftwaretoolsonthemarketintendedforjustthatpurpose. Consideringthata

    wirelessnetworkforasingleurbanareacanbecomprisedofhundredsofbasestations,anefficientsystemdesign

    processcan

    easily

    justify

    the

    expense

    of

    the

    design

    tool

    and

    the

    effort

    using

    it.

    As

    the

    wireless

    system

    grows

    to

    meetincreasingandchangingdemandsforservice,thedesigntoolisagainavaluableassetinplanningoptimum

    modificationstothesystemtoaccommodategrowth.

    Offundamentalimportancetothewirelesssystemdesigntoolistheabilitytoaccuratelypredictthestrengthof

    radiosignalsfromthevarioustransmittersinthesystem.Themathematicalalgorithmsusedforthesepredictions

    aregenerallyknownaspropagationmodels. Originally,propagationmodelsreliedonterrainelevationdataasthe

    soleenvironmentparameteronwhichtobasepredictions. Substantialefforthasbeeninvestedoverthelast2030

    yearsindevelopingaccurateDTEMs(digitalterrainelevationmodels)forallpartsoftheworld. Whileterrainhasa

    profoundeffectonthepropagationofradiosignals(especiallyathigherfrequencies),morelocalizedfeaturesof

    theenvironmentsuchastreesandstructures(buildings,houses,etc.)alsohaveasubstantialimpacton

    propagation. Animportanttrendinwirelesssystemarchitectureistousesmallercellcoverageareas(socalled

    microcells)and

    much

    higher

    radio

    frequencies

    where

    significantly

    greater

    transmission

    bandwidth

    is

    available.

    For

    suchshortrangesystemarchitectureswherethecoverageradiusofthetransmittermayrangefrom0.5to5

    kilometers,theterraincanoftenberegardedaslocallyflat. Undersuchconditions,signalpropagationis

    dominatedbylocalobstructions("clutter")ratherthanbyterrain,makingthedescriptionandaccurate

    classificationoflanduse/landcoverdataofprimaryimportance.

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    3/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 32008EDXWireless www.edx.com

    WirelessSystemPropagationModeling

    Radiowavepropagationisaphysicalphenomenonthatcanbedescribedusingelectromagneticwaveequations.

    Likewavestravellingawayfromthespotwhereastonehasbeentossedintoapond,radiowavestravelawayfrom

    thetransmittingantennainalldirections. Theoreticallyitispossibletoexactlypredictthestrengthofthesignal

    fromanytransmitteratanyotherlocationifalltheelementsofthepropagationenvironmentarecorrectlytaken

    intoaccount. Insocalledfreespace(actuallyavacuum),therearenoelementsinthepropagationenvironment

    andthesignalstrengthatsomedistancefromthetransmittercanbeexactlycalculated. Radiowavetransmission

    throughouterspaceisoneregionwheresuchasimpleformulationapplies. Fortransmitterslocatedonthe

    earthssurfacetheproblemismuchmorecomplicated. Everyphysicalentityaradiosignalencountersafterit

    leavesthetransmittingantennaaffectsthestrengthanddirectionofthesignal. Thephysicalentitiesthataffect

    thesignalcanbegroupedintofourbroadcategories:

    1. Theatmosphere(orothergaseousmedia)refracts(bends)anddiffracts(scatters)theradiowaves;

    bendingchanges

    the

    direction

    of

    the

    radio

    wave

    while

    scattering

    generally

    weakens

    the

    wave.

    2. Terrainfeatures(hillsandmountains)blocktheradiowaves,requiringthemtodiffractoverthetopor

    aroundthesides,weakeningthesignalontheotherside. Radiowavesalsoreflectandscatteroffof

    terrainsurfacescausingachangeinthedirectionoftheradiowave.

    3. Muchliketerrain,structuressuchasbuildings,houses,towers,etc.blocktheradiowaves.Thewaves

    diffract,reflect,scatterandtransmitthroughstructures.

    4. Theleavesandbranchesoftreesandothertypesoffoliagealsoweakenradiowavesbyscatteringthem,whichhasasimilareffectasthatoftheblockingthemasterrainorbuildingscando

    Asmentionedintheintroduction,theatmosphereandterrainhavebeenincludedformanydecadesinthe

    propagationmodelswhicharedesignedtopredictthestrengthofradiosignals. Figure1showsarepresentation

    ofaradiowavepropagatingfromatransmitter(ontheleft)toareceiverlocationintheopen(ontheright).

    Figure1 RadioPathwithTree

    Althoughthesignalarrivingatthereceiverwillincludesomereflectionsfromtheterrain,thedominantsignalis

    theonethatarrivesdirectlyfromthetransmitter. Atreeislocatedalongthispathnearthereceiver. Becauseof

    thetree,thesignalissome1020dBweakeratafrequencyof2.5GHz(atypicalWiMAXfrequency). Thisisdueto

    theeffectsdescribedaboveinitemfourandisasimpleexampleoftheeffectofgroundcoveronsignal

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    4/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 42008EDXWireless www.edx.com

    propagation. Onewaytoincludetheseeffectsistouseheuristicpropagationmodels. TheOkamuraHata,COST

    231,IEEESUI,and"Pointslope"modelsareexamplesofthese. Thesedesignersofthesemodelsattemptto

    integratethe

    effects

    of

    clutter

    by

    making

    many

    measurements

    of

    the

    signal

    in

    typical

    environments

    and

    then

    creatingsimpledistancevs.pathlossformulasthatincludenotonly"freespace"lossbutalsotheclutterloss

    foundinthatenvironment. Forexample,theOkamuraHatamodelisbasedonmeasurementsdoneinandaround

    Tokyo,Japan. Therefore,themodelisrepresentativeoflanduseenvironmentssimilartothatarea. Thesemodels

    canbequiteusefulwhenonedoesnothaveaccesstogoodqualitydigitizedgroundcoverdata.

    Figure2 ReceivedPowerusingRayTracingPropagationModel

    However,itisobviousthatasimplemodelcannotfullyconsidertheactuallocalconditionsofeverystudy

    situation. Asanexample,Figure2showsatypicalurbanbuildingenvironmentinwhichatransmitterhasbeen

    located. Inreality,theradiosignalfromthetransmitterwillbepropagatedtothereceiverbydiffractingand

    reflectingfromthevariousbuildingsshowninthisfigure. Becausethesignalsarriveatthereceiverviaanumber

    ofradiopaths,thesignalatthereceiverisoftendescribedasamultipathsignal. Whenusingasingleantennaat

    thetransmitterlocationandoneatthereceiveramultipathsignalcanhaveasignificantimpactonthesignal

    qualityorintegrityofdatawhichissentbecausemanyversionsofthesamesignalarearrivingatthereceiverat

    differenttimes. Ascanbeseen,thesignalatlineofsightreceiverlocationsalongthestreetstotheNorthandthe

    Eastofthetransmitterareconsiderablydifferent. However,inthisstudyasimplepropagationmodelwouldshow

    thesamesignalalongbothstreetsbecausethemodelwouldconsiderallstudypointsintheareahashavingonly

    oneclass

    of

    clutter

    rather

    than

    seeing

    the

    effect

    each

    of

    the

    individual

    buildings

    on

    the

    signal.

    As

    the

    environment

    becomesmorecomplex,asimplepropagationmodelisincapableofaccountingcompletelyforhowthe

    environmentaffectsthesignal.

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    5/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 52008EDXWireless www.edx.com

    ClassifyingGroundcoverData

    Araytracingpropagationmodelhasbeenusedheretoshowtheeffectthatabuildingenvironmenthasonradio

    waves. However,formanysystemslikeWiMAXorCellular/PCS,adetailedanalysisofanentiremarketwithray

    tracingmaynotcomputationallyviable. Moreover,acquiringdatabasesdescribingthelocationandcharacteristics

    ofeverytreeorbuildingmaybetimeorcostprohibitive. Therefore,tosimplifytheproblemofaccountingfor

    cluttereffectsinpropagationprediction,itisusefultobroadlyclassifythedatainsomeway.Forexample,instead

    ofconsideringeverytreeinaforest,awiderareacouldbeclassifiedasforestandanyreceiverlocatedwithin

    thatareawouldexperienceanadditionalsignalstrengthlossbasedonfrequency. Ifsignallossdatawerealso

    availablefordifferenttypesofforest,e.g.evergreenversusdeciduous,ortalltreesversusshorttrees,then

    multiplegroundcoverclassificationsforforestswouldbeappropriate.

    ManyGIS(GeographicalInformationSystem)landuseclassificationschemesprovideforalargenumberof

    categoriesthatmaybeappropriateforlanduseplanningorzoning. However,forthepurposeofwirelesssystem

    design,unless

    there

    are

    calculations

    or

    measurements

    that

    demonstrate

    astatistically

    significant

    difference

    betweencategoriesintermsoftheirrelativeimpactonradiosignals,havingtheadditionalcategoriesdoesnot

    necessarilyprovidemoreaccuratesignalpredictions. Theheight,extent,andlocationofgroundcoverelements

    arethefactorswhichprimarilygoverntheimpactonradiosignals. Differentclassificationtypessuchas

    industrialandcommercialmaybeusefulinurbanplanning,butifbothindicaterelativelylowbuildingsof

    broadextent,thenthedistinctionisunimportantforwirelessengineeringbothwillaffectthesignalinsimilar

    ways. Inthesamemanner,thegridpointspacingresolutionofthesedatabasesneedstobesmallenoughonlyto

    allowtheRFplanningtooltoreasonablylocatetheboundarybetweenadjacentcluttertypes. 30mistypical.

    ApplyingClutterDatatotheCalculation

    Clutterdatacanbeusedinseveralwaystoenhancetheresolutionofthesignallevelcalculationtoreturnmore

    accuratepointspecificresults. Themoststraightforwardapproachistousethemethodalludedtoabovewhere

    theattenuationataparticularreceiverlocationisadirectfunctionofthecluttertypeatthatlocation. Iffor

    example,aremoteunitislocatedinasuburbanareacontainingsinglestoryhousesandmaturetreesonemight

    applyanadditionalattenuationof20dBat2.5GHz;forrelativelyopenParklands10dBmightbeused. Theongoing

    challengeinusingclutterisdeterminingtheappropriateattenuationvaluesforeachcluttercategory. Oneoption

    istousetheTelecommunicationsIndustryAssociationresources. Thisgrouphastypifiedclutterlossesbasedon

    tencluttercategoriesappropriatetoRFplanninganddocumentedthemaspartoftheTSB881document.

    Ultimatelythemostaccuratevaluewillbebasedonreceivedsignalmeasurements(i.e.drivetest)withineach

    marketareathattakeintoaccountthetypeofvegetationandmanmadestructurespresentinthatarea.

    Asecondapproachistoassumethattheclutterrepresentsahard,nontransparentblockagetotheradiosignal.

    Theclutter

    data

    is

    then

    used

    to

    effectively

    raise

    the

    terrain

    elevation

    used

    by

    the

    planning

    tool

    so

    that

    the

    propagationcalculationwillseetheclutterasobstaclesalongthepathratherthana"bareearth"condition. Here,

    theclutterdataiscategorizedashavinganabovethegroundheightvaluerepresentingtheaverageheightfor

    eachtypeofclutter. Thismethodismosteffectiveatthehigherfrequencies,especiallyabove5GHzwherealmost

    anycluttertyperepresentsahighlossobstacletotheradiosignal. Thiscanbeextremelyusefulinurbanareas

    wherebuildingsrepresenttheprimaryobstaclestothesignal. Ratherthaninvestinginahighcostvectordatabase

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    6/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 62008EDXWireless www.edx.com

    describingeachindividualbuildingasa3Dpolygonwithindividuallydefinedwallsurfaces,onecancreateaclutter

    databaseusingaveryfinegridpointspacing(15meters). Thisallowsthetransitionbetweenbuildingclutterand

    othertypes

    of

    clutter

    (such

    as

    streets)

    to

    be

    sharply

    defined.

    Then,

    by

    organizing

    the

    buildings

    into

    anumber

    of

    clutterclassesbasedonaveragebuildingheightareasonablethreedimensionalrepresentationofthebuilding

    environmentcanbecreated. Table1belowcontainsrepresentativevaluesfortypicalbuildingheights.

    Finally,athird

    method

    acknowledges

    that

    for

    most

    clutter,

    the

    signal

    propagation

    mechanism

    is

    of

    a"pass

    through

    attenuation"type. So,unlesstheclutteriscomposedofbuildingsmadeofreinforcedconcreteorsomeother

    extremelyhighlossmaterial,arelationshipcanbemadebetweensignalattenuationandthedistancethatthe

    signaltravelsthroughaclutterarea(i.e.dB/m). Thisismostusefulwheremuchifnotallofthesignalpasses

    horizontallythroughtheclutterenvironment;anurbanWiFimeshnetworkisagoodexample. Here,theMesh

    AccessPointsaretypicallyonlightpolesatabout8metersabovethegroundwhichisusuallylessthanheightof

    thetreesand/orbuildingsinthearea. Thenodetonodesignalpathswillpassthroughtheclutterandby

    determiningthelengthofpassagewithineachtypeofclutteragoodvaluecanbehadforthetotalattenuation

    effect.

    SignalStrengthStudies

    Toillustratetheroleofgroundcoverdatainwirelesssystemdesign,threesignalstudiesareincludedtoshowthe

    threemethodsforusingclutteraspreviouslydescribed.

    Figure3showsthecoveragefromafoursiteWiMAXsystemoperatingat2.5GHz inamediumsizedurbanarea.

    Thebaseantennaisat30mabovethegroundandtheremoteunitsareat1.5m. Inthisstudy,noclutterwas

    used;terrainwastheonlyfactorindeterminingsignalstrength. Theareainthetophalfofthecoverageareais

    relativelyflatsonotmuchvariationinsignalstrengthisseen freespacelossisthedominateattenuationfactor

    here. Terrainbecomessignificantinthebottomhalfoftheareaasseenbythesharpreductionofsignalalongthe

    southernedgeofthecoverage.

    Table 1. Structure Height Classification

    Classification Average block height

    Residential < 2 meters

    Low density urban 5 10 meters

    Moderate density urban 10 25 meters

    High density urban > 25 meters

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    7/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 72008EDXWireless www.edx.com

    Figure3 ReceivedPower(TerrainDataonly)

    ClutterdatawasthenaddedtothisareaandFigure4isamapindicatingthedifferenttypesofclutterbasedon

    color. Theurbanandcommercial/industrialusesareshowninredandpinkrespectively;residentialisshownin

    yellow. Asignalstudywasthenrunusingthefirstmethoddescribedabovewhereasimpleattenuationfactor(a

    margin)wasappliedtothereceivedsignalstrengthbasedonthecluttertypeatthestudylocation. Thisisshown

    inFigure

    5.

    The

    correlation

    between

    additional

    attenuation

    and

    clutter

    type

    can

    be

    clearly

    seen.

    Note

    how

    the

    signalstrengthisnowshownasmuchlessinthebuiltupareaswhilethecoveragealongtheriver(lightbluearea

    ontheClutterCategorymap)hasnotbeenaffected.

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    8/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 82008EDXWireless www.edx.com

    Figure4 ClutterCategoryAreas

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    9/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 92008EDXWireless www.edx.com

    Figure5 ReceivedPower TerrainplusClutterCategoryAttenuation

    Figure6shows

    the

    second

    way

    to

    use

    clutter

    data

    where

    the

    height

    of

    each

    clutter

    type

    is

    taken

    into

    account

    whenestablishingthepropagationpathbetweentransmitterandreceiver. Here,insteadofapplyingafixed

    attenuationatthereceiverlocation,thesignalpropagationisinsteadaffectedbyshadowingfromthehigher

    cluttertypes. Inthisinstance,thecommercial/industrialareas(Pink)aresetat20mheightandtheurbanarea

    (Red)issetto15m. Themapshowshowthesignalisreducedintotheseareasduetotheirheights.

    Figure6 ReceivedPowerwithTerrainplusClutterHeight

    Finally,Figure7isanexampleofanumberofWiFiMeshnodeslocatedonlightpoles. Ahighresolutionclutter

    database(3mpointspacing)wasusedheretobeabletodefinethestreetsfromothercluttertypes. Road

    informationisalsodisplayedonthismaptoshowhowthesignalfromthemeshnodestravelsfurtherdownthe

    streetcanyonsthanthroughtheclutteroneithersideofthestreets.

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    10/11

    Technology White Paper

    TheApplicationofLandUse/LandCover(Clutter)

    DatatoWirelessCommunicationSystemDesign

    The Power of Planning 102008EDXWireless www.edx.com

    Figure7 WiFiMesh ClutterPassThroughAttenuation

    Fromtheseexamplesitisclearthatclutterdataplaysanimportantroleinwirelesssystemdesign. Addingthis

    informationprovidesacriticalrefinementtoasignalstudybytakingintoaccountamoreaccurateandrealistic

    characteristicof

    the

    service

    area

    where

    the

    wireless

    system

    will

    be

    used.

    UsingLandUseDatatoPredictServiceDemand(Traffic)

    Thecoreofanywirelesscommunicationsystemisthenetworkoftowers,transmittersandantennasthatconvert

    informationtoradiosignalsthatcanbereceivedandunderstoodbytheuser. Thenetworkmustbeconfiguredso

    thatenoughsectorsandchannelsareallocatedtohandlethedemand. Considerationsinsystemdesignare:

    locatingtransmitterstoprovideadequatesignallevelsthroughouttheservicearea,judgingwheresystemcapacity

    maybeinsufficient(orunderutilized),andinthecaseofmultiusersystems,gauginghowthesystemmayhaveto

    evolvetoaccommodatechangingusercallanddatatrafficpatterns.

    Thesedynamictrafficpatternsrefertotimeandlocation. Peopleareusingthesystematvarioustimesthroughout

    theday,

    and

    because

    these

    users

    are

    mobile,

    they

    may

    be

    located

    anywhere

    in

    the

    system

    service

    area.

    For

    example,duringmorningandeveningrushhour,trafficdensityforcellular/PCSphonesishighestalong

    transportationroutes. Large,temporarygatheringsofusersconventioncenters,concerthalls,sportingevents

    mustalsobeconsidered. Duringworkhourstrafficishighestinthecitycenters. Todeterminethecapacitythat

    mustbeprovidedbyeachsector/siteinordertohandlethetraffic,itisnecessarytosomehowestablisha

  • 8/8/2019 EDX WP UseofClutterDatainRFPlanning Aug08 Web

    11/11