Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi Carro ETS 2006 Fault Tolerance...

1
Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi Carro Luigi Carro ETS 2006 ETS 2006 Fault Tolerance Against Multiple Fault Tolerance Against Multiple SEUs using Memory-Based Circuits to SEUs using Memory-Based Circuits to Improve the AVF Improve the AVF Technology trends for semiconductors forecast a higher incidence of soft errors caused by radiation in digital circuits implemented using sub 65nm technologies. New design approaches are necessary to generate circuits that are able to withstand multiple simultaneous upsets. Traditional fault tolerance approaches like TMR do not support multiple SEUs. Results show that even N-MR techniques do not work as expected. Several error detection and correction codes have been proposed, but most of them do not correct multiple bit flips, or when they do, the overhead in area and / or performance is not acceptable. Porto Alegre - RS BRAZIL e-mail [email protected] [email protected] [email protected] [email protected] Universidade Federal do Rio Grande do Sul - Universidade Federal do Rio Grande do Sul - UFRGS UFRGS Programa de Pós-Graduação em Engenharia Elétrica Programa de Pós-Graduação em Computação http://www.ufrgs.br/ppgee, http://www.inf.ufrgs.br/pos/ppgc Conclusions Experiments have shown that the proposed technique reduces the AVF up to 30 times. The bad results for the 5-MR solution are due to the increased unprotected circuit area for voters, when compared to TMR. Introduction Results 4x4-bit Multiplier AVF and Timing for Single and Double Faults Future Work Test the proposed approach with different case studies Use this technique to implement a memory-based processor Memories using emerging technologies, like magnetic RAMs, are not affected by high energy particle strikes. This work proposes to replace parts of combinational circuits with intrinsically protected memories, thus reducing the overall architectural vulnerability factor (AVF), and, consequently, the soft error rate (SER). Replacing combinational circuits with memory (the memory works as a truth table !) Example: 4x4-bit multiplier Combinational only Memory only Total area = 304 transistors Memory Input A 4 Input B 4 Result 8 8 inputs and 8 outputs Total area = 2,048 transistors (considering 1 transistor per bit) Expensive !!! Case Study: 4x4-bit Multiplier B0 B1 B2 B3 Memory Register Result Shift- Register P6 P5 P4 P3 P2 P1 P0 P7 0 A0 A1 A2 A3 0 0 0 0 0 A0 A1 A2 A3 0 0 0 0 0 A0 A1 A2 A3 0 0 0 0 0 A0 A1 A2 A3 Counter for mux selection signals 3 1) Column Multiplier Circuit sensitive to faults A0 A1 A2 A3 Memory Result Shift- Register P3 P2 P1 P0 P7 P6 P5 P4 B0 B1 B2 B3 Counter for mux selection signals 4 bit Register 2) Line Multiplier Circuit sensitive to faults Case Study: 4-tap, 8-bit FIR filter ROM MEMORY (COEFFICIENTS) IN0 IN1 IN3 1 1 1 + IN2 1 10 REGISTER 10 10 11 y[6]y[7] y[5] y[4] y[3] y[2] y[1] y[0] y[17] ..... y[8] 10 Circuit sensitive to faults Circuit #of gates that fail AVF % (1 fault) AVF % (2 faults) Prop. AVF % (1 fault) Prop. AVF % (2 faults) Critica l Path Timing (ns) 5-MR 492 8.80 20.50 8.80 20.50 18.5 TMR 268 5.49 16.26 2.99 8.86 18.2 Combin. 76 49.11 63.60 7.59 9.82 17.5 Column 33 15.92 28.05 1.07 1.88 15.0 Line 9 36.22 54.07 0.66 0.99 16.5 Circuit #of gates that fail Prop. AVF % (1 fault) Prop. AVF % (2 faults) Critical Path Timing (ns) Combinationa l 1631 48.21 67.35 69.0 Memory Based 50 1.39 2.11 7.1 FIR Filter AVF and Timing for Single and Double Faults

Transcript of Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi Carro ETS 2006 Fault Tolerance...

Page 1: Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi Carro ETS 2006 Fault Tolerance Against Multiple SEUs using Memory-Based Circuits to Improve.

Eduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi CarroEduardo L. Rhod, Álisson Michels, Carlos A. L. Lisbôa, Luigi CarroETS 2006ETS 2006

Fault Tolerance Against Multiple SEUs using Fault Tolerance Against Multiple SEUs using Memory-Based Circuits to Improve the AVFMemory-Based Circuits to Improve the AVF

Technology trends for semiconductors forecast a higher incidence of soft errors caused by radiation in digital circuits implemented using sub 65nm technologies. New design approaches are necessary to generate circuits that are able to withstand multiple simultaneous upsets.

Traditional fault tolerance approaches like TMR do not support multiple SEUs. Results show that even N-MR techniques do not work as expected. Several error detection and correction codes have been proposed, but most of them do not correct multiple bit flips, or when they do, the overhead in area and / or performance is not acceptable.

Porto Alegre - RSBRAZIL

[email protected]

[email protected] [email protected]

[email protected]

Universidade Federal do Rio Grande do Sul - UFRGSUniversidade Federal do Rio Grande do Sul - UFRGSPrograma de Pós-Graduação em Engenharia Elétrica

Programa de Pós-Graduação em Computação

http://www.ufrgs.br/ppgee, http://www.inf.ufrgs.br/pos/ppgc

Conclusions Experiments have shown that the proposed technique reduces

the AVF up to 30 times. The bad results for the 5-MR solution are due to the increased

unprotected circuit area for voters, when compared to TMR.

Introduction

Results4x4-bit Multiplier AVF and Timing for Single and Double Faults

Future Work Test the proposed approach with different case studies Use this technique to implement a memory-based processor

Memories using emerging technologies, like magnetic RAMs, are not affected by high energy particle strikes. This work proposes to replace parts of combinational circuits with intrinsically protected memories, thus reducing the overall architectural vulnerability factor (AVF), and, consequently, the soft error rate (SER).

Replacing combinational circuits with memory(the memory works as a truth table !)

Example: 4x4-bit multiplier Combinational only Memory only

Total area = 304 transistors

Memory

Input A 4

Input B 4Result8

8 inputs and 8 outputs

Total area = 2,048 transistors(considering 1 transistor per bit)

Expensive !!!

Case Study: 4x4-bit MultiplierB0

B1

B2

B3

Memory

Register

Result Shift- Register

P6 P5 P4 P3 P2 P1 P0

P7

0A0A1A2A3

000

00

A0A1A2A3

00

000

A0A1A2A3

0

0000

A0A1A2A3

Counter for mux selection

signals3

1) Column Multiplier

Circuit sensitiveto faults

A0

A1

A2

A3

Memory

Result Shift- Register

P3 P2 P1 P0

P7P6P5P4

B0B1B2B3

Counter for mux selection

signals 4 bit Register

2) Line Multiplier

Circuit sensitiveto faults

Case Study: 4-tap, 8-bit FIR filter

ROM MEMORY(COEFFICIENTS)

IN0

IN1

IN3

1

1

1

+

IN2 1

10

REGISTER10

10

11

y[6] y[7]y[5]y[4]y[3]y[2]y[1]y[0]y[17] ..... y[8]

10

Circuit sensitiveto faults

Circuit #of gates that fail

AVF % (1 fault)

AVF % (2 faults)

Prop. AVF % (1 fault)

Prop. AVF % (2 faults)

Critical Path

Timing (ns)

5-MR 492 8.80 20.50 8.80 20.50 18.5

TMR 268 5.49 16.26 2.99 8.86 18.2

Combin. 76 49.11 63.60 7.59 9.82 17.5

Column 33 15.92 28.05 1.07 1.88 15.0

Line 9 36.22 54.07 0.66 0.99 16.5

Circuit #of gates that fail

Prop. AVF % (1 fault)

Prop. AVF % (2 faults)

Critical Path Timing (ns)

Combinational 1631 48.21 67.35 69.0

Memory Based 50 1.39 2.11 7.1

FIR Filter AVF and Timing for Single and Double Faults