Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol...

33
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na?onal Security, LLC, Lawrence Livermore Na?onal Laboratory under Contract DEAC5207NA27344. LLNLPRES643674 M.V. Umansky Acknowledgments: M.E. Rensink, T.D. Rognlien D.D. Ryutov (LLNL) B. LaBombard, D. Brunner, J.L. Terry, D.G. Whyte (MIT) Presented at BOUT++ Workshop, LLNL, Livermore, CA, Dec 16-18, 2015 Edge plasma modeling for divertor configurations with secondary x-points

Transcript of Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol...

Page 1: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

This  work  was  performed  under  the  auspices  of  the  U.S.  Department  of  Energy  by  Lawrence  Livermore  Na?onal  Security,  LLC,  Lawrence  Livermore  Na?onal  Laboratory  under  Contract  DE-­‐AC52-­‐07NA27344.  

LLNL-­‐PRES-­‐643674  

M.V. Umansky

Acknowledgments: M.E. Rensink, T.D. Rognlien D.D. Ryutov (LLNL) B. LaBombard, D. Brunner, J.L. Terry, D.G. Whyte (MIT)

Presented at BOUT++ Workshop, LLNL, Livermore, CA, Dec 16-18, 2015

Edge plasma modeling for divertor configurations with secondary x-points"

Page 2: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

2  

Page 3: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

3  

Page 4: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

4  

Configurations with a secondary X-point in divertor considered by many groups in recent years; for example

[1]  H.  Takase,  J.  Phys.  Soc.  Japan,  70,  609,  2001.        [3]  M.  Kotschenreuther  et  al.,  2004  IAEA  FEC,  paper  IC/P6-­‐43.    [2]  D.D.  Ryutov.  Phys.  Plasmas,  14,  064502,  2007.  [4]  B.  LaBombard  et  al.,  Nucl.  Fusion  55,  053020,  2015.  

4

X-divertor Very similar to the cusp divertor: !

“This extra downstream X-point can be created with an extra pair of poloidal coils… Each divertor leg (inside and outside) needs such a pair of coils. …The distant main plasma is hardly affected because the line flaring happens only near the extra coils.” M. Kotschenreuther, P. M. Valanju, S. Mahajan, J. Wiley. “On heat loading, novel divertors, and fusion reactors.” Phys. Plas. 14, 072502 (2007)

Nucl. Fusion 55 (2015) 053020 B. LaBombard et al

0 50 100 1500

2

4

6

8

10

B [ T

]

LH ITERLH ACT1

LH ACT2

400 600

Maximum possiblePsol B/R from device

Psol B/R at L-Hpower threshold

*

LH

Original ITER QDT=10operation point*

MAST

NSTX-U

DIII-D

KSTAR

EAST

JT-60SA

JETAUG

C-Mod 5.4T

C-Mod 8T

ADX 6.5T

ADX 8T

TCV

SST-1

q// ~ Psol B/R [MW-T/m]

LH ARC

Figure 6. B and PSOLB/R for world tokamaks. (Arrows for EAST and KSTAR account for planned upgrades.) In order to simulate divertorconditions of a reactor, both B and PSOLB/R must be matched. A compact, high-field tokamak is the most cost-effective way to achievethis, as shown by Alcator C-Mod attaining parameters close to the range of ITER, ACT1 ACT2 and ARC. A similarly constructed ADX canpush to high PSOL values at small cost, because of its small size.

Figure 7. RF antennas can take advantage of the low-PMI,‘quiescent’ SOL that forms on the HFS in double-null plasmas andthe dominant power exhaust through the low-field side (LFS) SOL(represented by red arrows).

associated with the edge plasma pedestal [39]. As discussedby Hutchinson and Vlases [3], by matching B, n and q∥ ofa reactor it is also possible, at least in principle, to perform

an approximate ‘divertor similarity experiment’ in which fivekey scale parameters (Te, ν∗ = Ld/λei, #d/λ0, ρi/#d andβ, with Ld =divertor field line length, λei =electron–ioncollisional mean free path, #d =SOL thickness, λ0 =neutralmean free path, ρi =ion Larmor radius, β = 2µ0nT/B2) areidentical to those of a reactor. The poloidal flux expansionand divertor leg length could be adjusted to do this. Inany case, the overall message is clear: matching absolutereactor divertor parameters (B, q∥, ndiv, Te,div) is necessary tostudy reactor-relevant physics regimes. Based on the recentmulti-machine empirical scaling of parallel heat flux [14],the parallel heat flux scales as q∥ ∼ PSOLB/R. Thismeans that B, n and PSOLB/R in an ADX should be madesimilar to that in a reactor. From figure 6, it is clear thata compact, high-field tokamak is the natural choice for anADX—it is the way to perform meaningful tests of advanceddivertor prototypes without constructing a full-scale reactor;it removes the uncertainty and risk in trying to extrapolatedivertor performance from extremely complex and uncertaincomputational models, developed and tested in regimes thatare far from those expected in a reactor.

5. Motivation: low-PMI RF actuators; efficientcurrent drive, heating needed (milestone #4)

5.1. Challenges

It is recognized that RF current drive and heating technologiesmust evolve into primary actuators for fusion reactors,replacing the roles that neutral beams now play in most devices.As stated in a 2007 US DoE [12] report (addressing ‘gap G-7’on page 190): ‘The auxiliary systems typically used in currentexperiments, while extremely useful tools, are not generallysuitable for a reactor. RF schemes are the most likely systemsto be used and will require significant research to achieve thelevels of reliability and predictability that are required.’ ForICRF antennas and LHCD launchers, it means placing theseactuators close to the plasma, where the challenge of efficientpower coupling competes with minimizing PMI. For long pulse

7

X-divertor [3]" X-point target divertor [4]"

Cusp divertor [1]" Snowflake divertor [2]"

SF+   SF-­‐  

Page 5: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

5  

Page 6: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Experiments on TCV tokamak indicate that enhanced transport zone may exist near the null-point

6  

Large  fracXon  of  power  flows  to  secondary  strike  points    •  when  two  X-­‐points  get  closer  •  more  during  ELM  strike    

 

Core

σ=D/a

X2

SOL

prim. SP1

(HFS)

sec. SP2 sec. SP3

prim. SP4

(LFS)

Primary

separatrix

Secondary

separatrix

Figure 1. Schematic of a ‘SF’ FRQÀJXUDWLRQ, indicatinJ the SULPDU\and VHFRQGDU\ x-points (X 1, X 2), the FRUUHVSRQGLQJ VHSDUDWULFHV, theVFUDSH�Rff OD\HU, the dimensionless 6)�SUR[LPLW\ SDUDPHWHUσ = D/a , and the labellinJ of the SPs.

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

σ

P SP3/P

SP1

Power redistribution

Lí mode (LP)ELM peak (IR)

Límode: 5% at σ = 0.4

Hímode: 40% at σ = 0.4

Figure 12. PSP3/P SP1, which is used as a measure for the powerredistribution, as a function of σ in both L-mode and at theELM-peak in H-mode. At a similar σ , the exhaust power reachesthe secondary SP far more efÀFLHQWOy during ELMs (high SOLpressure) than in L-mode (low SOL pressure).

~

~

Figures  from  Vijvers  et  al,  NF  2014  

σ  -­‐  distance  between  x-­‐points  

Page 7: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

DIII-D: heat and particle fluxes shared among strike points in snowflake divertor (Soukhanovskii – FEC ’14)

Page 8: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

8  

Page 9: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

X-point target divertor is similar to the super-X divertor,but with the second X-point in the plasma volume

XPTD:  LaBombard  et  al.  2013  Bull.  Am.  Phys.  Soc.  58  63,  and  Nucl.  Fusion  55,  053020,  2015.  SXD:  P.  Valanju  et  al.,  Phys.  Plasmas  16,  056110  (2009)      

•  Like  Super-­‐X,  exploits  1/R  geometric  reducXon  of  divertor  heat  flux  •  May  produce  stable  ‘X-­‐point  MARFE’  in  the  divertor  chamber  •  Used  as  a  part  of  the  ADX  tokamak  concept    

X-­‐point   X-­‐point  

9  

Page 10: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

X-point target divertor study is motivated by the ADX tokamak concept discussed at MIT PSFC

10  

•  ADX  =  Advanced  Divertor  and  RF  tokamak  eXperiment*  •  Designed  to  address  criXcal  gaps  on  pathway  to  next-­‐step  devices  •  Advanced  divertors  •  Advanced  RF  actuators  •  Reactor-­‐prototypical  core  plasma  condiXons    

*B.  LaBombard  et  al.,  Nucl.  Fusion  55,  053020,  2015.  

Page 11: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

11  

Page 12: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Topological classification of configurations with secondary x-point in the divertor

12  Ryutov  et  al.,  PPCF  52  (2010)  105001  

•  Derived  from  local  expansion  for  inexact  snowflake  •  Applies  to  any  configuraXon  with  secondary  x-­‐point  •  θ =  angle  between  X-­‐point  bisector  and  horizontal  axis  •  In  addiXon  to  shown  six  cases,  there  are  mirror  reflecXons  of  cases  b,c,d,e  

Page 13: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Recent upgrades made in UEDGE include generalization of computational subdomains and mesh generation

13  

SF-­‐  

x  x  

x  

x  

SF+  

3  mesh  regimes        0  <  θ < 30o

30o < θ < 60o

 60o  <  θ < 90o  

Unique  indexing  rules  for  each  regime  completed  

θ = angle between X-point bisector & horizontal axis  

Page 14: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

From the point of view of domain topology and grid connectivity there are two distinct SFM regimes

14  

4

3 A1#2% A2#3% A3#4% A4#5% A5#6% A6#7% A8#9% A9#10% A10#11%

2 B1#2% B2#3% B3#4% B4#5% B5#6% B9#7% B8#9% B6#10% B10#11%

1 C1#2% C2#3% C3#4% C4#5% C5#6% C9#7% C8#9% C6#2% C10#11%

0 1& 2& 3& 4& 5& 6& 7 8 9& 10& 11& 12&

�1

�2

�3

�4

�5

�6

�7

�9

�8

�9�10

�11

A BC

ABC

AB C ABC

AB

C

A

B C

ABC

A

BC

A

B

C

�6�2

�7

�8�11

�10

6B

7B

10C

11C

7C

e�

e�

e�

e�

e�

e�

e�

e�

e�e�

e�� e��e�

e�

e�

e��e�

e��

e�

e�

e�

SFM2  –  From  core  boundary  down  grad(ψ)  can  only  get  to  SOL  boundary  

SFM1  –  From  core  boundary  there  is    a  path  down  grad(ψ)  to  PF  boundary  

Page 15: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Interactive Grid Generator iGrid (under continuing development) has been used for constructing meshes

15  

•  Variety  of  flux  surface  geometry  is  a  challenge  for  tokamak  edge  grid  generaXon  

 •  Human  eye  is  sXll  the  best  

tool  for  recognizing  complex  panerns  

•  In  iGrid  the  user  guides  the  code  by  indicaXng  with  the  mouse  some  needed  reference  points  and  direcXons  

Page 16: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Orthogonal grids for SFM1 and SFM2 are generated for analytic “3-wire” geometry

16  

SFM2  –  From  core  boundary  down  grad(ψ)  can  only  get  to  SOL  boundary  

SFM1  –  From  core  boundary  there  is    a  path  down  grad(ψ)  to  PF  boundary  

Page 17: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Real tokamak geometry in near-snowflake configuration makes a challenge for grid numerics

17  

Extremely  fast  convergence  of  flux  surfaces  Actual  DIII-­‐D  geometry  

Page 18: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

18  

Page 19: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

UEDGE* (Unified EDGE code) solves a system of fluid equations in axisymmetric tokamak geometry

∂∂t(ni) + ∇ • (ni

u i) = −Sr + Si

niu⊥ = −D⊥i∇⊥ni

∂∂t(mniu||i) + ∇ • (mniu||i

u i −ηi∇u||i) = −∇||Pi + mnN niKcx (u||N − u||i) + mSru||N −mSiu||N

∂∂t(3/2neTe ) + ∇ • (5

2neTe u e + q e ) =

u e •∇(3/2neTe ) −Πe •∇ u e + Qe

∂∂t(3/2niTi) + ∇ • (5

2niTi u i + q i) =

u i •∇(3/2niTi) −Π i •∇ u i + Qi

q⊥ = −n χ⊥∇⊥T

∂∂t(nN ) + ∇ • (nN

u N ) = Sr − Si

nN u⊥N = −D⊥N∇⊥nN

∂∂t(mnN u||N ) + ∇ • (mnN u||N

u N −ηN∇u||N ) = −∇||PN −mnN niKcx (u||N − u||i) −mSru||N + mSiu||N

∇ • J(φ) = 0

J|| =en

0.51mνBx

B1n∂Pe

∂x− e∂φ

∂x+ 0.71∂Te

∂x+

, -

.

/ 0

Jr =σ⊥Er

φ =−Te

eln 2 π

J|| − enu||ienvte

+

, -

.

/ 0

3

4 5

6

7 8

plasma density"

ion || momentum"

electron thermal energy"

charge conservation"

ad-hoc radial transport"

neutral density"

sheath bound. cond."

neutral || momentum"

ion thermal energy"

*T. D. Rognlien et al., J. Nucl. Mater. 196–198, 347 (1992) 19  

Page 20: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

UEDGE SFM1 mesh for DIII-D shot 155479

X-­‐point  separaXon/  minor  radius    σ  = 0.1/0.5 = 0.2

50% greater mesh resolution used for simulations

VerXcal  posiXon

 (m)  

Major  radius  (m)  

SP1  SP2  

SP3  

SP4  

Page 21: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

2D UEDGE SF solutions for 2% carbon show strong variations across separatrices; radiation is well spread

ni   Prad  

Te   Pp  

Page 22: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Plate heat-fluxes are < 2 MW/m2; only radiative flux is visible in the middle between two strike points (2% carbon)

Distance  across  plate  [m]  

DIII-­‐D  155479  

SP1  SP2  

SP3  

SP4  

UEDGE  

Page 23: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Convective cell formation near null dubbed “the churning mode” may be responsible for heat redistribution*

A B

C D

*D.D.  Ryutov  et  al.,  Physica  Scripta  89,  8,  088002  (2014)      **  M.V.  Umansky  and  D.D.  Ryutov,  submined  (2015)  

g

T1 T2

x

y

6Z

Similar  to  thermal  convecXon  due  to  crossed  gravity  and  temperature  gradient  

Driven  by  crossed  magneXc  curvature  and  grad(P)  near  null  where  poloidal  beta  is  large    Solving  plasma  fluid  equaXons  demonstrates  formaXon  of  the  churning  mode**  

Page 24: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

24  

Page 25: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Mesh  constructed  in  UEDGE  by  combining  two  lower-­‐half  single-­‐null  domains  (with  scripts  developed  by  M.E.  Rensink)    Use  UEDGE  fluid  transport  model  •  Fluid  neutrals  (inerXal)  •  Fixed  fracXon  impurity  radiaXon  •  No  drips  •  Four  orthogonal  target  plates  •  100%  recycling  on  all  walls    Use  geometry  &  parameters  from  LaBombard  et  al.,  NF  2015  •  MHD  equilibrium  provided  by  MIT  •  Density  at  separatrix  ~  1e20  m-­‐3  

•  Power  into  lower-­‐half  domain  1-­‐5  MW  1 4

2 3

ADX MESH #5

symmetry plane

0.4 0.6 0.8 1.0 "R (m)"

0"

0.5"

1.0"

Z (m

)"UEDGE is used to model both X-points in an XPTD for the lower half of up-down symmetric configuration

25  

Page 26: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

A C-Mod like case with ADX parameters is used for comparison

26  

•  Two  configuraXons  –  XPTD  and  SVPD  •  Same  underlying  magneXc  geometry,  physics  model,  boundary  condiXons,  etc.  •  In  SVPD  the  legs  cut  short  to  roughly  match  C-­‐Mod  verXcal  plate  configuraXon  

Standard Vertical Plate Divertor (SVPD)

X-Point Target Divertor (XPTD)

R [m]

Z [m]

R [m]

Page 27: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Radial transport parameters are set to match projected ADX upstream SOL characteristics

27  

•  Using  fully  recycling  wall  B.C.  on  all  material  surfaces  

•  Using  radially  growing  diffusing  coefficient  to  match  the  expected  density  profile  width  ~5  mm  

•  SpaXally  constant  χe,i  is  sufficient  to  achieve  ~3  mm  width  of  mid-­‐plane  Te,I  

•  Mid-­‐plane  profile  projecXons  are  based  on  C-­‐Mod  data*  

Mid-­‐plane  profiles  

*LaBombard  et  al.,  Nucl.  Fusion  55,  053020,  2015.  

1.0e20

0.5e20

0

Ne [1/m3]

Nn [1/m3]

300

200

100

0

Te [eV]

-4 -2 0 2 4 6 8 10 12R-Rsep [mm]

D [m2/s]

5.0

4.0

3.0

2.0

1.0

0

Page 28: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

! P1/2=3.000!MW! ! P1/2=2.058!MW! ! P1/2=2.052!MW! P1/2=1.420!MW!lg(Te![eV])! ! ! ! ! ! !

! !

!

!

!

! !lg(Ng![m:3])! ! ! ! ! ! !

! !

!

!

!

! !!

As the input power P1/2 is reduced, the divertor transitions to fully detached state

28  

A                                                                        B                                                                        C                                                                  D  

XPTD,  1%  C  

Page 29: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

As input power P1/2 is reduced, radiation front remains stable but shifts upstream

29  

•  For  higher  input  power  the  radiaXon  front  moves  to  larger  R  to  increase  the  radiaXng  volume*  

•  P1/2  ≈  2  MW  onset  of  detachment  

•  As  P1/2  is  reduced  further  either  (i)  the  radiaXon  front  reaches  the  primary  X-­‐point,  or  (ii)  no  steady-­‐state  soluXons  can  be  found  =>  X-­‐point  MARFE          

*Hutchinson,  Nucl.  Fusion  34  (1994)  1337  

P1/2 = 1.8 MW P1/2 = 1.4 MW P1/2 = 1.0 MW Prad [MW/m3]

R [m] R [m] R [m]

Z [m

]

1% C0.0

2.5

5.0

7.5

10.0

Page 30: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Reducing input power P1/2 eventually leads to X-point MARFE

30  

Page 31: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Reducing input power P1/2 eventually leads to X-point MARFE

31  •  QualitaXvely  similar  results  also  obtained  with  1%  Ne  impurity    

Page 32: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Outline

•  Divertor configurations with secondary X-points

•  Snowflake divertor experiments

•  X-Point target divertor

•  Topology and grids for edge domain with two x-points

•  UEDGE analysis of near-snowflake divertor configurations

•  UEDGE analysis of X-point target divertor configuration

•  Summary/Conclusions

32  

Page 33: Edge plasma modeling for divertor configurations with ... · LH ACT2 400 600 Maximum possible Psol B/R from device Psol B/R at L-H power threshold * LH Original ITER QDT=10 * operation

Summary, conclusions, plans

33  

•  Capability  to  generate  grids  with  a  secondary  X-­‐point  is  developed  

•  Capability  to  model  configuraXons  with  a  secondary  X-­‐point  is  developed  in  UEDGE  

 •  Near-­‐SNF  configuraXons  in  DIII-­‐D  have  been  analyzed  with  UEDGE;  

points  to  strongly  enhanced  transport  near  the  null  (churning  mode?)  

•  X-­‐point  Target  Divertor  (XPTD)  configuraXon  is  studied  with  UEDGE  for  parameters  matching  the  design  of  ADX  tokamak    §  Steady  state  detachment  found  for  XPTD,  for  a  range  of  

parameters    §  Easier  to  achieve  detachment  than  for  short  leg  divertor  §  Detachment  front  stays  far  away  from  the  main  X-­‐point  §  Stable  fully  detached  regimes  for  tokamak  divertor?