Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2....

81
Ecosystem =

Transcript of Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2....

Page 1: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystem =

Page 2: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystem =

A group of interacting populations and their

physical environment.

All interacting by a flow of energy and

with their physical and chemical

environments.

Page 3: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystems can be

Small

Large

Page 4: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystems

1. Population Interactions

2. Energy Flow

3. Material Cycles

Page 5: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystems

1. Population Interactions

2. Energy Flow

3. Material Cycles

Page 6: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Modes of Nutrition

• Autotrophs

– Capture sunlight or chemical energy

– Primary producers

• Heterotrophs

– Extract energy from other organisms or

organic wastes

– Consumers, decomposers, detritivores

Page 7: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Simple

Ecosystem

Model

Energy

input from

sun

Nutrient

Cycling

Producers

Autotrophs (plants and other

self-feeding organisms)

Consumers

Heterotrophs (animals, most fungi,

many protists, many bacteria)

Energy output (mainly metabolic heat)

Page 8: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms

• Producers

(photoautotrophs)

Page 9: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Primary Producers

Photoautotrophs

+ + + C6H12O6

+ O2

sugar oxygen Sunlight + water + CO2 + minerals =

=

Energy Materials

Page 10: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms

• Consumers

1. Herbivore

2. Carnivores

3. Omnivores

4. Parasites

5. Decomposers

Page 11: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms • Consumers

1. Herbivore

2. Carnivores

3. Omnivores

4. Parasites

5. Decomposers

Page 12: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms • Consumers

1. Herbivore

2. Carnivores

3. Omnivores

4. Parasites

5. Decomposers

Page 13: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms • Consumers

1. Herbivore

2. Carnivores

3. Omnivores

4. Parasites

5. Decomposers

Page 14: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Role of Organisms • Consumers

1. Herbivore

2. Carnivores

3. Omnivores

4. Parasites

5. Decomposers

Page 15: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Trophic Levels

• Feeding relationships

– All organisms at a trophic level are the same

number of steps away from the energy input

into the system

• Autotrophs are producers

– closest to energy input

– first trophic level

Page 16: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

4th trophic level

3rd trophic level

2nd trophic level

1st trophic level

Food Chain

Page 17: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Food Chain

• A straight-line

sequence of who

eats whom

• Simple food

chains are rare in

nature

marsh hawk

upland sandpiper

garter snake

cutworm

plants

Page 18: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Food Web

Page 19: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •
Page 20: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Biological Magnification

Non-degradable or slowly degradable

substances become more and more

concentrated in tissues of organisms at

higher trophic levels of a food web

Page 21: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

DDT in Food Webs

• Synthetic pesticide banned

in United States since

1970s

• Carnivorous birds

accumulate DDT in their

tissues, produce brittle egg

shells

Page 22: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •
Page 23: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystems

1. Population Interactions

2. Energy Flow

3. Material Cycle

Page 24: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Energy Flow

• Primary Productivity

• Gross primary productivity

• Net primary productivity

Page 25: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Primary Productivity

• Gross primary productivity is

ecosystem’s total rate of photosynthesis

• Net primary productivity is rate at which

producers store energy in tissues in

excess of their aerobic respiration

Page 26: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecological Pyramids

• Primary producers are bases for

successive tiers of consumers

• Biomass pyramid

– Dry weight of all organisms

• Energy pyramid

– Usable energy decreases as it is

transferred through ecosystem

Page 27: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Pyramids of biomass

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig. 54.12a

What causes there to be less biomass at higher levels?

Page 28: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig. 54.11

Pyramids of energy

What causes there to be a loss of energy at each tropic level?

Page 29: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Thermodynamics

• First Law – energy is neither created

nor destroyed when converted

from one form to another

• Second Law – whenever

there is a change of energy

from one form to another,

some is lost in the form of

heat and thus cannot

perform work

Page 30: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

One-way flow of energy

+

1 C6H12O6 6 CO2 + 6 H2O

Heat

energy rich energy poor

Page 31: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

2nd Law Cont.

Entropy – a measure of disorder in a system

• disorder spontaneously increases over time

• Matter has a tendency to reach a higher state

of entropy and lower state of potential energy

Page 32: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

“The Rule of Ten” or “10% Law”

Page 33: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Ecosystem Structure

1. Population Interactions

2. Energy Flow

3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle

– Water

• Atmospheric cycles

– Nitrogen and carbon

• Sedimentary cycles

– Phosphorus and other nutrients

Page 34: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Water Cycle

atmosphere

ocean land

evaporation

from ocean

425,000

precipitation

into ocean

385,000

evaporation from land

plants (evapotranspiration)

71,000

precipitation

onto land

111,000

wind-driven water vapor

40,000

surface and

groundwater

flow 40,000

Page 35: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Aquifer

Page 36: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Plants Influence the Water Cycle

Page 37: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Plants Protect Soil

Page 38: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Hubbard Brook Experiment

• A watershed was experimentally

stripped of vegetation

• All surface water draining from

watershed was measured

• Deforestation caused increase in

nutrient content of runoff water

Page 39: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

The Effect of Deforestation on nutrient erosion

Page 40: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Wetlands

Page 41: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Groundwater Pollution

Page 42: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Dust Bowl – 1930s

Dust storm approaching Stratford, Texas

Page 43: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Groundwater Depletion

Page 44: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Galveston

Page 45: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Carbon Cycle

Reservoir:

Page 46: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Carbon - Biomass Holding Stations

Page 47: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Decomposition

Rates

Higher rates in forests

due to favorable

conditions

(moist and warm)

Not much carbon

accumulates

Page 48: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Peat Bog Slow decomposition

due to anaerobic

conditions, more C

accumulates

Peat Moss Bog man

Page 49: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Source to Atmosphere

Page 50: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Carbon Cycle

Page 51: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Greenhouse Effect

Page 52: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Galveston

4°C = 0.6m sea level

Page 53: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Comparison of the Muir Glacier, SE

Alaska, in 1941 and 2004

Muir Glacier, SE Alaska

August, 1941 August, 2004

photo: William Field photo: Bruce Molnia

Page 54: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Arctic Ice Cap

• water 200m below

the arctic icecap –

1996 was 1°C

warmer than in 1991

Page 55: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •
Page 56: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

1990-present – decades of

record-breaking disasters

Page 57: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Carbon dioxide (CO2)

Page 58: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •
Page 59: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Carbon dioxide (CO2) – 50% Chlorofluorocarbons (CFCs) – 25%

Methane (CH4) – 15% Nitrous oxide (N2O) – 10%

Page 60: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

80’s Hair Do’s

Page 61: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle

• Reservoir – atmosphere

Page 62: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Fixation

• Source to Plants –

Page 63: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen-fixing bacteria

• Source to Plants –

Cyanobacteria Bacteria in

Root Nodules of Legumes

Page 64: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Decomposition

• Source to Plants –

Page 65: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Plant Limiting Factor for Growth

Page 66: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle – Atmospheric N-fixing bacteria

ammonium

Nitrogen (N2) (NH4)

Page 67: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle –

Organic Material Ammonifying bacteria ammonium (NH4)

Page 68: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle –

NH4+ Nitrifying Bacteria NO3

-

Page 69: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle –

NO3- Denitrifying Bacteria N2

Page 70: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle

nitrate (NO3-) Plant Uptake

ammonium (NH4+)

Page 71: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen Cycle

Page 72: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Oligotrophic waters of coral reefs

Page 73: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

The mystery of coral reefs

•Reefs support an

impressive diversity

and abundance of

life

•Where do the

nutrients come

from?

Page 74: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Cyanobacteria fix nitrogen for the

community

Page 75: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

• Algal growth in and on the coral is dominated

by nitrogen fixing cyanobacteria

• Flow over the reef and light levels determine N

fixation rate

• How do

we know?

Page 76: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Leave ceramic plates for turf algae

to grow on

Page 77: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen fixation measurement • Generate acetylene (H-CΞC-H) by

dropping calcium carbide (Ca-CΞC-Ca)

into water and collect gas that bubbles up

• Then inject gas into air above water

(head space) in

“doughnut” flume

Page 78: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

Nitrogen fixation measurement

• “doughnut” flume

Page 79: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

• Cyanobacteria “reduce” acetylene to ethylene (H2-C=C-H2)

• They can’t tell it’s not N2

Page 80: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

• We measure amount of ethylene produced over time as proxy for N2 fixation

Page 81: Ecosystem - Napa Valley College Structure.pdfEcosystem Structure 1. Population Interactions 2. Energy Flow 3. Material Cycle (Biogeochemical Cycle) • Hydrologic cycle – Water •

We can compare N fixation over

time and at different light levels

3 Sept Exp 1

All Data Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

Elapsed Time (min)

Eth

yle

ne c

on

c.

(nm

ol)

NFix vs Light

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 200 400 600 800 1000 1200

PAR (micromol photons)

slo

pe

31-Aug

1-Sep

2-Sep

3-Sep