Econometría Bollerslev GARCH 1986

download Econometría Bollerslev GARCH 1986

of 21

Transcript of Econometría Bollerslev GARCH 1986

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    1/21

    J o u r n a l o f E c o n o m e t r i c s 31 (1 98 6) 3 0 7 - 3 2 7 . N o r t h - H o l l a n d

    G E N E R A L IZ E D A U T O R E G R E S S I V E C O N D I T IO N A L

    H E T E R O S K E D A S T I C I T Y

    T im B O L L E R S L E V *

    University of California at San D iego L a Jolla CA 92093 USA

    Institute o f Economics University of Aarhus Denmark

    Received M ay 1985, f ina l vers ion rece ived Feb rua ry 1986

    A n a tu r a l g en e r a l i za t io n o f t h e AR C H ( Au to r eg r e ss iv e C o n d i t i o n a l He te r o sk ed as t i c ) p r o cess

    in t r o d u ced in En g le ( 1 9 8 2 ) t o a l l o w f o r p a s t co n d i t i o n a l v a r i an ces i n t h e cu r r en t co n d i t i o n a l

    v a r i an ce eq u a t io n i s p r o p o sed . S t a t io n a r i t y co n d i t i o n s an d au to co r r e l a t i o n s t r u c tu r e f o r t h i s n ew

    c la ss o f p a r am e t r i c m o d e l s a r e d e r iv ed . Max im u m l ik e l ih o o d e s t im a t io n an d t e s t i n g a r e a l so

    co n s id e r ed . F in a l ly an em p i r i ca l ex am p le r e l a t i n g to t h e u n ce r t a in ty o f t h e i n f l a t i o n r a t e i s

    p r e s e n t e d .

    1 I n t r o d u c t i o n

    W h i l e co n v en t i o n a l t i me s e r i e s an d eco n o me t r i c mo d e l s o p e ra t e u n d e r an

    a s s u m p t i o n o f c o n s ta n t v ar ia n c e, t h e A R C H A u t o re g r es si v e C o n d i t io n a l

    H e t e ro s k e d as t i c ) p ro ces s in t ro d u ced i n E n g le 1 98 2) a l l o w s t h e co n d i ti o n a l

    v a r i an ce t o ch an g e o v e r t i me a s a fu n c t i o n b f p a s t e r ro r s l e av i n g t h e u n co n d i -

    t i o n a l v a r i an ce co n s t an t .

    T h i s t y p e o f mo d e l b eh av i o r h a s a l r ead y p ro v en u s e fu l i n mo d e l l i n g s ev e ra l

    d i f fe ren t eco no m ic phen om ena . In Eng le 1982), Eng le 1983) and Engle and

    K ra f t 1983) , m ode l s fo r the in f la t ion ra te a re con s t ruc ted recogn iz ing tha t the

    u n ce r t a i n t y o f i n f l a t i o n t en d s t o ch an g e o v e r t i me . In Co u l s o n an d Ro b i n s

    1 9 8 5 ) t h e e s t i m a t ed i n fl a ti o n v o l a ti li ty i s r e l a ted t o s o m e k ey m ac ro eco n o m i c

    v a r i ab l e s . Mo d e l s fo r t h e t e rm s t ru c t u re u s i n g an e s t i ma t e o f t h e co n d i t i o n a l

    v a r i an ce a s a p ro x y fo r th e r is k p remi u m a re g iv en in E n g l e, L i li en an d Ro b i n s

    1 9 8 5 ) . T h e s ame i d ea i s ap p l i ed t o t h e fo re i g n ex ch an g e mark e t i n D o mo w i t z

    a n d H a k k i o 1 98 5). I n W e is s 1 98 4) A R M A m o d e ls w i t h A R C H e r r o rs a re

    fo u n d t o b e s u cces s fu l i n mo d e l l in g t h i r teen d i ff e r en t U .S . mac ro ec o n o m i c

    t i me s e r i e s . Co mmo n t o mo s t o f t h e ab o v e ap p l i ca t i o n s h o w ev e r , i s t h e

    in t roduct ion o f a ra ther a rb i t ra ry l inear dec l in ing l ag s t ruc tu re in the cond i -

    * I a m g r a t e f u l t o D a v i d H e n d r y a n d R o b E n g l e f o r i n t r o d u c i n g m e t o t h i s n e w i d e a , a n d t o

    R o b En g le f o r m an y h e lp f u l d i scu ss io n s . I wo u ld a l so l i k e t o t h an k Sas t r y Pan tu l a f o r su g g es t in g

    t h e a l t e r n a t i v e p a r a m e t e r i z a t i o n , t w o a n o n y m o u s r e f e r e e s f o r u s e f u l c o m m e n t s , a n d K i r s t e n

    S ten to f t f o r t y p in g th e m an u sc r ip t . Th e u su a l d i sc l a im er ap p l i e s .

    0 3 0 4 - 4 0 7 6 / 8 6 / 3 . 5 0 1 98 6, E l s e v ie r S c ie n c e P u b l i s h er s B .V . ( N o r t h - H o l l a n d )

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    2/21

    3 8 T. Bollerslev Generalization of A R C H process

    tional variance equation to take account of the long memory typically found in

    empirical work, since estimating a totally free lag distribution often will lead

    to violation of the non-negativity constraints.

    In this paper a new, more general class of processes, GARCH Generalized

    Autoregressive Conditional Heteroskedastic), is introduced, allowing for a

    much more flexible lag structure. The extension of the ARCH process to the

    GARCH process bears much resemblance to the extension of the standard

    time series AR process to the general ARMA process and, as is argued below,

    permits a more parsimonious description in many situations.

    The paper proceeds as follows. In section 2 the new class of processes is

    formally presented and conditions for their wide-sense stationarity are derived.

    The simple GARCH 1,1) process is considered in some detail in section 3. It

    is well established, that the autocorrelation and partial autocorrelation func-

    tions are useful tools in identifying and checking time series behavior of the

    ARMA form in the conditional mean. Similarly the autocorrelations and

    part ial autocorrelations for the squared process may prove helpful in identify-

    ing and checking GARCH behavior in the conditional variance equation. This

    is the theme in section 4. In section 5 maximum likelihood estimation of the

    linear regression model with GARCH errors is briefly discussed, and it is seen

    that the asymptotic independence between the estimates of the mean and the

    variance parameters carries over from the ARCH regression model. Some test

    results are presented in section 6. As in the ARMA analogue, cf. Godfrey

    1978), a general test for the presence of GARCH is not feasible. Section 7

    contains an empirical example explaining the uncertainty of the inflation rate.

    It is argued that a simple GARCH model provides a marginally better fit and

    a more plausible learning mechanism than the ARCH model with an eighth-

    order linear declining lag structure as in Engle and Kraft 1983).

    2 . The GARCH p ,q ) proces s

    The AR CH process introduced by Engle 1982) explicitly recognizes the

    difference between the unconditional and the conditional variance allowing the

    latter to change over time as a function of past errors. The statistical

    properties of this new parametric class of models has been studied further in

    Weiss 1982) and in a recent paper by Milhoj 1984).

    In empirical applications of the ARCH model a relatively long lag in the

    conditional variance equation is often called for, and to avoid problems with

    negative variance parameter estimates a fixed lag structure is typically im-

    posed, cf. Engle 1982), Engle 1983) and Engle and Kraft 1983). In this light

    it seems of immediate practical interest to extend the ARCH class of models

    to allow for both a longer memory and a more flexible lag structure.

    Let

    t

    denote a real-valued discrete-time stochastic process, and ~b, the

    information set a-field) of all information through time t. The GARCH p, q)

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    3/21

    7~ Bol lerslev , Generalization o f A R C H process

    309

    p r o c e s s ( G e n e r a l i z e d A u t o r e g r e s s i v e C o n d i t i o n a l H e t e r o s k e d a s t i c i t y ) i s t h e n

    g i v e n b y 1

    ~ ' t l ~ t - 1 - - N 0 , h t ) , 1 )

    q P

    h t = o r0 + E 2

    t iEt- i }- E t~ ih t- i

    i = 1 i ~ l

    w h e r e

    = Ot0 + A ( t ) e 2 t -t- O ( t ) h t ,

    p > 0 , q > 0

    a o > 0 , a i >_ 0 , i = 1 . . . . q

    f l , > 0 , i = 1 . . . . . p .

    (2)

    F o r p = 0 t h e p r o c e s s r e d u c e s t o t h e A R C H ( q ) p r o ce s s, a n d f o r p = q = 0 E i s

    s i m p l y w h i t e n o i s e . I n t h e A R C H ( q ) p r o c e s s t h e c o n d i t i o n a l v a r i a n c e i s

    s p e c i f i e d a s a l i n e a r f u n c t i o n o f p a s t s a m p l e v a r i a n c e s o n l y , w h e r e a s t h e

    G A R C H ( p , q ) p r o c e s s a l l o w s l a g g e d c o n d i t i o n a l v a r i a n c e s t o e n t e r a s w e l l .

    T h i s c o r r e s p o n d s t o s o m e s o r t o f a d a p t iv e l e a r n i n g m e c h a n i s m .

    T h e G A R C H ( p , q ) r eg re ss io n m o d el is o b t a in e d b y l et ti n g t he e t ' S b e

    i n n o v a t i o n s i n a l i n e a r r e gr e s si o n ,

    = y , - x ; b , 3 )

    w h e r e Y t i s th e d e p e n d e n t v a r i a bl e , x , a v e c t o r o f e x p l a n a t o r y v a ri a b le s , a n d b

    a v e c t o r o f u n k n o w n p a r a m e t e r s . T h i s m o d e l i s s t u d i e d i n s o m e d e t a i l i n

    s ec t i o n 5 .

    I f a l l t h e r o o t s o f 1 - B ( z ) = 0 l ie o u t s i d e t h e u n i t c ir cl e, ( 2) c a n b e

    rewr i t t en a s a d i s t r i b u t ed l ag o f p a s t e~ s ,

    h t = O to(1 - B ( 1 ) ) - I + A ( L ) ( 1 - B L ) ) - t e ~

    a o 1 - Bi ~ i E 2 - i ,

    i ~ 1 i = l

    4 )

    w h i c h t o g e t h e r w i t h ( 1) m a y b e s e en a s a n i n f in i te - d i m e n s io n a l A R C H ( o o )

    p r o c e s s . T h e 8 i s a r e f o u n d f r o m t h e p o w e r s e r ie s e x p a n s i o n o f D L ) =

    aW e f o l lo w E n g le 1 98 2 ) i n a s su m in g th e co n d i t i o n a l d i s t r i b u t io n to b e n o r m a l , b u t o f co u r se

    o th e r d i s t r i b u t io n s co u ld b e ap p l i ed a s wel l. I n s t ead o f E _ I in eq. 2 ) t h e ab so lu t e v a lu e o f e t -

    m ay b e m o r e ap p r o p r i a t e i n so m e ap p f ica t io n s ; c f. McCu l lo ch 1 98 3 ).

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    4/21

    3 1 0 T. Bollerslev, Ge neralizat ion of A R C H process

    A ( L ) ( 1 - B ( L ) ) - 1,

    j = l

    = B s S , - j ,

    j = l

    i = 1 . . . . . q ,

    i = q + l . . . . .

    5 )

    w he re n = m in ( p , i - 1} . I t fo l lows , tha t if B(1) < 1 , 6i wi l l be dec reas ing fo r i

    g r e a t e r t h a n m = m a x { p , q }. T h u s i f D (1 ) < 1, t h e G A R C H ( p , q ) p r o c es s c a n

    b e a p p r o x i m a t e d t o a n y d e g re e o f a c c u r a c y b y a s t a t io n a r y A R C H ( Q ) f o r a

    s u f fi c ie n t ly l a rg e v a lu e o f Q . B u t a s in t h e A R M A a n a lo g u e , th e G A R C H

    p r o c e s s m i g h t p o s s i b l y b e j u s t if i e d t h r o u g h a W a l d ' s d e c o m p o s i t i o n t y p e o f

    a r g u m e n t s a s a m o r e p a r s i m o n i o u s d e s c r ip t io n .

    F r o m t h e t h e o r y o n f i n it e -d i m e n s io n a l A R C H ( q ) p r oc e ss e s it is t o b e

    ex p ec t e d t h a t D(1 ) < 1 , o r eq u i v a l en t l y A (1 ) + B (1 ) < 1 , s u f fi ces fo r w i d e - s en s e

    s t a t i o n a r i t y ; c f . M i l h o j (1 98 4) . T h i s i s i n d e ed t h e ca s e.

    Th eo r em 1. Th e G A R C H p , q ) p ro cess a s d e f in ed in 1 ) a n d 2 ) i s w id e -s en se

    s ta t i o n a r y w i th E e/)=0, v a r ( e / ) = a 0 ( 1 - A ( 1 ) - B (1 )) -1 a n d c o v (e / , e s ) = 0

    fo r t -4: s i f and o n ly / f A(1) + B(1) < 1 .

    P r o o f . S e e a p p e n d i x .

    A s p o i n t e d o u t b y S a s tr y P a n t u l a a n d a n a n o n y m o u s re fe re e , a n e q u i v a l e nt

    r e p r e s e n t a t i o n o f th e G A R C H ( p , q ) p r oc e ss is g iv e n b y

    a n d

    w h e r e

    q

    e2 = OtO + E Ot i e2-i + E f l j e2 - - j - E f l j l ) t - j + l )t ( 6 )

    i = 1 j = l j = l

    2 - h = - 1 ) h , ,

    , ' = E t

    i . i . d .

    - N 0 , 1 ) .

    (7 )

    N o t e , b y d e f i n i t i o n v i s s e r i a l l y u n c o r r e l a t e d w i t h m e a n z e r o . T h e r e f o r e , t h e

    G A R C H ( p , q ) p r o c e ss c a n b e i n t e r p re t e d a s a n a u t o r eg r e ss iv e m o v i n g a ve r a ge

    p r o c e s s i n e 2 o f o r d e r s m = m a x ( p , q } a n d p , r e s p ec t iv e l y . A l t h o u g h a

    p a r a m e t e r i z a t i o n a l o n g t h e l i n e s o f ( 6 ) m i g h t b e m o r e m e a n i n g f u l f r o m a

    t h eo re t i ca l t i m e s e r i e s p o i n t o f v i ew , (1 ) an d (2 ) a r e ea s i e r t o wo rk wi t h i n

    p rac t i ce .

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    5/21

    T. B ollersleo, Generalization o f A R C H pro cess 311

    3 . T h e G A R C H I , 1) p r o ce s s

    T h e s i m p l e s t b u t o f t e n v e r y u s e f u l G A R C H p r o c e s s i s o f c o u r s e t h e

    G A R C H ( 1 , 1 ) p r o ce s s giv en b y (1 ) a n d

    h t _ a01Xlt_ 2 + f l l h t _ l ot 0 > 0 , o/1 >_~ 0 , f l l >-~ 0 . 8 )

    F ro m Th eo rem 1 , a 1 + /31 < 1 suf fi ces fo r wide-sense s t a t ionar i ty , and in

    g en e ra l w e h av e : 2

    Theorem 2.

    and suJ~cient condition for existence of the

    2 ru t h

    mom ent is

    g Ol l ,

    B1, m) = ~ [ m ~. .~Ja ~-J p 1 ,

    i =

    ( 1 3 )

    w h e r e m = m a x ( p , q ) ,

    tP i =O t i + f l i ,

    i = 1 . . . . . q ,

    a i = 0 f o r i > q a n d fl i =-- 0 f o r i > p . F r o m ( 1 3 ) w e g e t t h e fo l l o w i n g a n a l o g u e

    t o t h e Y u l e - W a l k e r e q u a t i o n s :

    On = [ .~ [01 = ~ ~ i Pn - i , R p + 1 . 1 4 )

    i =

    T h u s , t h e f i rs t p a u t o c o r r e l a t io n s f o r e 2 d e p e n d ' d i re c t l y ' o n t h e p a r a m e t e r s

    ot1 . . . . a tq , f l l . . . . . tip , b u t g i v e n 0 p . . . . 0 p + a - m t h e a b o v e d i f f e r e n c e e q u a t i o n

    u n i q u e l y d e t e r m i n e s t h e a u t o c o r r e l a t io n s a t h ig h e r l a gs . T h i s i s s i m i la r t o t h e

    r e s u lt f o r th e a u t o c o r r e la t io n s f o r a n A R M A ( m , p ) p r o c es s ; c f, B o x a n d

    J e n k i n s ( 1 9 7 6 ). N o t e a ls o , t h a t ( 1 4 ) d e p e n d s o n t h e p a r a m e t e r s ot . . . . . a q ,

    f l l . . . . . tip o n l y t h r o u g h ~ x , . . - , ~m

    L e t ~ k k d e n o t e t h e k t h p a r t i a l a u t o c o r r e l a t i o n f o r e ~ f o u n d b y s o l v i n g t h e

    s e t o f k e q u a t i o n s i n t h e k u n k n o w n ~ k l , . . . , ~ k k :

    k

    o . = E k o . _ = 1 . . . . k . 1 5 )

    i =

    B y ( 1 4 ) ~ * * c u t s o f f a f t e r l ag q f o r a n A R C H ( q ) p r o c e s s

    ~ k k :~ O , k < q ,

    ( 1 6 )

    = 0 ,

    k > q .

    T h i s i s i d e n t i c a l t o t h e b e h a v i o u r o f th e p a r ti a l a u t o c o r r e l a t io n f u n c t i o n f o r a n

    A R ( q ) p r o c e s s . A l s o f r o m ( 1 4 ) a n d w e l l - k n o w n r e s u l t s i n t h e t i m e s e r i e s

    l i te r a t u r e , t h e p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n f o r e 2 f o r a G A R C H ( p , q )

    p r o c e s s i s i n g e n e ra l n o n - z e r o b u t d i es o u t ; s e e G r a n g e r a n d N e w b o l d ( 1 97 7 ).

    I n p r a c t ic e , o f c o u r s e , th e O , 's a n d O k k 'S w i ll b e u n k n o w n . H o w e v e r , t h e

    s a m p l e a n a l o g u e , s a y b , , y ie l d s a c o n s i s t e n t e s t i m a t e f o r p ,, a n d O kk i s

    c o n s i s t e n t l y e s t i m a t e d b y t h e k t h c o e ff ic i en t , s a y C kk , i n a k t h - o r d e r a u t o r e -

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    9/21

    T. Bol lers lev , General izat ion o f A R C H process

    3 1 5

    g r e s s i o n f o r e 2; s e e G r a n g e r a n d N e w b o l d ( 1 97 7 ). T h e s e e s t i m a t e s t o g e t h e r

    w i t h t h e ir a s y m p t o t i c v a ri a n ce u n d e r t h e n u ll o f n o G A R C H 1 / T [ c f . W e i s s

    ( 1 9 8 4 ) a n d M c L e o d a n d L i ( 1 98 3 )] c a n b e u s e d i n th e p r e l im i n a r y i d e n ti fi c a-

    t i o n s t a g e , a n d a r e a l s o u s e f u l f o r d i a g n o s t i c c h e c k i n g .

    5 E s t i m a t i o n o f t h e G A R C H r e g r e s s i o n m o d e l

    I n t h is s e c t i o n w e c o n s id e r m a x i m u m l ik e l i h o o d e st im a t i o n o f t h e G A R C H

    r e g r e s s i o n m o d e l ( 1 ), ( 2 ), ( 3) . B e c a u s e t h e r e s u l t s a r e q u i t e s i m i l a r t o t h o s e f o r

    t h e A R C H r e g r e s si o n m o d e l , o u r d i sc u s s io n w i ll b e v e r y s c h e m a t ic .

    L e t z , = (1, e ,_1,2 . . . , e 2_ q, h t _ l , . . . , h t _ p ) , 6 0 = ( o r 0 , O tl , . . . , a q , f l l . . . . t i p )

    a n d 0 ~ {9, w h e r e 0 = ( b , w ) a n d O i s a c o m p a c t s u b s p a c e o f a E u c l i d e a n

    s p a c e s u c h t h a t e t p o s s e s s e s f in i te s e c o n d m o m e n t s . D e n o t e t h e tr u e p a r a m e -

    t e r s b y 0 0, w h e r e 0 0 ~ i n t {9. W e m a y t h e n r e w r i t e t h e m o d e l a s

    e t = Y t - x ~ b ,

    e tlhb t_ 1 - N (0 , h t , ( 1 7 )

    h t = z ;oa.

    T h e l o g l i k e l ih o o d f u n c t i o n f o r a s a m p l e o f T o b s e r v a t i o n s i s a p a r t f r o m s o m e

    c o n s t a n t , 4

    T

    LT O) = r E l , o ) ,

    t = l

    I t O ) = - 1 o g h , - ~tht12 1

    1 8 )

    D i f f e r e n t i a t i n g w i t h r e s p e c t t o t h e v a r i a n c e p a r a m e t e r y i e l d s

    0 6 ~ 1 0 h { ~2 )

    ~ --d = i h ~ - ~ I g - 1

    oo g h ; l

    2

    h t Oh t e t

    0to 0to h t

    ( 1 9 )

    ( 2 0 )

    4 F o r s i m p l i c i t y w e a r e c o n d i t i o n i n g o n t h e p r e - s a m p l e v a l u e s . T h i s d o e s o f c o u r s e n o t a f f ec t t h e

    a s y m p t o t i c r e s u l t s ; c f. W e i s s (1 9 8 2 ).

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    10/21

    316

    T. Bollerslev Generalizat ion of A R C H process

    w h e r e

    Oh t P O h t _ i

    Ooa = z t + E f l i Ooa (21)

    i=1

    The on ly d i f fe rence f rom Engle (1982) i s the inc lus ion o f the recurs ive par t in

    (21) . 5 N ote , B (1 ) < 1 guaran tees tha t (21) is s tab le . S ince the co nd i t iona l

    exp ec ta t ion o f the f i r st te rm in (20) is zero , the pa r t o f F i sher s in fo rm at ion

    m a t r i x co r r e s p o n d i n g t o ~0 i s co n s i s ten t l y e s ti ma t ed b y t h e s amp l e an a l o g u e o f

    the l as t t e rm in (20) which invo lves f i r s t der iva t ives on ly .

    D i f f e r en t i a t i n g w i t h r e s p ec t t o t h e mean p a rame t e r s y i e l d s

    O lt e t x , h [ 1

    + - 1 (22)

    O b = - ~ h , - ~ -h7 ,

    0 2 lt ~ - - h t l x t x ~ - - l h t 2 0 h t O h t ~ 2 t t

    8 b a b O b a b l h t ]

    2

    Oh t e2

    0 x 1

    Oh t

    - 2 h i e t x , - ~ + ~ - 1 ~ I ~ h i ~ 1 ,

    w h e r e

    (23)

    Oh , q P O h t - j (24)

    = - - 2 E a j X t - - j E t - - j + E J~ j O b

    3 b j = l j = l

    A g a i n t h e s i n g l e d i f f e r en ce f ro m t h e A RCH (q ) r eg re s s i o n mo d e l i s t h e

    inc lus ion o f the recurs ive par t in (24) . A cons i s t en t es t imate o f the par t o f the

    i n fo rma t i o n ma t r i x co r r e s p o n d i n g t o b i s g i v en b y t h e s amp l e an a l o g u e o f

    t h e f ir s t tw o t e rms i n (2 3 ) b u t w i t h e2 h t x i n t h e s eco n d t e rm r ep l aced b y i ts

    expec ted va lue o f one . Th i s es t imate wi l l a l so invo lve f i r s t der iva t ives on ly .

    F i n a l l y , t h e e l emen t s i n t h e o f f -d i ag o n a l b l o ck i n t h e i n fo rma t i o n ma t r i x

    m ay b e s h o w n t o b e zero. Becau s e o f th i s a s y mp t o t i c i n d ep en d en c e t0 can b e

    es t i m a t ed w i t h o u t l o ss o f a s y mp t o t i c e f f ic ien cy b as ed o n a co n s i s t en t e s t im a t e

    o f b , an d v i ce v e r sa .

    T o o b t a i n max i mu m l i k e l i h o o d e s t i ma t e s , an d s eco n d -o rd e r e f f i c i en cy , an

    i t e r a t i v e p ro ced u re i s c a l l ed fo r . Fo r t h e A RCH (q ) r eg re s s i o n mo d e l t h e

    m e t h o d o f s co r i n g co u l d b e ex p re s s ed in t e rms o f a s i mp l e au x il ia ry r eg re s s io n ,

    b u t t h e r ecu r s i v e t e rms i n (21 ) an d (2 4 ) co m p l i ca te t h is p ro ced u re . I n s t ead t h e

    5To st art u p the recursion we need pre-sample estimates for

    h t

    and et t < 0. A natura l choice is

    the sample analogue --xr-r 2

    1 Z~t_lE .

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    11/21

    T. Bo l lers lev , Genera l iza tion o f A R C H process 3 7

    Bern d t , H a l l , H a l l an d H au s man (1 9 7 4 ) a l g o r i t h m t u rn s o u t t o b e co n v en i en t .

    L e t 0 i) de no te the param eter es t imates a f t e r the i th i t e ra t ion . 0 ~+1) i s then

    c a l c u l a t e d f r o m

    O i + l ) = o i ) + ~ i ~ O l t O lt 1 - 1 ~ - ~ ~ Ol._~t

    e = t 0 0 o o , j t = l o o

    w h e r e 0 1 , / 0 0 i s eva lua ted a t 0 < i), and ~ i i s a var i ab le s t ep l eng th chosen to

    maximize the l ike l ihood func t ion in the g iven d i rec t ion . Note , the d i rec t ion

    vec to r i s eas i ly ca lcu la ted f rom a l eas t squares regress ion o f a T 1 vec to r o f

    o n e s o n O l t / O O . Also, the i terat ions for w(i~ and b (i) m a y b e c a r r i e d o u t

    s ep a ra t e l y b ecau s e o f t h e b l o ck d i ag o n a l i t y i n t h e i n fo rma t i o n ma t r i x .

    F r o m W ei s s (19 82 ) it f o ll o w s t h a t t h e max i mu m l ik e l ih o o d e s t i ma t e 0 r i s

    s t ro n g l y co n s i s t en t f o r 0 0 an d a s y mp t o t i ca l l y n o rma l w i t h mean 0 0 an d

    c o v a r ia n c e m a t r ix - - 1 = _ E ( O 2 l , / O O O O , ) - x . H o w e ve r, ~ - = F , w h e re F =

    E ( ( O l t / O 0 ) ( O l t / O O ) ) , an d a co n s i s t en t e s t i ma t e o f t h e a s y mp t o t i c co v a r i an ce

    ma t r i x i s t h e r e fo re g i v en b y T - l ( T _ . r = l ( O l t /O O ) ( O l t /O 0 ) ) - 1 f ro m t h e l a s t

    B H H H i t e r a t i o n .

    Rep l ac i n g (1 ) w i t h t h e w eak e r s e t o f a s s u mp t i o n s

    E ( e , l q ,, _ l) = 0 ,

    E(e~h~-Xl~b,_l) = 1, (2 5)

    E(e4h /E l~p t_ l ) _

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    12/21

    3 1 8 T. Bollerslev Generalization of AR C H process

    T h e L ag ran g e m u l t i p l i e r t e s t s t a t i s t i c fo r Ho : ~ o2 = 0 i s t h en g iv en b y 6

    1 t t - 1 t

    ~ L M = 2 f 6 Z o ( Z o Z o ) Z o f o

    (27)

    w h e r e

    f o = ( e ~ h ; 1 - 1 . . . . eZrh~.1 - 1 ) ' ,

    c9hl Ohr]

    Z o = h i . . . . . ,

    (28)

    a n d b o t h a r e e v a l u a t e d u n d e r H 0. W h e n H 0 i s t ru e , ~ M i s a s y m p t o t i c a l l y

    c h i - s q u a r e w i t h r , t h e n u m b e r o f e l e m e n t s i n ~ 02, d e g r e es o f f r e e d o m . T h i s t e s t

    d i f f e r s s l i g h t l y f ro m th e s t an d a rd r e s u l t s , B reu s ch an d Pag an (1 9 7 8 ) , i n t h a t

    Oht/a~o d o e s n o t s i m p l i f y w h e n t h e c o n d i t i o n a l v a r i a n c e e q u a t i o n c o n t a i n s

    l ag g ed co n d i t i o n a l v a r i an ces ; c f . eq . (2 1 ) .

    I t i s w e l l k n o w n t h a t b y n o r m a l i t y a n a s y m p t o t i c a l l y e q u i v a l e n t t e s t s ta t is t ic

    is

    ~LM = T R 2,

    w h e re R 2 is t h e s q u a r ed m u l t i p l e co r re l a t i o n co e f f i c ien t b e tw een f0 an d Z 0.

    F r o m s e c t i o n 5 t h i s c o r r e s p o n d s t o T . R 2 f r o m t h e O L S r e g r e s s io n i n t h e f ir s t

    B H H H i t e r a t i o n f o r t h e g e n e r a l m o d e l s t a r t i n g a t t h e m a x i m u m l i k e l i h o o d

    e s t i m a t e s u n d e r H 0.

    T h e a l t e r n a t i v e a s r e p r e s e n t e d b y z2t n e e d s s o m e c o n s i d e r a t io n . S t r a i g h t fo r -

    w a r d c a l c u l a t i o n s s h o w t h a t u n d e r t h e n u l l o f w h i t e n o i s e , Z 6 Z o i s s i n g u l a r i f

    b o t h p > 0 a n d q > 0 , a n d t h e re f o re a g e n er a l te s t f o r G A R C H ( p , q ) i s n o t

    f e a s i b l e . I n f a c t i f t h e n u l l i s a n A R C H ( q ) p r o c e s s , Z 6 Z o i s s i n g u l a r fo r

    G A R C H (r l , q + r2) a l t e rn a t i v e s , wh e re r 1 > 0 an d r 2 > 0 . I t i s a l so i n t e re s t i n g

    t o n o t e t h a t f o r a n A R C H ( q ) n u l l , t h e L M t e s t f o r G A R C H ( r , q ) a n d

    A R C H ( q + r ) a l t e rn a t i v e s c o i n c id e . T h i s is s im i l a r t o t h e r e s u l ts in G o d f r e y

    ( 1 9 7 8 ) , w h e r e i t i s s h o w n t h a t t h e L M t e s t s f o r A R ( p ) a n d M A ( q ) e r r o r s i n a

    l i n e a r r e g r e s s i o n m o d e l c o i n c i d e a n d t h a t t h e t e s t p r o c e d u r e s b r e a k d o w n

    w h e n a f u l l A R M A ( p , q ) m o d e l is c o n s i d e r e d . T h e s e t e s t r e s u lt s a re , o f c o u r se ,

    n o t p e c u l i a r t o t h e L M t es t, b u t c o n c e r n t h e L i k e l ih o o d R a t i o a n d t h e W a l d

    t e s t s a s w e ll . A f o r m a l p r o o f o f t h e a b o v e s t a t e m e n t s c a n b e c o n s t r u c t e d a l o n g

    th e s am e l i n e s a s i n G o d f re y (1 97 8, 1 98 1) .

    6 N o t e b e c a u s e o f t h e b l o ck d i a g o n a l it y in t h e i n f o r m a t i o n m a t r i x i n t h e G A R C H r e g re s s io n

    m o d e l t h e s a m e t e s t a p p l i e s i n t h is m o r e g e n e r a l c o n t e x t.

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    13/21

    T. Bollerslev Generalization of AR C H process 319

    7 Em pirical example

    T h e u n ce r t a i n t y o f i n f l a t i o n i s an u n o b s e rv ab l e eco n o mi c v a r i ab l e o f ma j o r

    i m p o r t a n c e , a n d w i t h i n t h e A R C H f r a m e w o r k s e v e r a l d i f f e r e n t m o d e l s h a v e

    a l re ad y bee n cons t ruc ted ; see Eng le (1982), Eng le (1983) and Engle and K raf t

    (1983) . We wi l l here concen t ra te on the model in Eng le and Kraf t (1983)

    w h ere t h e r a t e o f g ro w t h i n t h e i mp l i c i t G N P d e f l a t o r i n t h e U .S . i s ex p l a i n ed

    i n t e rms o f i t s o w n p as t .

    L e t ~ r t= 1 0 0 . I n G D t /G D t _ I) w h e r e

    G t

    i s the impl ic i t p r i ce def l a to r fo r

    G N P. 7 S t an d a rd u n i v a r ia t e t ime s er ie s m e t h o d s l ead t o i d en t if i c at io n o f t h e

    fol lowing model for ~r t :

    .B

    =

    0.240 + 0 .552~t 1 + 0 .177 r 2 + .0 .23 2~t-3 - 0 .209rt 4 +

    et,

    ( 0.0 80 ) ( 0 . 0 8 3 ) - ( 0 . 0 8 9 ) - (0 .0 90 ) ( 0 . 0 8 0 ) -

    h t

    0 . 2 8 2 . ( 2 9 )

    (0 .034)

    The model i s es t imated on quar t e r ly da ta f rom 1948 .2 to 1983 .4 , i . e . , a to t a l o f

    143 observa t ions , us ing o rd inary l eas t squares , wi th OLS s tandard e r ro rs in

    pare n the ses . 8 Th e m odel i s s t a t ionary , and non e o f the f i rs t ten au toc or re la -

    t ions o r par t i a l au toco r re la t ions fo r E a re s ign i f ican t a t the 5% leve l. H ow ever ,

    look ing a t the au toco r re la t ions fo r e t: i t t u rns o u t tha t the 1s t, 3 rd , 7 th , 9 th an d

    10 th a l l exceed two asympto t i c s t andard e r ro rs . S imi la r resu l t s ho ld fo r the

    p a r t ia l a u t o c o r r e la t io n s f o r e t . T h e L M t es t f o r A R C H ( l ) , A R C H ( 4 ) a n d

    ARCH(8) a re a l so h igh ly s ign i f i can t a t any reasonab le l eve l .

    Th i s l eads Eng le and Kraf t (1983) to sugges t the fo l lowing spec i f i ca t ion :

    rt= 0 .138 + 0 .42 3% x+ 0 .222r t 2 + 0 .37 7~ ,_ 3 - 0 .175~/ 4 - ~ - g t ,

    (0 .0 59 ) ( 0 . 0 8 1 ) - ( 0 . 1 0 8 ) - (0 .0 78 ) ( 0 . 1 0 4 ) -

    8

    h t

    = 0 .058 ~_ 0 .802 E ( 9 -

    i ) / 36e ~ _ i .

    (30)

    ( 0 . 0 3 3 ) - ( 0 . 2 6 5 ) i = 1

    T h e e s t i ma t e s a r e max i mu m l i k e l i h o o d w i t h h e t e ro s k ed as t i c co n s i s t en t s t an -

    dard e r ro rs in paren theses ; see sec t ion 5 . The cho ice o f the e igh th -order l inear

    d ec l i n i n g l ag s t ru c t u re i s r a t h e r ad h o c , b u t mo t i v a t ed b y t h e l o n g memo ry i n

    t h e co n d i t i o n a l v a r i an ce eq u a t i o n . T h e o rd e r o f t h e l ag p o l y n o mi a l may b e

    v i ew ed a s an ad d i t i o n a l p a r ame t e r i n t h e co n d i t i o n a l v a r i an ce eq u a t i o n . F ro m

    7 T h e v a lu es o f GD are t a k e n f r o m t h e C i t i b a n k E c o n o m i c D a t a b a s e a n d U . S . D e p a r t m e n t o f

    C o m m e r c e ,

    Survey of Current Business

    Vol . 64 , no . 9 , Sep tember 1984 .

    g N o te , i n E n g le an d K r a f t 1 98 3 ) t h e e s t im a t io n p e r io d is 1 94 8 .2 to 1 9 80 .3 acco u n t in g f o r t h e

    sm a l l d i f f e r en ces i n t h e e s t im a t io n r e sul t s.

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    14/21

    320

    T. Bollerslev Generalization of A R CH process

    - - S A R C H f l, 1)

    - - - - RRH [8

    \

    \

    ~ \ \ ' \ \ \

    . \ \

    - 4 \

    g

    ; t

    8 1 ~ 0 l~ 2 I ~ 5

    Fig. 2. Lag distribution.

    M i lh e j (1 98 4) th e co n d i t io n fo r ex is t en ce o f t h e f o u r th - o r d e r m o m en t o f e is

    ju s t m e t . 9 N o n e o f t h e f ir s t t en au to co r r e l a t io n s o r p a r t i a l au to co r r e l a t io n s f o r

    e t h t 1 / 2 r

    e 2 h t ex ceed 2 /v C l~ . Th e L M te s t s t at is t ic s f o r t h e li n ea r

    r e s t r i c t i o n t ak es th e v a lu e 8 .8 7 , co r r e sp o n d in g to th e 0 .7 4 f r ac t i le i n t h e X2

    d i s t r ib u t io n . Ho wev e r , t h e LM te s t s t a t i s t i c f o r t h e in c lu s io n o f h t _ in the

    co nd i t ion a l var ianc e equa t ion is 4 .57 , wh ich i s s ign i fican t a t the 5 leve l.

    9The cond ition as discussed n footnote 3 takes the v alue 0.989 for 0.802.

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    15/21

    T. Bollersleo Generalization of A R C H process 321

    L e t u s t h e r e f o r e c o n s i d e r t h e a l t e r n a t i v e s p e c i f i c a t i o n

    ~r = 0 .141 + 0 .433~ _ 1 + 0 .2 29 y t_ 2 + 0 ,34 9 ~rt_ 3 - _y r 0 . 1 6 2 + e t ,

    ( 0.0 60 ) ( 0 . 0 8 1 ) ( 0 . 1 1 0 ) ( 0.0 77 ) ( 0 . 1 0 4 ) ` -4

    h t = 0 .0 07 + 0 .13 5 e l 1 + 0 .82 9 h t 1-

    ( 0 .0 0 6 ) ( 0 . 0 7 0 ) - ( 0. 06 8 ) -

    3 1 )

    F r o m T h e o r e m 2 t h e f o u r t h - o r d e r m o m e n t o f e e x is ts . A g a i n n o n e o f t h e f ir st

    t e n a u t o c o r r e l a t i o n s o r p a r t ia l a u t o c o r r e l a ti o n s f o r

    t t h

    t x/2 or

    e E h

    [ a e x c e e d

    t w o a s y m p t o t i c s t a n d a r d e r ro r s. T h e L M t e st s ta t is ti c f o r t h e in c l u s io n o f th e

    e i g h t h - o r d e r l i n e a r d e c l i n i n g l a g s t r u c t u r e i s 2 . 3 3 , c o r r e s p o n d i n g t o t h e 0 . 8 7

    f r a c t il e i n t h e X 2 d i s tr i b u ti o n . T h e L M t e st s t at is t ic f o r G A R C H ( 1 , 2 ) , o r

    l o c a l l y e q u i v a l e n t G A R C H ( 2 , 1 ) , e q u a l s 3 .8 0 a n d t h e r e f o r e is n o t s i g n if ic a n t a t

    t h e 5 % l e v e l. A l s o t h e L M t e s t st a t is t ic s f o r i n c l u s i o n o f

    e t _ 2 2 . . . e t _ 5 2

    t a k e s

    t h e v a l u e 5 . 5 8 w h i c h i s e q u a l t o t h e 0 .7 7 f r a c t i l e i n t h e X 2 d i s t r i b u t i o n .

    Inf fat ion R c L t e

    C o n f . ~ nt .

    j t * J \

    , ,

    , , , a . , , :

    T . . , . , . , . . . , . , . . , . . . , . . . ,

    1 9 4 8 1 9 5 3 1 9 5 5 1 9 6 3 1 9 6 8 1 9 7 3 1 9 7 8 1 9 8 3 1 9 8 5

    Fig . 3 . 95 con f iden ce in terva ls fo r OLS .

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    16/21

    322

    T. Bollerslev Generalization of A R C H process

    I t i s a l s o i n t e re s t i n g t o n o t e t h a t t h e s a m p le co e f f i c ien t o f k u r to s i s fo r

    e h l 1 /2

    f r o m m o d e l ( 31 ) e q u a l s 3.8 1, w h i c h d i f fe r s f r o m t h e ' n o r m a l ' v a l u e o f

    3 .0 0 b y s l i g h t l y l es s t h a n t w o a s y m p t o t i c s t a n d a r d e r r or s ,

    2 2 ~ / T

    = 0.82. For

    m o d e l s (2 9 ) a n d (3 0) t h e co e f f i c i en t o f k u r to s i s eq u a l s 6 . 90 a n d 4 .0 7, r e s p ec -

    t i v e ly . T h e s am p le co e f f i c ien t o f s k ew n es s fo r

    e t h t ] /2

    f r o m e a c h o f t h e t h r e e

    m o d e l s , - 0 . 1 3 , 0 . 1 8 a n d 0 . 1 1 , a r e a l l w i t h i n o n e a s y m p t o t i c s t a n d a r d e r r o r ,

    V / 6 / T

    = 0.20.

    T h e m e a n a n d m e d i a n l a g i n t h e c o n d i t i o n a l v a r i a n c e e q u a t i o n i n ( 3 1 ) a r e

    es t im at ed to be 5 .848 a nd 3 .696, respe c t ive ly [cf . s~c t ion 3] , w here as in (30) the

    m e a n l a g i s f o r c e d t o 3 ~ a n d t h e m e d i a n l a g t o 2 . F u r t h e r m o r e , t h e l a g

    s t r u c t u r e i n t h e G A R C H ( 1 , 1 ) m o d e l c a n b e r a t i o n a l i z e d b y s o m e s o r t o f

    ad ap t i v e l ea rn in g m ech an i s m . See a l s o f i g . 2 , wh e re t h e two d i f f e ren t l ag

    s h a p e s a r e i l l u s t ra t e d . I n t h i s l ig h t i t se e m s t h a t n o t o n l y d o e s t h e G A R C H ( 1 , 1 )

    m o d e l p r o v i d e a s l i g h tl y b e t t e r f it t h a n t h e A R C H ( 8 ) m o d e l in E n g l e a n d

    K r a f t ( 19 8 3 ), b u t i t a ls o e x h ib i ts a m o r e r e a s o n a b l e l a g s tr u c t u r e .

    - - I n f l a t i o n

    B a t e

    -----Co nf. Int

    o

    J ~

    J l I/[ I ~ ~\ r,k~ v , v ~ / ~-~^/~(~A / J

    V I , , , I

    I L I \ l

    Ill Ij~

    1 9 4 8 1 9 5 3 1 9 5 9 1 9 6 3 1 9 9 9 1 9 7 3 1 9 7 8 1 9 9 3 1 9 9 9

    Fig. 4. 95 confid ence nterva ls for GA RC H(1,1).

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    17/21

    T. Bollerslev,Generafizationo f A R C H process 323

    In f igs . 3 an d 4 the actu al inf lat ion rate , ~r,, i s gra ph ed togeth er wi th 95

    as y mp t o t i c co n f i d en ce i n t e rv a l s f o r t h e o n e - s t ep -ah ead fo r ecas t e r ro r s fo r t h e

    two model s (29) and (31) . From the l a t e fo r t i es un t i l t he mid- f i f t i es the

    in f l a t ion ra t e wa s very vo la t i le and hard to p red ic t . Th i s i s re f lec ted in the wide

    co n f i d en ce i n t e rv a l s f o r t h e G A RCH mo d e l . T h e s i x t i e s an d ea r l y s ev en t i e s ,

    h o w ev e r , w e re ch a rac t e r ized b y a s t ab l e an d p red i c t ab l e i n fl a ti o n r a te , an d t h e

    O L S co n f i d en ce i n t e rv a l s eems mu ch t o o w i d e . S t a r t i n g w i t h t h e s eco n d o i l

    cr ises in 1974 there i s a s l ight increase in the uncertainty of the inf lat ion rate ,

    a l t h o u g h i t d o es n o t co mp are i n mag n i t u d e t o t h e u n ce r t a i n t y a t t h e b eg i n n i n g

    o f t h e s amp l e p e r i o d .

    Appendix

    A.1. Pro of of Theorem 1

    T h e b as i c i d ea o f t h e p ro o f fo l l o w s t h a t o f T h eo rem 1 i n Mi l h o j ( 1 9 8 4 ) . By

    d e f i n i t i o n

    = ,n / ,1 / 2 i id

    Et 't t '

    ]t-

    N 0 , 1 ) . A . I )

    Su b s eq u en t s u b s t i t u t i o n y i e l d s

    q P

    h , = + E + E , h , _ ,

    i = 1 i = 1

    q 2 q P )

    = a 0 + } - . a s ~ , _ j a 0 + ~ 2

    l i ~ t - i - j h t - i - j + E j ~ i h t - i - j

    j = l i = 1 i =1

    P ( q P )

    + E f l j a o + E 2 ( A .2 )

    l i ~ t - i - j h t - i - j + E ~ i h t - i - j

    j = l i = 1 i = 1

    a o ~

    M t ,k ) ,

    k=O

    w h e r e M t , k ) i nvo lves a l l t he t e rms o f the fo rm

    q P n

    1 - - I < , : ' H ,8 7 , r i , g _ , , ,

    i = 1 j = l 1 : 1

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    18/21

    324 T . B o ll er sl eo , G e n e r a l i z a ti o n o f A R C H p r o c e s s

    f o r

    a n d

    T h u s ,

    q P q

    E a , + E b j = k , E a i = n ,

    i = 1 j = l i = 1

    1 < S 1 < 2 < . . . < S , < m a x k q , k - 1 ) q + p } .

    M t , O ) = 1 ,

    q P

    M ( t , 1 ) = E ai~2 -i + E fl,,

    i = 1 i = 1

    M ( t , 2 ) E 2

    l j ~ t - j E 2

    O l i ' l ~ t - i - j + E f l i

    j = l i = 1 i = 1

    O l i | t - - i - - j i ,

    i

    a n d i n g e n e r a l

    q P

    M t , k + 1) = E af l l~ - iM t - i, k ) + E f liM t - i , k ) .

    i = 1 i = 1

    (A.3 )

    Since ,12 is i . i .d . , the moments of M t , k ) d o n o t d e p e n d o n t , a n d i n

    pa r t i cu la r

    E ( M ( t , k ) ) = E ( M ( s , k ) ) f or

    all

    k, t , s , (A.4)

    F r o m ( A .3 ) a n d ( A .4 ) w e g e t

    E M t , k + l ) ) = Y [ a i+ ~=lfl E M t , k ) )

    i=1 i

    = a , f l i E M / ,0 ) )

    i~ l i

    I l i i

    i i

    A.5)

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    19/21

    T. Bollerslev Generalization of A R C H process 325

    F i n a l l y b y ( A . 1 ) , ( A . 2 ) a n d ( A . 5 ) ,

    i f a n d o n l y i f

    o~

    E(e~) =aoE(k~_~=o ( t ' k , )

    = a o Y . E ( M ( t , k ) )

    k = 0

    1

    = a o 1 - a i - B i

    i ~ i = 1

    q P

    E a i + E E < I ,

    i = 1 i = 1

    2 c o n v e r g e s a l m o s t s u re ly .

    n d e ,

    E ( e , ) = 0 a n d c o v ( e , e s) = 0 f o r t ~ s f o ll o w s i m m e d i a t e l y b y s y m m e t r y .

    A . 2 . P r o o f o f T h e o r e m 2

    B y n o r m a l i ty

    E ( e 2 m ) = a m E ( h ~ ) ,

    w h e r e a m i s d e f i n e d i n ( 1 0 ) . T h e b i n o m i a l f o r m u l a y i e l d s

    h ~ = ( ~ o + ~ : ,~ _ ~ + ~ h , _ ~ ) ~

    ~ n ~ 0 ~ lb ' l f ' t - t t - l

    B e c a u s e

    E (e~J th t -_~[~b ,_2)

    = a j h t_t,

    w e h a v e

    E ( h : [ ~ b , _ 2 ) - -

    ~ h ,_ (m)n aom -, ~ (nj .)aja ~fl J .

    n = 0 j = 0

    L e t

    w , = ( k i n h m 1

    _ , , . ., . . . . . h , ) , t h e n b y ( A . 8 )

    ( A . 6 )

    ( A . 7 )

    ( A . 8 )

    E ( w t i ~ b , _ 2 )

    = d + C w , _~ ,

    ( A . 9 )

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    20/21

    326

    T. Bol lers lev , Generalization o f A R C H process

    w h e r e C i s a n m m u p p e r t r i a n g u l a r m a t r i x w i t h d i a g o n a l e l e m e n t s .

    J R ~ I , ~ I , / ) : ~ ( l ; ] 1 r ~ j l~ i - J

    j - O J / ' J ~ l t l ,

    i = 1 . . . . . m . ( A . I O )

    S u b s t i t u t i n g i n A . 9 ) y i el d s

    E w,l~,_k_l) = I+ C+ C2+ . . . +Ck- X)d+ Cew _k.

    S i n c e t h e p r o c e s s i s a s s u m e d t o s t a r t i n d e f i n i t e l y f a r i n t h e p a s t w i t h f i n i te 2 m

    m o m e n t s , t h e l im i t a s k g o e s t o in f i n i t y e x i st s a n d d o e s n o t d e p e n d o n t i f a n d

    o n l y i f a l l t h e e i g e n v a l u e s o f C l ie i n s i d e t h e u n i t c i r c l e ,

    l i m E ( w t l ~ b t _ k _ l ) = I - C ) - l d =

    E w t ) .

    k ~ m

    B e c a u s e C i s u p p e r t r ia n g u l a r , t h e e i g e n v a lu e s a re e q u a l t o th e d i a g o n a l

    e l e m e n t s a s g i v e n i n (A . 10 ) . T e d i o u s , b u t r a t h e r s t r a i g h t f o r w a r d c a l c u l a t io n s

    s h o w t h a t ~ ~ 1, El , i ) < 1 i m p l i e s /.t(O tl, i l l , i - 1 ) < 1 fo r o t1 -4- E1 ~ 1 , a n d

    t ~ a , f l l, m ) < 1 su f f ic e s f o r t h e 2 m t h m o m e n t t o e x i s t ; c f. fig . 1 .

    F i n a l l y ( 1 1 ) f o l lo w s f r o m ( A . 7 ) a n d ( A . 8) b y r e a r r a n g i n g t e rm s .

    R e f e r e n c e s

    Berndt, E.K ., B.H. Hall , R.E. Hall and J.A, Hausm an, 1974, Estimation inference in nonlinear

    st ructural models, Anna ls of Economic and Social Measurement , no. 4, 653-665.

    Box, G.E.P. an d J.M. Jenkins, 1976, Time series analysis: Forecasting and con trol (Holden-Day,

    San Franci sco , CA).

    Breusch, T .S. and A.R. Pagan, 1978, A simp le test for heteroskedastic city and random coefficient

    variation, Econometrica 46, 1287-1294.

    Co ulson , N.E. and R.P. Ro bins, 1985, Aggregate economic activity and the variance of inflation:

    Another look, Economics Letters 17, 71-75.

    Dom owitz, I. and C .S. Hakkio, 198 5, Conditional variance and the risk premium in the foreign

    exchange mark et , Journal of In ternat ional Economics 19, 47-66.

    Engle, R .F. , 198 2, Autoregressive conditional heteroskedasticity with estimates o f the variance of

    U.K . inflation , Econom etrica 50, 987-1008.

    Engle, R.F. , 1983, Estimates of the variance of U.S. inflation based on the ARCH model, Journal

    of M oney C redi t and Banking 15, 286-301.

    Engle, R .F. an d D. K raft , 1983, Mu ltiperiod forecast erro r variances of inflation estimated from

    A R CH models, in: A . ZeUner, ed., App l ied time series analysis of economic da ta (Bureau o f

    the Census, Washington, DC) 293-302.

    Engle, R .F. , D. Lil ien an d R. Robins, 1985, Estimation of t ime varying risk premium s in the term

    structure, Discussion pa pe r 85-17 (University o f California, San D iego, CA ).

    G ar ba de , K ., 1977, Two m ethods fo r examining the sta bil i ty of regression coefficients, Journal of

    the American Statist ical Association 72, 54-63.

    G od frey , L.J. , 1978, Testing against general autoregressive and m oving average error models when

    the regressors include lagged dependent variables, Econometrica 46, 1293-1302.

    G od frey , L.J. , 198 1, On the invariance o f the L agrange m ultiplier test with respect to certain

    changes in the alternative hypothesis, Econometrica 49, 1443-1455.

  • 7/25/2019 Econometra Bollerslev GARCH 1986

    21/21

    T. Bollerslev Generalization of A R C H process 327

    Gran ge r , C .W.J . and A .P . And e rsen , 1978 , An in t roduc t ion to b i l inea r time se ries m odels

    Vandenhoeck and Ruprecht , GSt t ingen) .

    G ran ger , C.W.J . a nd P. Newbold, 1977, Forecas t ing econo m ic t ime ser ies Academic Press, New

    York).

    Ha rvey , A.C ., 1982, Th e econometric an alysis of t ime series Philip A llen, Oxford).

    M cCu lloch, J .H. , 19 83 , Interes t- r isk sensi tive deposi t insurance premia : A dapt ive con di t ional

    he teroscedas t ic es timates , D iscuss ion paper, June Ohio Sta te U nivers i ty, Colu m bus, OH).

    M cLeo d, A .J. a nd W .K. Li , 1900, Diagno st ic checking A RM A t im e ser ies models u s ing squared-

    res idual au tocorre la t ions , Jou rna l of Tim e Ser ies Analys is 4, 269-273.

    M ilhoj , A. , 1984, The m om ent s t ruc ture of ARC H processes , Research repor t 94 Ins t i tute of

    Statistics, Un ive rsity of Copenhagen, Copenhagen).

    Weiss, A .A. , 19 82 , Asy mp tot ic theory for AR CH models: Stabi li ty, es t im at ion and test ing,

    Discu ss ion pap er 82-36 Univ ers i ty of Cal i fornia , San Diego, CA).

    Weiss, A .A., 1984, A RM A m odels with AR CH errors, Jo urna l of Tim e Series An alys is 5, 129-143.

    W hite , H . , 1982, Ma xim um l ike lihood es t im at ion of misspec if ied models , Econo me tr ica 50, 1-25 .