Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic...

71
Ecole Joliot-Curie 2007    “One has to realize that the experimental and theoretical understanding of nuclear reactions is one of the major achievements of Nuclear  Physics of the last half century, largely unrecognized or celebrated, even by nuclear physicists themselves” (H. Feshbach) Nuclear reactions: - development of collision theory - conservation of mass (http://www.theo.phys.ulg.ac.be)

Transcript of Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic...

Page 1: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Ecole Joliot-Curie 2007

  

  “One  has  to  realize  that  the  experimental  and  theoretical understanding  of  nuclear  reactions  is  one  of  the  major   achievements  of  Nuclear    Physics  of  the  last  half  century,  largely unrecognized or celebrated, even by nuclear physicists themselves” (H. Feshbach)

Nuclear reactions:­ development of collision theory­ conservation of mass

(http://www.theo.phys.ulg.ac.be)

Page 2: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

 Nuclear Reactions. A short digest.●  Generalities●  Typical variations & first classification●  Coherent reactions●  Incoherent (high energy) reactions●  Reactions involving coherent & incoherent effects●  Specific features linked to particular projectiles●  Outlook 

Ecole Joliot-Curie 2007

J. CUGNON, ULg

Page 3: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

1. Introduction● Experiment 

● Control parameters: a, A, Einc, (E, polarisations, ...)

● Detection  asymptotic states only

+ a A b1+b2*+...+[,..]

- if only b 1 : is detected inclusive + reactions a A b1+X- : if all are detected exclusive reactions- : intermediate -semi inclusive reactions

Page 4: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

● Information is encoded in (differential) cross­sections 

●  Standard theoretical description

c=pt ei k c . r c c '= f 1

f 2...ei k c ' . r c ' ...

T=VV 1E−Hi

V

E=ℏ2 k c

2

2 mE i=

ℏ2 k c '2

2 mE f=

ℏ2 k c '2

2 mE i−Q

d c c '=24

ℏ vc

ℏ2 k c

2

2 mE i−

ℏ2 k c '2

2 m−E f ∣⟨ f k c '∣T∣i k c ⟩∣

2d

H=H 0V

interaction structure

Page 5: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

● calculation of cross­sections = formidable task● connection with structure is not obvious● reaction mechanism

hypotheses

approximationsd.o.f reaction model

(mechanism)structure

● there exist time­dependent approaches

∂ t=−

iℏ

[H , ]

[∂∂ tp

m. ∇− ∇U . ∇ p] f r ,p , t =I coll [ f ]

macroscopic properties

INC, BUU, LV, QMD...

Page 6: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

symmetries:

⟨ i−k c∣T∣ f − k c ' ⟩=⟨ f k c '∣T∣i k c ⟩

(a) time­reversal invariance   ⇒ detailed balance

k c2 dcc '

d=k c '

2 d c ' c

d−

simplifies if angular momentum is disregarded:

S c ' c=c ' c−2 i m2 k c k c '

2 1/2

⟨ f k c '∣T∣i k c ⟩ does not depend upon angle

cc '=ƛc2∣Sc ' c−c ' c∣

2S c c '=S c ' c

 (b) conservation of norm

S S=1 ∑c '∣Sc ' c∣

2=1 c

T=2ƛc21−ℜScc c

T=−4k c

ℑ f cc

(c) conservation of angular momentum, isospin, etc   specificity of typical reactions

Page 7: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

2. Variation of cross­sections with control parameters 

Behaviour close to threshold:1. channel without Coulomb interaction (incident neutrons)

elastic scattering cc≈C

endothermic reaction Q<0

exothermic reaction Q>0

cc '≈C E−E th

cc '≈C /k c '

2. reactions with Coulomb interaction 

multiplication with Gamow factor Gc=exp −Z 1 Z 2 e2

ℏ vc

elastic scattering may be dominated by Coulomb scattering

reaction:

3. total reaction cross­section≈R2≈ 1b   @ high energy

A. Characteristic variations

Page 8: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

n­induced exothermic reactionTypical energy dependences

Page 9: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 10: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 11: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Typical target dependences

() 104 MeV

Page 12: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

B. Comparison of control parameters with typical lengths and energies

: mixing of regimes due to the impact (“uncontrolled”) parameter 

Page 13: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

First “rough” classification 

1. Quantum treatment is needed­ elastic &slightly inelastic collisions­ resonant reactions­ pick­up & transfert reactions

2. Quasi­classical treatment is (perhaps) sufficient­ (moderately) inelastic collisions­ fragmentation (spallation) collisions

wave functionrelated information

more global properties

Page 14: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 15: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Comparison nucleon­nucleus ⇔nucleus­nucleus

1. Differences linked with the shape of the colliding system­ deep inelastic collisions­ fusion reactions & partial fusion reactions

2. Differences linked with the number of particles­ thermodynamic properties of nuclear matter­ possible phase transition (multifragmentation)

Page 16: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

3. Coherent, quasi­coherent & resonant reactionsA. Resonant reactions. The compound nucleus.

resonance ⇒”definite” energy with lifetime =ℏ/∆E >>  tpass=R/v 

:Bohr' hypothesis   formation of a complex

,CN statefollowed by a statistical     decay in open channels 

formation & decay are independent, except for conservation laws

⇒ symmetric angular distributions (around 90°)

Page 17: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

 The Breit­Wigner formula

S­matrix form 

Scc '=eicc 'cc '−i∑

E−Ei

/2

Bohr Hypothesis =

c1 /2

c '1 /2 , ∑

c

c=,

c1/2=real

cc '=cCN Pc '

withc

CN=ƛc2

c

E−E2

2 /4

, Pc '=

c '

cc '=ƛc2∣Scc '−cc '∣

2

Structure Information (SI): E, (J), , c

Page 18: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

 The shell­model approach

H=H 0V=∑i

h0i V H 0i=E ii , H 0c E =EcE

c =∑

ibiE i∑

c 'ac

c ' E c ' E

PQ

Page 19: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

in absence of direct coupling <c|V|c'>=0:

Sc c '=ei cc '[c c '−i 2∑j

⟨c∣V∣ j ⟩ ⟨ j∣V∣c ' ⟩E−E j−i∑

c∣⟨ j∣V∣c ⟩∣

2 ]Note that j are (complicated) eigenstates of [PHP + PVQ (E­H0)­1 QVP]j  = Ej j 

They are bound states in the continuum (E>0)Also:  continuum component in loosely bound states

c=∣⟨c∣V∣⟩∣

2represents the coupling of the resonant states to channel c

Page 20: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Hauser­Feshbach formula:

 Average cross­sections and the overlapping resonance regionNB: no average for overlapping resonances

⟨c c ' ⟩=1I∫

E−I /2

EI /2

ƛc2∣∑

c1/2

c '1/2

E−Ei

/2∣

2

dE

≈1I∫

E−I /2

EI /2

ƛc2∑

cc '

E−E2

2 /4

dE

=ƛc2 2

D c c '

⟨c c ' ⟩=ƛc2 2

D

c 2D

c '

2D

F c c '=ƛc2 T c T c '

∑c

T c

F c c '

F accounts for  width correlations 

Page 21: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Two theories:1. elimination of the inelastic components

2. mass operator

They predict Vopt to be energy­dependent and non­local

B. Elastic scattering. The optical model

The optical model: elastic scattering can be reduced to potential scattering

V opt r ≈−V 0

r 0

V LS−i W r =V CV LS

W>0 accounts for the loss of flux (above the 1st inelastic channel)

E−PHPP=PHQQ , E−QHQQ=QHP PE−PHP−PHQEi −QHQ−1QHP P=0

Page 22: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

V C E ,r =∫d 3r ' G E ' ,r ' f r−r '

JLM microscopic potential

Phenomenological potentials

G is the Brueckner G­matrix

Page 23: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

­ Parameters are smoothly dependent upon the target­ The crucial “parameter” is the volume integral of the central part

­ Largely diffractive scattering

­ Structure Information (SI): geometry, deformation ­ relativistic formulation is better for spin­orbit part­ OM ­>  <Scc>=ei2c(1­c/D)

J=∫V C r d3r

maxima @ 2kRsin /2=n

OMP ⇒ Tc⇒ ( ) -HF average cross sections

Page 24: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Inelastic scattering. (p,p')

SI: Energy levels

Direct interactions: only one NN interactionDistorted wave Born approximation (DWBA)

dd

∝∣⟨c ' r c '∣∑iv r−r i∣c r c⟩∣

2

∝∣⟨c '∣∑ie−iq . r i∣c⟩∣

2

=∣e−iq .r cc ' r ∣2

SI: transition form factors ­>w.f.

Born: T=”V”

cc ' r =⟨c '∣∑ir−r i∣c⟩

Page 25: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Selectivity:

l≈k R , l '≈ k ' R , l≈q R

dd

∝∣ jqR∣2

SI: J & parity

Special cases: Coulex, (e,e')

=∣l−l '∣

Page 26: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 27: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 28: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

@ higher energy transfer:excitation of giant resonances

Page 29: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

SI: giant resonances structure, sum rules, exchange forces

selectivity of probes

(') (p,p') (3He,t)

Page 30: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

D. Transfert reactions. Stripping, Pick­up, etc

Stripping: (d,p)

T ∝d , pnq1

−ℏ2 q2 /2 mn

B , Anq

­ q should not be too large­ angular momentum selection rule

SI: Spectroscopic factorsA1=∑

S1 /2

r A =nlj

dd

=C D02 S

∣∫d3r d∗ r u

r pr ∣2

S=∣⟨

r A∣A1 ⟩∣2

∑ S=1−N

Page 31: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

90Zr(d,p)

E=12 MeV

Page 32: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Knock­out: (p,2p)

T ∝T ppq A ,A−1 p pR , pR= p2−q , p1=pi−q

d5

d E1 d1 d2

=C S∣

pR∣2 d pp

dq

SI: momentum distribution of sp w.f. + spectroscopic factors

NB: (e, e' p) is  simpler

q

Page 33: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

4. Incoherent  high­energy reactionsA. Introduction

­ above ~ 250 MeV: dominance of NN collisions­ elastic scattering is limited to extreme forward angles, even though the

cross section remains important (see later)­ angular momentum ­> impact parameter as the relevant parameter­ coherent inelastic scattering is limited to very peripheral collisions (and

to very forward angles)­ opening of huge number of channels: many ejected particles 

­> fragmentation   

Page 34: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

B. Glauber models

R=∫0

R

2b db∫−z0

z0

PsurvzNNtot dz=R2[1−2

X 21−e−X

2X

e−X ]

Psurvz=exp −NNtot zz0

X=2NNtot R≈R R≈0.8−0.9R2≈E

Page 35: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

 A simplified quantum model: Glauber formalism + eikonal

basic assumptions: ­ small momentum transfer at each interaction   ­ scattering introduces a phase shift only:   ­ frozen nucleus approximation (no Fermi motion)

eik .r eir

f fiq=ik

2∫d2b eiq .b ⟨ f∣1−∏j=1

A 1− 12 i k

∫d 2 q ' eiq ' .b−s j f j q ' ∣i⟩fj is the individual amplitude, sj is the tranverse position of nucleon j

Expanding the product multiple scattering expansion

f ij1q= f qij q , ij q=∫d2s eiq .s ⟨ f∣∑k

s−sk∣ f ⟩f ij2q=∫d 2q ' f q f q−q ' ij

2q , ij2q=∫d 2s d 2s ' eiq .s ei q−q ' .s ' ⟨ f∣∑k≠l

s−sks−sl∣ f ⟩SI: correlations

f ij q= f ij1q f ij

1q...

SI: transition prob.

Page 36: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Models for collision regime

For many particle emission and deep inelastic collisions,Glauber and quantum multiple scattering theories (KMT,..)are unpracticableExcept for very peripheral and slightly inelastic collisions,no evidence for quantum effects

Quasi­classical tools have been devised, where quantum effectsis restricted to small binary collision regions and translated in using cross sections. 

INC, QMD, BUU, LV,...

They are based on simulations and/or transport equations

Page 37: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

INC

Page 38: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

brief description of INCL:

­ ordered & separated NN collisions­ elastic or inelastic ­ subject to Pauli blocking­ potential well­ transmission, reflection, (refraction)­ stochasticity­ relativistic kinematics­ isospin degree of freedom­ accomodates p, n, d, t, He3 & He4 as projectiles

­ must be supplemented by an evaporation model­ stopping time is determined self­consistently

“parameter­free” SI: geometry & momentum distribution

Page 39: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

D. Spallation and fragmentation  collisions 

Page 40: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 41: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

5. Reactions involving statistical coherent  and incoherent featuresA. Similarity between resonant reactions in the “overlapping regime” and the ultimate stage of spallation/fragmentation  collisions 

In the former, the reaction can be described  by the formation of CN followed by an “independent” decay governed by average decay widths (Hauser­Feshbach)

Note that the formation of CN involves average over many different states, i.e. many degrees of freedom ⇒ equilibrated system

At the end of “hard collision” stage of spallation reactions, the system is also expected to be in equilibrium 

Page 42: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

HF for many exit channels

dHF Ec '∗ =ƛc

2 T c T c 'c ' Ec '∗ dE c '

∑c ' '∫0

EQ

T c ' 'c ' Ec ' '∗ dE c ' '

NB: HF is limited to low energy, but includes angular momentum

Page 43: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

The Weisskopf­Ewing evaporation modelLet us assume A*→B*+b in a volume V; E*=EB*+S+Probability of emission per unit time:

d b=2ℏ

∣⟨ A∣T∣B b ⟩∣2E B∗

V k2 dk23

CN b B ∗ A ∗ =2ℏ

∣⟨b B∣T∣A ⟩∣2E A∗

ℏ k /mV

d b=CN b B ∗ A ∗ 2 m

23ℏ2

E B∗

E A∗

d

can be used for calculating X­sections d=cCN d b

∑b∫0

E−S

d bFor (E*)= p exp(2aE*) and E*=aT2

b=CN b B ∗ A ∗ 2 mT 2

23ℏ2e−S /T

B. Evaporation­fission and other de­excitation models

d b∝e−/T d

Page 44: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

fission

everything is determined byphase space at the barrier

d f

ℏ=BE B

∗ dE B∗ dp dq /2ℏ/dt

AE A∗ dE A

∗and  dq /dt=p /M , Mpdp=d

d f=1

2

BE B∗

AE A∗

d ⇨ f=T

2e−B /T

must be supplemented by a fission partition model

SI:  level density & barriers

Page 45: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

Other “after­burning” models

1. evaporation: simulation of successive  separated emissionstime scales  b=ℏ/b≫temiss b

3. above some “temperature” ►► copious simultaneous emission multifragmentation 

   ­ usual models include any partition of the system   ­ final states = partitions of an equilibrated system (SMM, ...)  

2. for increasing temperature n may become smaller than temiss (fission)neutrons may be emitted from the system on its way to fission=fission delayed or friction in fissioning motion 

SI: thermodynamics of nuclear matter / possible phase transition

Page 46: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Pre­equilibrium reactions

For  resonant reactions in the “continuum”, if energy increases (above ~  20 MeV), the spectra are no longer thermal &emission no longer isotropic

Idea = addition of fast +/­ coherent emission and slow evaporation

Many special tools:­ HF+DR­ Harp­Miller­Berne sp model­ exciton model­ hybrid model­ GDH model­ FKK theory­ ... 

Page 47: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 48: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

1. Harp­Miller­Berne approach

­initial state: ni=1 for ki < kF and  ki = kc , ki =0 otherwise­evolution:  

d ni

dt=∑

j∑

k∑

lijkl {nk nl 1−ni1−n j−ni n j 1−nk1−nl}−esc ni

≈NN ⟨v ⟩

­prediction of spectradP

d =∫

0

T

dt∑ini t −i

­ abandoned, due to the numerical task

Page 49: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

2. The exciton model (J. Griffin)

 ­whole distribution exciton states 1p, 2p­1h, 3p­2h,...(n=1,3,5,7...) ­density of (n=p+h) exciton states  of given energy E (Ericson)

nE =gn E n−1

p ! h !n−1!

­probability of emission from a n­exciton state per unit time

Pnd =m

2ℏ3

n−1U

n E d U=E−S−

­spectrum

P d =∑n=n0

n

n Pnd =m

2ℏ3 ∑n=n0

n n−1U

nE n d

­exciton hybrid model (M. Blann)dd

=R ∑n=n0

n [ m

2ℏ3

n−1U

n E d ][ Pn E

Pn E n2E ]Dn=R ∑

n=n0

n

Pnd

Dn=∏n '=n0

n−2

{1−∫Pn ' d } , Dn0=1

Page 50: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

M. Blann

Page 51: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

n2=

2ℏ∣M∣2E ∗ or 

n2=

v=1/NN v=2 W

OMP

∣M∣2=KA−3 E−1

SI: density of exciton states, mfp

Page 52: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

further developments:

­ cross­sections (GDH):

­ angular distributions:

dd

=∫2b db Pb

dd d

=R ∑nn0

n

Pn∑L

2 L14

f L nPL cos

with fL= parameters (Kalbach)

­ emission of clusters, through phenomenological probabilities attached to every n­exciton state

Page 53: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

3. The Feshbach­Kerman­Koonin (FKK) theory

P­chain=MSD=at least one particle is unboundQ­chain=MSC=all particles are bound

FKK:­no communication between P and Q­chains­chaining only between n and n±1 states­never­come­back hypothesis (n ­> n+1)

Page 54: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

MSC:

MSC=ƛc2 21

D1

∑n=1

r ∏k=1

n−1

k

k n

n

n=

2ℏ

∣⟨n∣V∣n1 ⟩∣2nU n=

2ℏ

∣⟨n∣V∣n1 ⟩∣2n1E

⟨n∣V∣n1 ⟩≈V 0∫u1r u2r u3r {uscatt r ,u4r }dr

r2

MSD: d 2MSD

ddU=

d 21

ddU

d 2M

ddUd21

ddU=r U ⟨ d

d ⟩d 2M

dN dU N

=∑N∫

d3 k N−1

23⋯∫

d3 k2

23d 2 W N , N−1k N ,k N−1

d N dU N

d 2 W N 1, N−2 k N−1 ,k N−2

dN−1 dU N−1

⋯d2 W 2,1 k2,

k1

d 2 dU 2

d 21

d1 dU 1

d 2 W N , N−1k N ,k N−1

dN dU N

=2ℏ ∣∫d3r k N

− k N−1 ⟨N∣V∣N−1⟩∣2 mk N

23ℏ2r U N

Page 55: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Comparison INC­preequilibrium models­ All have to be supplemented by evaporation

­ Phase space is classical in INC, discrete in PE models

­ Pauli blocking is more naturel in INC

­ same common physics in all models: interaction in a Fermi gas 

mediated by binary collisions

­ INC is a more consistent model (only the  stopping is “by hand”)

­ more or less equivalent results below 200 MeV (where INC

shouldn't work!!)

INC+evaporation= a theory from 40 MeV to 10 GeV?

Page 56: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

6. Specific features linked to particular projectiles

A. Slightly bound nuclei

easy fragmentation

p1=m vincpinternal

dd3 p1

∝ f p1

SI: momentum distribution

Page 57: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

surrogate reactions

dd3p

=dd3 p

3 HeA−1 pA1 ∗ DWBA

f

tot

nA f =NC nAA1 ∗ f

tot

Page 58: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

B. Proton or neutron rich  nuclei

study of isospin degree of freedom by inverse kinematics

IAS 

seen by resonant scattering 207Pb(p,p) or by production 208Pb(p,n)

ordinary spectroscopy by p(A,A*)p with recoil measurements

Page 59: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

C. Photons 

Real photons probe the nucleus with an elm field:­ very good for electric giant resonances (T=1)­ photodesintegration (,n)

Virtual photon (e,e) (e,e')­ charge density­ transition densities­ parton structure

Page 60: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

D. Mesons, antiprotons, etc 

pions

SI: surface densities, S=1, transitions, pair correlations

elastic                inelastic                     absorption

antiprotons

annihilation: ~2 GeV without p,ℓ transfer

good for study of hot nuclei

Page 61: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

7. Summary & outlook

Page 62: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

D. The shell­model approach

H=H 0V=∑i

h0i V H 0i=E ii , H 0c E =EcE

c =∑

ibiE i∑

c 'ac

c ' E c ' E

EcEcEc iE

c '

PQ

Page 63: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

A.Volya &V. ZelevinskyPRL94(2005)052501 

Page 64: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

M.G. Mustafa et alPRC 88

Page 65: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

special features:

­quantum effects are simulated (stochasticity, Pauli blocking, mean field, transmission and reflection)

­predictive power for (almost) all channels

­substantiated by nuclear transport theory

Page 66: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 67: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

D. TALYS= a code system for E<150 MeV

Page 68: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 69: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C
Page 70: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C

3. Heavy ion reactions

Danielewicz

Page 71: Ecole Joliot-Curie 2007€¦ · 1. channel without Coulomb interaction (incident neutrons) elastic scattering cc ≈C endothermic reaction Q0 cc' ≈C