ECN 3. and G. [I i/67531/metadc... · Carter 1994. LANL 1986). MCNP-4.2 which uses continuous...

110
a. 2. ECN Category (msrk one) Proi. - ENGINEERING CHANGE NOTICE -__ Supplemental Direct Revision i Change ECN Temporary 11 Standby 11 supersedure 11 CancellVoid 11 WHC-SO-SNF-CSER-002, Rev. 0 I NA 12a. Modification Uork NA [] Yes (fill out Blk. 12b) 3. Origimtor's Name, Organization, MSIN, David G. Erickson, Nuclear HO-32, 376-4146 6. Project Title/Wo./Uork Order No. and Telephone No. Analysis and Characterization, Spent Nuclear Fuel 9. Docunent Nunbers Changed by this ECN (includes sheet no. and rev.) [XI No (NA Slks. 12b. 12c. 12d) 4. US0 Rewired? [I Yes [XI NO 7. 8ldg.lSys.lFac. No. Cartridge Filters 10. Related ECN NoCs). 12b. Uork Package 12c. Modification Uork Conplete NO. NA NA - 5. Date 6/07/96 12d. Restored to Original Condi- tion (Tenp. or standby ECN only) NA 8. Approval Designator SQ Design Authoritylcog. Engineer Signature 8 Date 11. Related PO No. Design AuthoritylCog. Engineer Signature 8 Date 15. Distribution (include name, MSIN, and no. of copies) See distribution att. A-7900-013-2 (05l96) GEF095 RELEASE STAMP ki * ; 3 13sO.--%

Transcript of ECN 3. and G. [I i/67531/metadc... · Carter 1994. LANL 1986). MCNP-4.2 which uses continuous...

  • a.

    2. ECN Category (msrk one)

    Proi. - ENGINEERING CHANGE NOTICE

    -__

    Supplemental Direct Revision i Change ECN Temporary 11 Standby 11 supersedure 11 CancellVoid 11

    WHC-SO-SNF-CSER-002, Rev. 0 I NA 12a. Modification Uork

    NA

    [ ] Yes (fill out Blk. 12b)

    3. Origimtor's Name, Organization, MSIN,

    David G. Erickson, Nuclear

    HO-32, 376-4146 6. Project Title/Wo./Uork Order No.

    and Telephone No.

    Analysis and Characterization,

    Spent Nuclear Fuel

    9. Docunent Nunbers Changed by this ECN (includes sheet no. and rev.)

    [ X I No (NA Slks. 12b. 12c. 12d)

    4. US0 Rewired?

    [ I Yes [ X I NO

    7. 8ldg.lSys.lFac. No.

    Cartridge Filters

    10. Related ECN NoCs).

    12b. Uork Package 12c. Modification Uork Conplete NO.

    NA NA

    - 5. Date

    6 / 0 7 / 9 6

    12d. Restored to Original Condi- tion (Tenp. o r standby ECN only) NA

    8. Approval Designator

    SQ

    Design Authoritylcog. Engineer Signature 8 Date

    11. Related PO No.

    Design AuthoritylCog. Engineer Signature 8 Date

    15. Distribution (include name, MSIN, and no. of copies) See distribution att.

    A-7900-013-2 (05l96) GEF095

    RELEASE STAMP

    ki * ; 3 13sO.--%

  • Page 2 of 2 ENGINEERING CHANGE NOTICE 1 ECN (use no fron pg 1)

    186721

    LA] No 1 - LJ . LJ I LJ 18. Change Impact Re~lew: Indicate the re la ted documents (other than tk mglneerirq d o c m n t r idcnt l f led on S i d e 1)

    that w111 be affected by the change described I n Block 12. Enter the affected docurnt nmbbrr In Block 19.

    [I [I

    lank Cal ibrat ion Manual

    Health Physics Pmcedure 11 [I

    Sclrmlr /Stnrr I n a l p i s

    strers/oerign Report 11 11

    SOo/OD

    FunLtlonal Design C r l t e l t l

    VLllfIC.ti0" Required

    r v 7 [I Yes

    [I sparer MYlt ip le u n i t L i l t i n g [I Interface contm1 orawing 11 Oper.ting Sped f l c a t l o n

    ENGIUEERING COMTRUCllON

    11 1mmvennt so11.a1 n $ S."lng* n I De1.Y n

    Addltlonrl o s Add1 t lonal

    C l i t l C l l l t y Speclflcation Cali brat ion Procedure Test P ioccdunr /Spe~i f l ra t lon

    Conceptual De*ign Report

    Equipment Spec.

    conrt. spec.

    Pmrvrement spec.

    Vendor Infarnation

    OPI k"U.1

    FSARISAR

    Safety Equipment L i s t

    Radiation Uork Permit

    Envlmnnental Impact Statement

    Environmental Repart

    l n r t a l l a t i o n PmCLdUn

    Maintenance Procedure

    Engineering Procedure

    Operating l n l t r v c t l o n

    Operating Pwcedure

    Opcrationrl Safety RLq"lrem"t

    IEFD Drawing

    Cell Ammgement Ovawing

    EsIential Mi te I la i S p e c i f i ~ a t i m

    Fac. Pmc. Sam. Schedule

    inspection Plan

    comonmt Index

    ASME Coded Item

    H m n Factor C m i i d ~ i i t i o n

    COmQPUtel S o f t r r e

    El iCt i lC C l m u l t Schedule

    ICRS Procedure

    pmcess contm1 M.nual/Plan

    PIOCCIS Flow Chait

    Pumhaie Requisit ion

    T lck ler F l l e

    [I [I Inventory Adjustment Request [I Envimnmental Permit 19 Other Affected Oocmntr: (NOTE: DOLmntl l i s t e d below w i l l not be reviled by t h l r ECN.) Signatures below

    indicate that the siqnln(l 0 4 m i m t i o n has been n o t i f i e d o f other affected documents l i l t e d below. . . . Document Nunber/Revirion Oocmnt Nmber/Revirlon Oocmnt Nunber Revision

    NA

    20. App~ovdl i

    OPERATIONS AND ENGINEERING Cog. Eng. CG Erickro

    Cog. Hgr. AE Ual tar

    QA GH D a y i s

    signatwe

    Other

    Date

    7 - 2: - 9L signature

    ARCHITECT-ENGINEER PE

    QA

    Safety

    Derign

    Enilron

    Mher

    DEPARTAENT DF ENERGY

    @dtL

    Signature or a COntml Nmber that tracks the Appmval Signature

    ADDITIONAL

    A-1900-013 3 106l941 GEF096

  • WHC-SD-SNF-CSER-002, Rev. 1

    CRITICALITY SAFETY EVALUATION REPORT FOR K BASIN FILTER CARTRIDGES

    David 6. Erickson Westinghouse Hanford Company, Richland, WA 99352 U.S. Department o f Energy Contract DE-AC06-87RL10930

    EDT/ECN: -/186721 UC: 2000 Org Code: 8M720 Charge Code: LD044 B&R Code: EW3135040 Tota l Pages: 1 0 6

    Key Words: F i l t e r Car t r idges, KE Basin, C r i t i c a l i t y Alarm System

    Abstract : c a r t r i d g e assemblies was completed t o support operat ions w i thou t a c r i t i c a l i t y alarm system. The r e s u l t s show t h a t f o r normal operation, the c a r t r i d g e assembly i s f a r below the safety l i m i t o f keff = 0.95.

    A c r i t i c a l i t y sa fe ty evaluat ion o f the K Basin f i l t e r

    TRADEMARK DISCLAIMER. Reference herein t o any speci f ic COrrmerCial product, process, or service by trade name, trademark, manufacturer, or otheruise, does not necessarily const i tu te or imply i t s endorsement. recornendation. o r favoring by the United States Goverrment or any agency thereof o r i t s contractors o r subcontractors.

    Pr in ted i n the United States o f America. To obtain copies of t h i s document, contact: WHC/BCS Docunent Control Services, P.O. Box 1970, Mailstop H6-08. Richland WA 99352. Phone (509) 372-2420; Fax (509) 376-4989.

    ,I -~

    Release Stamp

    Approved for Public Release A-6400.073 (10/95) GEF321

  • ntLunu ur

    (2) T i t l e

    (3) R vision b 1 RS

    Criticality Safety Evaluation Report for K Basin Filter Cartridges CHANGE CONTROL RECORD

    Authorized f o r Release ( 4 ) Descri t i o n of than e - Re Lace, Add, and Delete Pages

    EDT-730166, lf/23/$4 ( 5 ) Cog. Engr. ( 6 ) Cog. Hgr. Date

    included as Appendix D. ECN-186721 Q,L! fa i t - (7) Replace entire document, original

    ,

    A-7320.005 (08191) WEf168

  • WHC-SD-SNF-CSER-002 Rev. 1

    This page intentionally left blank

    ii

  • WHC-SD-SNF-CSER-002 Rev. 1

    ABSTRACT

    A c r i t i c a l i t y safety evaluation o f the new s t y l e K Basin f i l t e r

    The resu l ts show that f o r normal operation, the car t r idge assemblies has been completed t o support operations without a c r i t i c a l i t y alarm system. f i l t e r car t r idge assembly i s f a r below the safety l i m i t o f k,,, = 0.95. which i s applied t o plutonium systems a t the Hanford S i t e .

    During normal operating condi t ions, uranium, plutonium. f i ss ion and corrosion products i n suspension are cont inua l l y accumulating i n the f i l t e r car t r idge medium. Current ly, f i l t e r car t r idge assemblies are scheduled t o be replaced a t s i x month in te rva ls i n the K East Basin. and a t one year in te rva ls i n the K West Basin. According t o avai lable plutonium concentration data fo r K East Basin and data fo r the UIPu r a t i o , and even given the conservative assumption tha t the presence o f f i ss ion and corrosion products is ignored, the safety 1 im i t . o f kef, = 0.95 cannot be exceeded i n the car t r idge f i l t e r s .

    For off-normal scenarios, i t would require a t least two u n l i k e l y . independent, and concurrent events t o take place before the k,, = 0.95 l i m i t i s exceeded. Contingencies considered include f a i l u r e t o replace the f i l t e r car t r idge assemblies a t the scheduled time resu l t ing i n addi t ional bui ldup o f f i ss ionab le mater ia l , the loss o f geometry control from the f i l t e r car t r idge assembly breaking apart and releasing the indiv idual f i l t e r cartr idges i n to an optimal conf igurat ion, and a lower than normal UlPu r a t i o o f 10 which i s much less than measured data fo r K East Basin. Extensive measurements i n the sand f i l t e r backwash p i t and plutonium production information give average UIPu ra t i os o f close t o 400.

    iii

  • WHC-SD-SNF-CSER-002 Rev. 1

    rhis page intentionally left blank

    i v

  • WHC-SD-SNF-CSER-002 Rev. 1

    CONTENTS

    1 . O INTRODUCTION . . . . . . . . . . . . . .

    2 . 0 DESCRIPTION OF SYSTEM AND F A C I L I T Y . . . 3 . 0 REQUIREMENTS DOCUMENTATION . . . . .

    4 . 0 METHODOLOGY . . . . . . . .

    5 . 0 DISCUSSION OF CONTINGENCIES . .

    . . 1

    . . 1

    . . 4

    . . 4

    . . 4

    6 . 0 EVALUATION AND RESULTS . . . . . . . 6 6 . 1 NORMAL CONDITIONS . . . . . . . . . . 6 6 . 2 OFF-NORMAL CONDITIONS . . . . . . . . 7

    6 .2 .1 M a t e r i a l B u i l d u p . . . . . . . . . . . . . . . . . . . . 7 6 .2 .2 M a t e r i a l S e g r e g a t i o n . . . , . , . . . . . . . . . . . . 8 6 . 2 . 3 Loss o f I n t a c t G e o m e t r y . . . . . . . . . . . . . . . . 8

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    8.0 SUMMARY AND CONCLUSIONS . . . . . . . , . . . . . . . , . . . , . , , 9

    7 . 0 DESIGN FEATURES AND ADMINISTRATIVELY CONTROLLED L I M I T S AND REQUIREMENTS

    9 . 0 REFERENCES

    APPENDIX A INDEPENDENT REVIEW . . .

    APPENDIX B A L L MCNP INPUT F I L E S . .

    APPENDIX C BASIN URANIUM AND PLUTONIUM CONCENTRATION DATA

    APPENDIX D WHC-SD-SNF-CSER-002 R e v . 0 . . . . . . . . . .

    11

    A - 1

    B - 1

    c -1

    . D - 1

    V

  • WHC-SD-SNF-CSER-002 Rev. 1

    This page intentionally left blank

    v i

  • WHC-SD-SNF-CSER-002 Rev. 1

    CRITICALITY SAFETY EVALUATION REPORT FOR K BASIN FILTER CARTRIDGES

    1.0 INTRODUCTION

    A nuclear c r i t i c a l i t y ana lys is has been performed f o r t h e new s t y l e f i l t e r c a r t r i d g e cage assemblies used i n t h e Hanford S i t e K East (KE) and K West (KW) Basins. The o l d s t y l e f i l t e r c a r t r i d g e assemblies may s t i l l be used, and t h e analyses o f those f i l t e r s has been inc luded as Appendix 0 a t t h e end o f t h i s repo r t . Each new f i l t e r c a r t r i d g e cage assembly holds 7 f i l t e r Car t r idges arranged i n a c l u s t e r con f igura t ion . The f i l t e r c a r t r i d g e cage assembly removes p a r t i c u l a t e s from t h e bas in water by t rapp ing ma te r ia l s i n t h e polypropylene f i b e r o f t h e f i l t e r ca r t r i dges . Previous admin i s t ra t i ve l i m i t s were designed t o prevent plutonium bu i ldup beyond 225 g i n each f i l t e r c a r t r i d g e assembly.

    Normal and of f -normal opera t ion was analyzed by performing e x p l i c i t ca l cu la t i ons o f t h e f i l t e r ca r t r i dge assembly c l u s t e r geometry us ing t h e MCNP code, t y p i c a l o f t h e center -o f -bas in i n KE Basin (Appendix C ) . These da ta , along w i t h t h e f l ow r a t e through t h e f i l t e r ca r t r i dge assembly, a l lowed f o r t h e es t imat ion o f t h e f i ss ionab le mater ia l bu i ldup i n s i d e t h e f i l t e r assembly w i t h t ime. Several o f f -normal cont ingencies were analyzed. i nc lud ing bu i ldup o f f i ss ionab le mater ia l beyond t h e planned replacement pe r iod , l oss o f geometry con t ro l w i t h i n t h e f i l t e r assembly, and lower-than-expected U/Pu r a t i o s . The f i l t e r c a r t r i d g e assemblies a re scheduled t o be replaced a t s i x month i n t e r v a l s i n t h e KE bas in and a t 12 month i n t e r v a l s i n t h e KW bas in . The f i l t e r s may be changed ou t e a r l i e r than scheduled i f t h e measured pressure drop across t h e f i l t e r s becomes t o o l a r g e i n d i c a t i n g t h a t t h e f i l t e r s a r e f u l l .

    conservat ive ly bounding f o r t h e KW Basin. sample data from t h e KW Basin show t h a t t h e uranium and plutonium concentrat ions are usua l l y more than two orders o f magnitude less than t h e cen te r -o f -bas in water sample data from the KE Basin. The e f f e c t o f t h i s much lower concent ra t ion would g r e a t l y increase t h e t ime necessary t o f i l l up t h e c a r t r i d g e f i l t e r s .

    Data were obtained f o r an average uranium and plutonium concent ra t ion

    A l l ca l cu la t i ons performed using t h e data obtained f o r t h e KE Basin a re H i s t o r i c a l cen ter -o f -bas in water

    2.0 DESCRIPTION OF SYSTEM AND FACILITY

    The f i l t e r c a r t r i d g e cage assembly contains 7 f i l t e r ca r t r i dges w i t h 6 f i l t e r s placed i n a r i n g around t h e cen t ra l f i l t e r . Each f i l t e r c a r t r i d g e i s 58.74 cm (23.13 i n . ) long , and i s made o f p lea ted polypropylene media w i t h i n a pe r fo ra ted 304 s ta in less s tee l housing. The inner diameter o f t h e f i l t e r i s 9.53 cm (3 .75 i n . ) The ou ter diameter of t h e f i l t e r i s 14.92 cm (5.875 i n . ) A sketch o f an assembled f i l t e r ca r t r i dge i s shown i n F igure 1. The f i l t e r s a re assembled i n t o ca r t r i dges by p lac ing them between two p la tes connected by a t i e rod . These ca r t r i dges are then placed i n t o holes i n t h e upper cage p l a t e . A sketch o f t h e f i l t e r c a r t r i d g e arrangement i n t h e cage assembly i s shown i n F igure 2. 66.04 cm (26 i n . ) There are two f i l t e r c a r t r i d g e assemblies i n t h e bas in and

    The diameter o f t h e f i l t e r c a r t r i d g e assembly i s

  • WHC-SD-SNF-CSER-002 Rev. 1

    F igure 1. Sketch o f F i l t e r Car t r idge Assembly Showing Top and Side Views.

    Filter Media

    Tie Rod

    14.92 cm

    'T 58.74 cm 2

  • WHC-SD-SNF-CSER-002 Rev. 1

    Figure 2. Sketch o f t h e F i l t e r Car t r idge Arrangement i n t h e Cage Assembly

    72.39 cm

    3

  • WHC-SD-SNF-CSER-002 Rev. 1

    water flows through t h e assembly i n opera t ion a t 107,880 L /h r (28,500 g a l / h r ) . The water f lows i n t o t h e t o p o f t h e ca r t r i dge cage assembly. down i n t o t h e center o f t h e f i l t e r media. then f lows r a d i a l l y ou t from each f i l t e r . The f i l t e r c a r t r i d g e cage assemblies a re loca ted near t h e bottom o f t h e bas in f l o o r i n t h e K Basins. The two f i l t e r ca r t r i dge cage assemblies a re separated by a s u f f i c i e n t amount o f water t o p rov ide neut ron ic i s o l a t i o n , approximately 51 cm (20 i n . ) A l ayou t o f t h e K Basins showing t h e l o c a t i o n o f t h e f i l t e r c a r t r i d g e assemblies i s shown i n F igure 3.

    3.0 REQUIREMENTS DOCUMENTATION

    There a re no unique requirements app l i cab le t o t h i s eva lua t ion

    4.0 METHODOLOGY

    The MCNP Monte Car lo Neutron and Photon t ranspor t program i s widely used and accepted throughout t h e nuclear i ndus t r y (Br iesmeister and Hendricks 1990, Car te r 1994. LANL 1986). MCNP-4.2 which uses continuous energy group ENDF/B-V cross sec t ions was used f o r t h i s ana lys is . c o n t r o l l e d on t h e workstat ions o f t h e SECC (Carter 1994). Any changes o r mod i f i ca t ions are v e r i f i e d w i t h a standard se t o f t e s t problems t h a t meet q u a l i t y assurance requirements. Ca lcu la t ions were performed on a WHC SGI ' workstat ion i n t h e Science and Engineering Computational Center.

    Th is code i s con f igu ra t i on

    The use o f MCNP f o r analyzing N Reactor f ue l has been extens ive ly va l i da ted by comparing ca lcu la ted neutron mu1 t i p 1 i c a t i o n constants t o experimental r e s u l t s (Er ickson and Wilcox 1989. Schwinkendorf 1991. and Wi t tek ind 1991). from homogeneous low-enr iched uranium oxide-water systems. cons is ten t l y reproduced t h e measured data. t h e unce r ta in t i es o f t h e experimental po in ts . water v a l i d a t i o n i s found i n K Basin C r i t i c a l i t y Evaluation f o r i r rad ia ted Fuel Canisters i n Sludge, WHC-SD-NR-CSER-001 (Wi t tek ind 1992).

    It has a l so been tes ted ex tens ive ly w i t h experimental data The code

    The computed r e s u l t s a re w i t h i n The low-enr iched uranium ox ide-

    5 .0 DISCUSSION OF CONTINGENCIES

    Off-normal scenarios considered i n t h i s c r i t i c a l i t y sa fe ty eva lua t i on inc lude f a i l u r e t o replace t h e f i l t e r ca r t r i dge assembly when requ i red t o do so ( r e s u l t i n g i n an ever - inc reas ing load ing o f f i ss ionab le m a t e r i a l ) . t h e l oss o f geometry i n t h e f i l t e r c a r t r i d g e assembly ( r e s u l t i n g i n opt imal geometry o f t h e sludge i n t h e ca r t r i dge f i l t e r cage). and lower-than-expected values f o r U/Pu. The loss of f i s s i o n and cor ros ion products was assumed f o r a l l scenarios analyzed.

    The maximum c r e d i b l e amount o f sludge mater ia l t o accumulate i n s i d e t h e f i l t e r c a r t r i d g e medium was assumed t o be a " t h i c k paste" o f 4 0 g/cm3 heavy metal oxide so lu t i on , i n which t h e heavy metal was composed o f both 0 95-wt% 235U i n uranium and 12-wt% 240Pu i n plutonium The U/Pu r a t i o was assumed t o equal 400 f o r normal cond i t i ons , and U/Pu = 10 was used i n t h e contingency

    SGI i s a trademark o f S i l i c o n Graphics, I nc .

    4

  • WHC-SD-SNF-CSER-002 Rev. 1

    Figure 3. Layout o f K Basins Showing Car t r idge F i l t e r Locat ion.

    5

  • WHC-SD-SNF-CSER-002 Rev. 1

    analyses; U/Pu = 10 i s lower than any U/Pu data a v a i l a b l e f o r KE Basin. so t h i s i s considered a bounding case. sludge samples has establ ished t h a t U/Pu = 400 i s a best-est imate (Rice 1993. Rice 1994. and Welsh 1994.) This value i s a lso cons is ten t w i t h r e a c t o r product ion c a l c u l a t i o n s (Hedengren 1987). The nominal t ime requ i red f o r t h i s amount o f bu i ldup ( 4 . 0 g/cm3 o f m i xed urani um p l u ton i urn oxide completely f i l l i n g t h e f i l t e r medium) was determined t o be j u s t under one year a t U/Pu = 400.

    Extensive chemical ana lys is o f K Basin

    6.0 EVALUATION AND RESULTS

    6.1 NORMAL CONDITIONS

    The f i l t e r c a r t r i d g e i s a p a r t i c u l a t e removal system very s i m i l a r t o t h e sand f i l t e r . f i s s i o n products, and cor ros ion products. These mater ia ls w i l l be trapped by t h e polypropylene f i l t e r and accumulate there . I n t h e sand f i l t e r t h e sand i s p e r i o d i c a l l y cleaned by a back wash, and t h e c o l l e c t e d p a r t i c u l a t e s are washed i n t o t h e sand f i l t e r backwash p i t . Extensive c h a r a c t e r i z a t i o n o f t h e sludge i n t h e backwash p i t has taken p lace , d e t a i l e d chemical and i s o t o p i c analyses have been performed, and t h e sludge's composit ion i s we l l known (Rice 1993. Rice 1994, and Welsch 1994.) The f i l t e r c a r t r i d g e should be removing sludge w i t h a s i m i l a r composit ion from t h e water. Therefore as t h e f i l t e r c a r t r i d g e becomes loaded, it w i l l have mater ia l i n it very s i m i l a r t o t h e sludge found i n t h e backwash p i t .

    c o n s i s t i n g of f i s s i o n and cor ros ion products and uranium and plutonium oxides i n a r a t i o o f U/Pu = 400. Calculat ions have shown t h a t a t these U/Pu r a t i o s , w i t h f i s s i o n products and cor ros ion products present, t h e f i l t e r c a r t r i d g e cage cannot be made c r i t i c a l under any cond i t ions i r r e s p e c t i v e o f whether t h e uranium enrichment i s 0.95- o r 1.25-wt% 235U (Er ickson 1994b).

    I f a very conservat ive assumption i s made t h a t t h e f i s s i o n products and cor ros ion products disappear and we are l e f t on ly w i t h a uranium and plutonium oxide system i n t h e f i l t e r c a r t r i d g e , t h e system w i l l s t i l l no t be made c r i t i c a l . I n other words, t h e kef, w i l l be less than 0.95 f o r t y p i c a l cond i t ions o f moderation and mater ia l loadings. f o r an of f -normal 1.4-year accumulation o f uranium and plutonium, which completely f i l l s t h e f i l t e r media and i n t e r i o r volume, i s equal t o 0.664. This conclusion i s t r u e f o r KE Basin and very conservat ive f o r t h e KW Basin, Therefore, normal operat ion o f f i l t e r car t r idges i n water and i n d ry storage w i l l be s u b s t a n t i a l l y s u b c r i t i c a l and w i l l no t exceed k,,, = 0.95.

    load ing b u i l d s up i n t h e f - i l t e r u n t i l t h e t ime t h e f i l t e r i s replaced. This e n t i r e f i l t e r media volume was assumed t o be f i l l e d w i t h a sludge m a t e r i a l , a c t u a l l y a t h i c k paste, composed o f 4 .0 g/cm3 oxide. This oxide cons is ts of UO, p lus PuO,, according t o a given U/Pu r a t i o . A U/Pu r a t i o equal t o 400 i s thought t o represent t h e greatest amount of f i s s i o n a b l e mater ia l t h a t can be considered as c r e d i b l e i n s i d e t h e f i l t e r car t r idges dur ing normal operat ion. Furthermore t h e c a l c u l a t i o n s assumed t h a t there are no f i s s i o n products, i r o n , o r other cor ros ion products present i n t h e system. This conservat ive assumpti on resu l ted i n s i g n i f i c a n t l y higher ca lcu la ted neutron m u l t i p l i c a t i o n than would otherwise be t h e case.

    6

    It w i l l remove p a r t i c l e s o f uranium oxide, plutonium ox ide ,

    Under normal operat ion t h e f i l t e r car t r idges w i l l c o l l e c t sludge

    The highest kef, ca lcu la ted

    The c a l c u l a t i o n s f o r normal cond i t ions assume t h a t uranium and plutonium

  • WHC-SD-SNF-CSER-002 Rev. 1

    CFOOlA

    C F O l l A

    Average values f o r plutonium concentrat ion (5 .5 x g /L . appropr ia te for cen ter -o f -bas in , Appendix C ) . a best est imate U/Pu r a t i o , and t h e f l o w r a t e through t h e f i l t e r c a r t r i d g e assembly (107.880 L / h r ) were used t o c a l c u l a t e t h e accumulation r a t e o f heavy metal oxide. Given t h e r a t e o f p lutonium accumulation (520 g l y r ) . it i s poss ib le t o f i n d (assuming 100% f i l t e r e f f i c i e n c y ) t h e t ime required f o r t h i s maximum amount o f mater ia l t o accumulate. Assuming t h a t U/Pu = 400. t h e t ime requ i red f o r 4 . 0 g/cm3 o f heavy metal oxide sludge t o accumulate i n t h e f i l t e r media i s approximately 0.82 years.

    KE and KW Basins, assuming t h e same uranium and plutonium concentrat ions. H i s t o r i c a l cen ter -o f -bas in water sample data from t h e Kw Basin show t h a t t h e uranium and plutonium concentrat ions are usua l ly more than two orders o f magnitude l e s s than t h e center -o f -bas in water sample data from t h e KE Basin. The r e s u l t s i n Table 1 c l e a r l y show t h a t when t h e best-est imate U/Pu value o f 400 i s assumed. there i s no danger from a c r i t i c a l i t y , even i f t h e f i l t e r c a r t r i d g e assembly i s no t replaced a t t h e scheduled t ime, which would be a v i o l a t i o n o f procedures. Even assuming t h a t t h e uranium enrichment i s equal t o 1.25 w t % (which would be t h e case i n t h e KW Basin), t h e kef, remains below 0.60.

    The r e s u l t s i n Table 1 are based on normal operat ing cond i t ions f o r t h e

    Table 1. MCNP keff Results f o r Normal Sludge Accumulation (U/Pu = 400).

    235U=0.95%. f i l t e r s f i l l e d w i t h sludge, -0.82 years.

    235U=1.25%. f i l t e r s f i l l e d w i t h sludge, -0.82

    0.526 t 0.003

    0.579 c 0.004

    6.2 OFF- NORMAL CONDITIONS

    For of f -normal condi t ions t h e fo l low ing contingency sequences were considered:

    Inadvertent mater ia l bu i ldup Changes i n t h e U/Pu r a t i o Collapse of t h e f i l t e r c a r t r i d g e assembly geometry, w i t h t h e r e s u l t i n g change i n moderation

    It was conservat ively assumed t h a t there were no f i s s i o n o r cor ros ion products i n t h e f i l t e r c a r t r i d g e s .

    6.2.1 Material Bui ldup

    f i l t e r c a r t r i d g e a t t h e scheduled t ime i n t e r v a l s o f 6 month and 12 months f o r KE and KW Basins respec t ive ly . Table 2 shows t h e r e s u l t s i f t h e f i l t e r s a re l e f t i n p lace u n t i l t h e f i l t e r media and i n t e r i o r volume i s f u l l . Using t h e values discussed prev ious ly for accumulation r a t e . t h i s w i l l take about 1 . 4 years f o r t h e KE Basin w i thout a reduct ion i n e f f i c i e n c y . concentrat ions o f uranium and plutonium found i n t h e KW Basin, t h i s may take

    The f i r s t of f -normal contingency analyzed was f a i l u r e t o replace t h e

    With t h e much lower

    7

  • WHC-SD-SNF-CSER-002 Rev. 1

    I f t h e U/Pu r a t i o remains a t 400, extended opera t ion w i l l i nc rease

    MCNP keff Resul ts f o r Off-normal Sludge Accumulation (U/Pu = 400) .

    decades. keff above t h e normal values, bu t no t s i g n i f i c a n t l y .

    Table 2 .

    w i thout chanqeout.

    ICase Name CF002A

    CF012A

    6.2.2 Mater i a1 Segregation

    than t h e bes t -es t imate value o f 400. U/Pu values, bu t l i t t l e confidence i s g iven t o t h i s data because o f t h e l e v e l o f unce r ta in t y i n t h e measurements. se lec ted as a bounding case f o r t h e uranium loss scenar io. Table 1 was redone f o r U/Pu = 10 and t h e r e s u l t s a re reported i n Table 3. A t t h i s U/Pu r a t i o and us ing t h e t y p i c a l p lutonium concent ra t ion i n t h e bas in water, f i l t e r ca r t r i dges a re s t i l l s u b c r i t i c a l i f they a re no t changed ou t a t t h e scheduled t imes o f 6 months and 12 months f o r KE and KW respec t i ve l y .

    I n t h i s scenar io t h e plutonium i s he ld constant when t h e U/Pu i s changed i n t h e model because h igher confidence i s g iven t o t h e measured plutonium data than t o t h e measured uranium data. With t h i s assumption t h e t ime requ i red t o f i l l t h e f i l t e r media volume w i t h 4 .0 g/cm3 mater ia l i s approximately 36 t imes longer o r about 30 years (because the re i s 40 times less uranium i n s o l u t i o n bu t t h e same concent ra t ion o f p lutonium.)

    MCNP kef, Resul ts f o r Off-normal Sludge Composition Accumulation.

    The second of f -normal contingency analyzed was f o r a U/Pu r a t i o l e s s Measured data show a l a r g e spread i n

    Nevertheless a value o f U/Pu = 10 was

    Table 3.

    Descr ip t ion kef, f 2u 1 z35U=0.95%. U:Pu = 10 0.922 * 0.005 235U=1.25%. U:Pu = 10 0.923 f 0 005

    6.2.3 Loss o f I n t a c t Geometry

    assembly. case geometry con t ro l would be l o s t . t h a t a l l seven t i e rods broke. re leas ing a l l o f t h e sludge en t ra ined i n t h e f i l t e r s . F u l l dens i ty water r e f l e c t i o n i s assumed. Th is would be t h e case i f t h e f i l t e r assembly were t o come apart wh i l e s t i l l under water (e .g . , wh i l e being ra i sed out o f t h e basin dur ing replacement) Cases f o r bo th U:Pu=400 and U:Pu=lO are g iven. The 27.30 cm hemisphere case i s i f t h i s were t o occur when j u s t t h e f i l t e r media volume i s f u l l . The 32.50 cm case inc ludes t h e i n t e r i o r f i l t e r volume f u l l o f mater ia l as w e l l . The f i n a l case g iven (CF105) inc ludes a t l e a s t t h ree cont ingencies:

    The t h i r d contingency considered was t h e co l lapse o f a f i l t e r c a r t r i d g e It i s conceivable t h a t one o r more t i e rods cou ld break. i n which

    For t h i s cont ingency. i t was assumed

    f a i l u r e t o replace t h e f i l t e r c a r t r i d g e

    8

  • WHC-SD-SNF-CSER-002 Rev. 1

    assembly on t ime. an u n r e a l i s t i c a l l y low value o f U/Pu. and t h e breakage o f t h e f i l t e r assembly. However. t h e system i s s t i l l sa fe l y s u b c r i t i c a l .

    Table 4. MCNP keff Results f o r Off-normal Sludge Accumulation., Loss o f Geometry Control

    32.50 cm Hemi sphere, U: Pu=400, 235U=0. 95%. -1 4 Year accumulation.

    0.796 ? 0 005

    27 30 cm Hemisphere. U Pu=400. 235U=1.25%. -0 82 year accumulation

    1 0 781 f 0 004

    C F l l l

    CF105

    32.50 cm Hemi sphere, U : Pu=400, 235U=l. 25%. -1.4 year accumulation.

    27.30 cm Hemi sphere, U: Pu=lO, 235U=1. 25%. -30 year accumulation.

    0.847 ? 0.004

    0.940 ~t 0.005

    More than two cont ingencies have t o occur t o reach a k,,, = 0.95. t h e scenar ios analyzed, t h e requirement f o r double contingency was no t v io la ted . cou ld v i o l a t e c r i t i c a l i t y sa fe ty .

    I n a l l

    No c red ib le cont ingencies were i d e n t i f i e d where a s i n g l e occurrence

    7.0 DESIGN FEATURES AND ADMINISTRATIVELY CONTROLLED LIMITS AND REQUIREMENTS

    The one admin i s t ra t i ve l y con t ro l l ed l i m i t app l i cab le t o t h i s eva lua t ion i s t h a t t h e f i l t e r c a r t r i d g e assembly be replaced on t ime, which according t o t h e present schedule. i s s i x months f o r KE Basin and one year f o r KW Basin.

    8.0 SUMMARY AND CONCLUSIONS

    The Nuclear C r i t i c a l i t y Safety Manual. WHC-CM-4-29, Sec t ion 5. s ta tes t h a t :

    " C r i t i c a l i t y alarm systems (CAS) and c r i t i c a l i t y de tec t i on systems s h a l l be i n s t a l l e d as fo l l ows :

    I n those cases where t h e mass o f f i ss ionab le mater ia l exceeds t h e l i m i t s es tab l i shed i n paragraph 4 .2 .1 o f ANSI/ANS-8.3 and t h e p r o b a b i l i t y o f c r i t i c a l i t y i s g rea ter than 1 x per year (as documented i n a DOE approved SAR). a CAS meeting ANSIIANS-8.3 s h a l l be provided t o cover occupied areas i n which t h e expected dose exceeds 12 rads i n f r e e a i r . where a CAS i s de f ined t o inc lude a c r i t i c a l i t y accident de tec t i on device and a personnel evacuation alarm.

    I n those cases where t h e mass o f f i ss ionab le ma te r ia l exceeds t h e l i m i t s es tab l i shed i n paragraph 4 .2 .1 o f ANSI/ANS-8.3 and t h e p r o b a b i l i t y o f c r i t i c a l i t y i s g rea ter than 1 x 10-6per year , (as documented i n a DOE-

    9

  • WHC-SD-SNF-CSER-002 Rev. 1

    approved SAR), but there are no occupied areas i n which t h e expected dose exceeds 12 rads i n f r e e a i r , a c r i t i c a l i t y de tec t ion system s h a l l be provided; where a c r i t i c a l i t y de tec t lon system i s def ined t o be an appropr ia te c r i t i c a l i t y accident de tec t ion device bu t w i thout an immediate evacuation a l a r m . ,The c r i t i c a l i t y accident de tec t ion system response t ime should be s u f f i c i e n t t o a l low f o r appropr ia te process-related m i t i g a t i o n and recovery ac t ions . evacuation a l a r m i s not required under these circumstances. evacuation s h a l l be implemented (i . e . , evacuation n o t i f i c a t i o n o r delayed a l a r m ) i f p o t e n t i a l doses t o occupational workers could be e f f e c t i v e l y l i m i t e d by such ac t ions .

    I n those cases where t h e mass o f f i s s i o n a b l e mater ia l exceeds t h e l i m i t s establ ished i n paragraph 4 .2 .1 o f ANSIIANS-8.3, bu t a c r i t i c a l i t y accident i s determined t o be impossible due t o t h e physical form o f t h e f i s s i o n a b l e m a t e r i a l , o r t h e p r o b a b i l i t y o f occurrence i s determined t o be less than 1 x n e i t h e r a CAS nor a c r i t i c a l i t y de tec t ion system i s required. a d d i t i o n . n e i t h e r a CAS nor a c r i t i c a l i t y de tec t ion system i s requ i red t o be i n s t a l l e d underwater when f i s s i o n a b l e mater ia l i s handled o r stored beneath water sh ie ld ing t h a t i s adequate t o p r o t e c t personnel : however, a means t o detect f i s s i o n product gases o r other v o l a t i l e f i s s i o n products should be provided i n occupied areas immediately adjacent t o such underwater storage areas, except f o r f u e l systems where no f i s s i o n products are l i k e l y t o be released. a c r i t i c a l i t y de tec t ion system are required f o r f i s s i o n a b l e mater ia l dur ing shipment o f f i s s i o n a b l e mater ia l packaged i n approved shipping containers. o r f i s s i o n a b l e mater ia l packaged i n approved shipping containers await ing t ranspor t provided no other operat ion i n v o l v i n g f i s s i o n a b l e mater ia l not so packaged i s permit ted on t h e dock o r i n t h e shipment area.

    While an immediate

    per year (as documented i n a DOE-approved SAR), I n

    Also, n e i t h e r a CAS nor

    (3 )

    (4) The dec is ion t o i n s t a l l a c r i t i c a l i t y de tec t ion system r a t h e r than a CAS, and t h e decis ion t h a t ne i ther a CAS nor a c r i t i c a l i t y de tec t ion system i s necessary. must,,be J u s t i f i e d based upon a documented DOE- approved sa fe ty analysis

    The basis f o r not r e q u i r i n g a c r i t i c a l i t y a l a r m system f o r t h e f i l t e r c a r t r i d g e operat ion i s t h a t a nuclear F r i t i c a l i t y i s no t poss ib le "due t o t h e physical form o f f i s s i o n a b l e m a t e r i a l , from c r i t e r i a #3 above. A l l analyses o f normal and u n l i k e l y contingencies show the c a r t r i d g e f i l t e r s a re adequately s u b c r i t i c a l .

    The f i l t e r c a r t r i d g e cage assembly i s a f i l t e r f o r p a r t i c u l a t e matter i n basin water, s i m i l a r t o t h e sand f i l t e r . The p a r t i c u l a t e s t h a t w i l l be trapped inc lude cor ros ion and f i s s i o n products. uranium and plutonium oxides, and other p a r t i c u l a t e s . The presence o f cor ros ion and f i s s i o n products i n t h e f i l t e r c a r t r i d g e assembly dur ing normal operat ion i n water and subsequent d ry storage was shown t o make c r i t i c a l i t y impossible under any cond i t ions . f i l t e r c a r t r i d g e assemblies are scheduled t o be replaced a t s i x month i n t e r v a l s i n t h e KE basin and a t 12 month i n t e r v a l s i n t h e KW basin. The fi 1 t e r s may be changed out e a r l i e r than scheduled i f t h e measured pressure drop across t h e f i l t e r s becomes t o o l a r g e i n d i c a t i n g t h a t t h e f i l t e r s a re f u l l . f i l t e r .

    The

    F i l t e r geometry l i m i t s t h e t o t a l mater ia l t h a t can be accumulated i n a The analysis has shown t h a t even over f i l l e d , t h e c a r t r i d g e f i l t e r s

    10

  • WHC-SD-SNF-CSER-002 Rev. 1

    are adequately s u b c r i t i c a l . The form o f t h e f i s s i l e ma te r ia l i n t h e geometry o f t h e c a r t r i d g e f i l t e r s make c r i t i c a l i t y impossible.

    The contingencies considered inc luded f a i l u r e t o rep lace t h e f i l t e r c a r t r i d g e assemblies a t t he scheduled t ime r e s u l t i n g i n add i t i ona l bu i ldup o f f i s s i o n a b l e mater ia l w i t h a maximum kef, = 0.664. concentrat ions o f plutonium a t U/Pu r a t i o s less than measured data f o r K East Basin w i t h a maximum kerf = 0.923 f o r a U/Pu r a t i o o f 10, and the loss o f geometry con t ro l from t h e f i l t e r c a r t r i d g e assembly breaking apart and re leas ing the i n d i v i d u a l f i l t e r ca r t r i dges i n t o an optimal con f igu ra t i on w i t h a maximum kef, = 0.847 w i t h a normal U/Pu r a t i o . I n a l l accident scenarios i d e n t i f i e d . no s i n g l e contingency was found t h a t would exceed the k,, = 0.95 l i m i t , t he re fo re i n a l l i d e n t i f i e d cases, a s i n g l e contingency was i n s u f f i c i e n t t o , c r e a t e a c r i t i c a l system. I n a d d i t i o n , conservatisms i n the analys is would increase t h e margin o f s u b c r i t i c a l i t y . Two o f t he more important conservatisms are t h e absence o f a l l f i s s i o n and corros ion products and using a low U/Pu r a t i o .

    For o f f -normal analyses, a number o f contingencies were evaluated.

    9 .0 REFERENCES

    Br iesmeister . J . F . . and J . Hendricks. 1990, June 26. 1990. MCNP4 Newslet ter .

    Car te r , L . L . , 1994, Cer tJ f i ca t ion o f MCNP Version 4A fo r WHC Computer

    Los A1 amos National Laboratory, Los A1 amos . New Mexico.

    Platforms. WHC-SO-MP-SWD-300001, Rev. 6. Westinghouse Hanford Company, Richland Washington.

    Reactor Green Fuel Decontamination, WHC-NR-CSA-001, Westinghouse Hanford Company, Richland, Washington.

    Erickson. D . G . , 1994a. C r i t 7 c a l i t y Safety Evaluation o f the l O O K Area Ion Exchange Modules and Ion Exchange Columns. WHC-SD-NR-CSER-011 Rev. 1, Westinghouse Hanford Company, Richland. Washington.

    Erickson, D . G . , 1994b. C r i t i c a l i t y Safety Evaluation Report fo r the 100 KE Basin S a n d f i l t e r Backwash P i t . WHC-SD-NR-CSER-014, Rev. 0, Westinghouse Hanford Company, Richland. Washington.

    Hedengren. D . C . and H . J . Goldberg. 1987, ORIGENZ Predict ions o f N Reactor Fue 1 Act i n 7 de Compos 7 t ion, SD -CP - T I ~ 105, West i nghouse Hanford Company, Richland. Washington

    LANL, 1986. MCNP - A General Purpose Monte Carlo Code f o r Neutron and Photon Transport. Version 3A. LA-7396, Rev. 2. Los Alamos National Laboratory, J . F. Briesmeister ( E d i t o r ) .

    R ice. A . 0 . . 1993,KE F i l t e r Backwash P i t . WHC-SD-WM-DP-056 Rev. 0. Westinghouse Hanford Company, Richland, Washington

    Rice. A . 0 . . 1994.105-KE F i l t e r Backwash P i t (SFBWP) Transfer Channel, WHC-SD-WM-DP-057 Rev. 0. Westinghouse Hanford Company, Richland. Washington.

    Erickson. D . G. and A. D. Wilcox, 1989. C r i t i c a l i t y Safety Report f o r N

    11

  • WHC-SD-SNF-CSER-002 Rev. 1

    Schwinkendorf, K . N . , 1991, Nuclear Criticality Safety Evaluation for Shipment of MKIV 5 i l7ets. WHC-SD-NR-CSER-003, Westinghouse Hanford Company, R i ch l and, Washington.

    the K East 5as7n Sandfilter Backwash Pit Samples. WHC-SD-SNF-TI-004, Westinghouse Hanford Company, Richland. Washington.

    Cri t i c a 7 ity Calculations, WHC-SD-NR-CSA-004, Westinghouse Hanford Company, R i ch l and, Washington.

    Canisters i n Sludge. WHC-SD-NR-CSER-001, Westinghouse Hanford Company, Richland, Washington.

    R i ch l and, Washington .

    Welsh, T. L . , 1994, Rev. 0 . Statistica7 Eva7uation of the Data Obtained from

    Wi t tek ind . W . D . , 1991. Irradiated N Reactor Fuel Consolidated Storage

    Wit tek ind. W . 0 . . 1992. K Basin Criticality Evaluation for Irradiated Fue7

    WHC-CM-4-29. Nuclear Criticality Safety Manual, Westinghouse Hanford Company.

    12

  • WHC-SD-SNF-CSER-002 R e v . 1

    APPENDIX A

    INDEPENDENT REVIEW

    A - 1

  • WHC-SD-SNF-CSER-002 Rev. 1

    CHECKLIST FOR INDEPENDENT REVIEW

    Document Reviewed:

    Author: D. G. Erickson - Yes N/A

    C r i t i c a l i t v Safetv Evaluat ion ReDort f o r K Basin F i l t e r Cartri dQeS

    [d [ ] [ ] Problem c a p l e t e l y defined. [./l [ 1 [ 1 Necessary assurptions e x p l i c i t l y stated and supported. [Jj [ 1 1 COnpUter codes and data f i l e s &mnted. [d [ ] [ ] Data checked for consistency u i t h or ig ina l s w r c e information as applicable. [/s [ ] [ ] Mathematical derivations checked including dimensional consistency of resul ts . [(i [ 1 [ 1 [./1 [ 1 1 Hand calculat ions checked for errors. [y] [ 1 [ 1 Code run s t ream correct and consistent with analysis docmntat ion. [./I [ 1 [ 1 [d [ ] [ ] Acceptabi l i ty l i m i t s on analy t ica l resul ts appl icable and supported. L imi ts checked [d [ 1 [ 3 Safety rnargins consistent u i t h good engineering practices. [d [ ] [ ] Conclusions consistent u i t h analy t ica l resul ts and applicable l imi ts . [d [ 1 [ 3 [d [ 1 [ 1 Have a l l reasonable accidents been considered? [ ] [d [/] Has Low density uater (steam) been evaluated as a moderator7 [d [ ] [ ] Is the fuel and other hardware carposit ion correct7 [d [ 1 [ 1 Are the cases considered conservative7 Too conservative? [d [ 1 [ 1 Do the conplter models adequately r e f l e c t the actual geometry7 Have cross sectional [ 1 [ 1 [q This may not be required i n a prel iminary [d 1 [ 1 Has the revieuer conpleted the C r i t i c a l i t y Safety Course f o r Managers and Engineers7

    Models appropriate and used w i t h i n range of v a l i d i t y or use outside range of established v a l i d i t y just i f ied.

    Code output consistent u i t h input and u i t h resul ts reported i n analysis docunentation.

    against sources.

    Results and conclusions address a l l points required i n the problem statement.

    cuts of the g e m t r y been made and do they show the desired g e m t r y ?

    Has the analysis been reviewed by Safety7 design.

    Date completed J ~ c ~ c 5. ,996

    NOTE: Any hand calculat ions, notes, o r s m r i e s generated as par t of t h i s review should be signed, dated, and attached t o t h i s checkl ist. Materials should be labeled and recorded so that i t i s i n t e l l i g i b l e t o a technica l ly -qual i f ied t h i r d party.

    A- 2

  • APPENDIX B

    ALL MCNP INPUT FILES

  • WHC-SD-SNF-CSER-002 Rev. 1

    This page intentionally left blank

    8-2

  • WHC-SD-SNF-CSER-002 Rev. 1

    Case CF001A. 400 and t h e 235U enrichment i s 0.95%. w i t h 4.0 g/cm3 sludge. message

    This case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f The f i l t e r media volume i s completely f u l l

    CFOOla - C a r t r i d g e F i l t e r U:Pu=400. H.U=6.366. U235=0 95%. no ends C c m

    1 3 -1.00 2 3 -1.00 3 1 -4. 4 3 -1.00 5 3 -1 00 6 3 -1 00 7 1 -4 8 3 -1 00 9 3 -1.00 10 3 -1.00 1: 1 -4. 12 3 -1.00 13 3 -1.00 14 3 -1.00 15 1 -4. 16 3 -1 00 17 3 -1 00 18 3 -1 00 19 1 -4 20 3 -1.00 21 3 -1 00 22 3 -1 00 23 1 -4 24 3 -1.00 25 3 -1.00 26 3 -1 00 27 1 -4 28 3 -1 00 29 3 -1 0

    32 3 -1 GO 33 3 -1 0 34 3 -1 0 35 3 -1 0 36 0

    30 3 -1 G 31 3 -1 on

    x - x y -y 2 -2 19 -18 -1 18 -16 -2 1 18 -16 -2 16 -15 -4 19 -18 -3 18 -16 -4 3 18 -16 -4 16 -15 -6 19 -18 -5 18 -16 -6 5 18 -16 -6 16 -15 -8 19 -18 -7 18 -16 -8 7 18 -16 -8 16 -15

    -10 19 -18 -9 18 -16 -10 9 18 -16 -10 16 -15 -12 19 -18 -11 18 -16 -12 11 18 -16 -12 16 -15 -14 19 -18 -13 18 -16 -14 13 18 -16 -14 16 -15 -22 -15 19 2 4 -22 -19 20 -23 22 -15 20 -23 -20 21 -24 -25 15 -24 23 -15 21 -24 -21 26 24. 25 -26

    -z r -r J= imp:n=

    6 8 10 12 14

    1 cz 2 cz 3 C I Z 4 C I Z 5 C I Z 6 c l z 7 c l z 8 c l z 9 C I Z 10 C I Z 11 C I Z 12 C I Z 13 c l z 14 CIL 15 pz 16 pz 17 pz 18 pz 19 pz 20 pz 21 pz 22 cz 23 cz 24 cz

    26 pz 25 pz

    4 7625 7 4613

    0 000 18 1476 18 1476 18 1476 18 1476 0.oon 0 000

    -18.1476 -18 1476 -18 1476 -18 1476 72.3900 71.1200 22 3825 12 3825 11 4300 0,6350 0 0000

    n ooo

    32 385 33 020 65 000

    105 GOO -31 GOO

    20 955 20.955 10 4775 10 4775 -10 4775 -10 4775 -20 955 -20.955 -10 4775 -10 4775 10.4775 10.4775

    4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613

    CF 1 bottom CF 1 i ns ide CF 1 sludge CF 1 t o p CF 2 bottom CF 2 i n s i d e CF 2 Sludge CF 2 t o p CF 3 bottom CF 3 i ns ide CF 3 sludge CF 3 top CF 4 bottom CF 4 i n s i d e

    CF 4 t o p CF 5 bottom CF 5 i n s i d e

    CF 5 t op CF 6 bottom CF 6 i ns ide CF 6 sludge CF 6 t op CF 7 bottom CF 7 i ns ide

    CF 7 t op dater surrounding CFs Water below ( i n s i d e ) Cage wa l l Cage bottom Water above cage Water around cage Water below cage Outside Everything

    CF 4 Sludge

    CF 5 S l Jdge

    CF 7 Sludge

    I CF 1 inner surface ( cen te r ) '6 CF 1 outer surface

    I CF 2 inner surface '6 CF 2 outer surface '6 CF 3 inner surface t CF 3 outer surface I CF 4 inner surface I CF 4 outer surface I CF 5 inner surface I CF 5 outer surface t CF 6 inner surface t CF 6 outer surface '6 CF 7 inner surface t CF 7 outer surface t Top of f i l t e r (Outside) t Top of f i l t e r ( i ns ide1 t Sludge leve l ( i f needed) 5 Bottom o f f i l t e r ( i n s i d e ) I Bottom of f i l t e r (outs ide1 t Cage bottom ( i ns ide ) B Cage bottom (outside) t Cage ( i ns ide ) B Cage (outside) t water surrounding cage I water above cage I water below cage

  • WHC-SD-SNF-CSER-002 Rev.]

    mode n imp:n 1 3 4 r 0 ml 1 0 0 1 . 5 0 ~ -1.94102E-02 I H S i udge

    8016.50~ -2 53095E-01 $0 92235.50C -6.89389E-03 IU235 92238.50~ -7.18779E-01 IU238 94239.55~ -1.60319E-03 IPu239 94240.50~ -2.18617E-04 IPu240

    14000 50c - 0 0100 I S i 24000.50~ -0.1900 I Cr 25055 50c -0.0200 I Mn 26000.55~ -0.6871 I Fe 28000.50~ -0.0925 I N i

    8016.50~ 1 $ 0

    m t l l w t r . 0 l t I Hydrogen i n water 300 m2 6000.50~ -0.0004 I C s ta in less s tee l 304 (8.03 g l c c )

    m3 1 0 0 1 . 5 0 ~ 2 $ H H20

    mt3 l w t r . 0 l t 5 Hydrogen i n water 300 kcode 1000 0 . 5 5 50 ksrc 0.0000 0.0000 15.0 0.0000 0.000045.0 0.0000 0.0000 70.0

    0.0000 20.9550 15.0 0 0000 20.955045.0 0.0000 20.9550 70.0 18.1476 10.4775 15.0 18.1476 10.477545.0 18.1476 10.4775 70.0 18.1476 -10 4775 15.0 18.1476 -10.477545 0 18.1476 -10.477570.0 0.0000 -20.9550 15.0 0.0000 -20.9550 45.0 0.0000 -20.9550 70.0

    -18.1476 -10.4775 15.0 -18.1476 -10 477545 0 -18.1476 -10.477570.0 -18.1476 10.4775 15.0 -18.1476 10.477545.0 -18.1476 10.477570.0

    to tnu p r i n t ctme 60

    Case CFO11A. This case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 1.25%. The f i l t e r media volume i s completely f u l l w i t h 4 . 0 g/cm3 sludge. message:

    CFOlla - C a r t r i d g e F i l t e r U.Pu=400. H:U=6 366, U=1.25%. no ends r c m

    1 3 -1.00 7 3 - 1 00 3 1 -4 . 4 3 -1 00 5 3 -1 00 6 3 -1 00 7 1 -4 8 3 -1 00 9 3 -1 00

    10 3 -1 .00 11 1 -4 17 3 -1 00 13 3 -1 .00 14 3 -1 00 15 1 - 4 16 3 -1 00 17 3 -1 00 18 3 -1 00 19 1 -4 20 3 -1 00 71 3 -1 00 27 3 -1 00 73 1 -4 74 3 -1 00 25 3 -1 00 76 3 -1.00 77 1 -4 78 3 - 1 00 29 3 -1.0 30 3 -1 0 31 3 -1.00

    x - x y -y 2 - 2 -2 19 -18 -1 18 -16 -2 1 18 -16 -2 16 -15 -4 19 -18 -3 18 -16 - 4 3 18 -16 -4 16 -15 -6 19 -18 -5 18 -16 -6 5 18 -16 - 6 16 -15 - 8 19 -18 -7 18 -16 -8 7 18 -16 -8 16 -15

    -10 19 -18 -9 18 -16

    -10 9 18 -16 -10 16 -15 -12 19 -18 -11 18 -16 -17 11 18 -16 -12 16 -15 -14 19 -18 -13 18 -16 -14 13 18 -16 -14 16 -15 -72 -15 19 2 4 -22 -19 70 -23 27 -15 20

    r - r u= imp:n-

    6 8 10 17 14

    8-4

    CF 1 bottom CF 1 ins ide CF 1 sludge CF 1 top CF 2 bottom CF 2 i ns ide CF 2 sludge CF 2 top CF 3 bottom CF 3 i ns ide CF 3 sludge CF 3 top CF 4 bottom CF 4 i ns ide CF 4 sludge CF 4 top CF 5 bottom CF 5 i ns ide CF 5 sludge CF 5 top CF 6 bottom CF 6 i ns ide CF 6 sludge CF 6 top CF 7 bottom CF 7 i ns ide CF 7 sludge CF 7 top

    Water SurroundingCFs Water below ( i ns ide ) Cage w a l l

  • WHC-SD-SNF-CSER-002 Rev. 1

    32 3 -1.00 -23 -20 21 33 3 -1.0 -24 -25 15 34 3 -1.0 -24 23 -15 21 35 3 -1 0 -24 -21 26 36 0 24. 25.-26

    1 cz 4 7625 2 cz 7.4613 3 c l z 0.000 20.955 4 C I Z 0.000 20 955 5 c l z 18.1476 10 4775 6 CIZ 18 1476 10 4775 7 c / z 18.1476 -10 4775 8 c / z 18 1476 -10 4775 9 c/z 0 000 -20.955

    10 c l z 0.000 -20 955 11 c l z -18 1476 -10.4775 12 c l z -18 1476 -10 4775 13 c / z -18.1476 10.4775 14 CIL -18 1476 10.4775 15 pz 72 3900 16 pz 71 1200 17 pz 22.3825 18 pz 12.3825 19 pz 11 4300 20 pz 0.6350

    22 cz 32 385 23 CL 33 020 24 cz 65 000 25 pz 105.000 26 pz -31.000

    21 pz 0 0000

    mode imp-n ml

    4.7625 7.4613 4.7625 7.4613 4 7625 7.4613 4.7625 7 4613 4 7625 7.4613 4 7625 7.4613

    I Cage bottom P Water above cage I Water around cage I Water below ca e I Outside E v e r y t i i n g

    16 CF 1 inner surface (center) $ CF 1 outer surface

    $ CF 2 inner surface $ CF 2 outer surface P CF 3 inner surface '6 CF 3 outer surface I CF 4 inner surface '6 CF 4 outer surface $ CF 5 inner surface I CF 5 outer surface '6 CF 6 inner surface I CF 6 outer surface I CF 7 inner surface '6 CF 7 outer surface

    '6 Top o f f i l t e r (outs ide) I Top o f f i l t e r ( i n s i d e ) I Sludge l e v e l ( i f needed) $ Bottom o f f i l t e r ( i n s i d e ) $ Bottom o f f i l t e r (outs ide) I Cage bottom ( i n s i d e ) $ Cage bottom (outs ide) $ Cage ( i n s i d e ) $ Cage (outs ide) $ water surrounding cage I water above cage $ water below cage

    m t 1 m2

    m3

    mt3 kcode ksrc

    t o t n u p r i n t ctme 60

  • WHC-SD-SNF-CSER-002 Rev. 1

    Case CF021B. This case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 0.95%. The f i l t e r media volume i s completely f u l l w i t h 4 . 0 g/cm3 sludge, as i s t h e volume i n s i d e t h e f i l t e r . message.

    CFO21b - C a r t r i d g e F i l t e r U:Pu=400. H:U-6.366. U235=0.95%. no ends, f u l l sludge C c m

    1 3 - 1 00 2 1 -4 00 3 3 -1.00 4 1 -4 5 3 -1.00 6 3 -1 00 7 1 -4.00 8 3 - 1 00 9 1 - 4

    10 3 -1 00 11 3 -1.00 12 1 -4.00 13 3 -1.00 14 1 -4. 15 3 -1 00 16 3 -1 00 17 1 -4 00 18 3 -1 00 19 1 -4 20 3 -1.00 21 3 -1.00 22 1 -4.00 23 3 -1.00 24 1 -4. 25 3 - 1 . 0 0 26 3 -1 00 27 1 -1 00 28 3 -1 00 29 1 -4 30 3 -1.00 31 3 -1 00 32 1 -4.00 33 3 - 1 00 34 1 -4 35 3 -1 00 36 3 -1 0 37 3 -1 0 38 3 -1 00 39 3 - 1 00 40 3 -1.0 41 3 - 1 0 42 3 -1.0 43 0

    x - x y - 2 19 -18 -1 18 -17 -1 17 -16 -2 1 18 -2 16 -15 -4 19 -18 -3 18 -17 -3 17 -16 - 4 3 18 -4 16 -15 -6 19 -18 -5 18 -17 -5 17 -16 -6 5 18 -6 16 -15 - 8 19 -18 -7 18 -17 -7 17 -16 -8 7 18 -8 16 -15

    -10 19 -18 -9 18 -17 -9 17 -16

    -10 9 18 -10 16 -15 -12 19 -18 -11 18 -17 -11 17 -16 -12 11 18 -12 16 -15 -14 19 -18 -13 18 -17 -13 17 -16 -14 13 18 -14 16 -15 -22 -15 19 -22 -19 20 -23 22 -15 -23 -20 21 -24 -25 15 -24 23 -15 -24 -21 26

    24. 25 -26

    1 cz 2 CZ 3 CJZ 4 C I 2 5 CJZ 6 cJ r 7 ' CJZ 8 t i 2 9 CJZ

    10 C I Z 11 C I Z 12 CJZ 13 c l z 14 c l z 15 pz 16 p2 17 pz 18 pz 19 pz 20 p2

    4 7625 7 4613 0.000 20.955 0 000 20 955

    18.1476 10.4775 18 1476 10.4775 18.1476 -10.4775 18.1476 -10.4775 0.000 -20 955 0 000 -20.955

    -18 1476 -10.4775 -18 1476 -10.4775 -18 1476 10.4775 -18 1476 10.4775 72 3900 71.1200 71 1200 12 3825 11 4300 0 6350

    -Y

    - 16

    -16

    -16

    - 16

    -16

    -16

    2

    20

    21

    Z

    4

    4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613 4 7625 7 4613

    - Z

    6

    r - r

    8 10

    U=

    12

    imp:n=

    14

    I t CF 1 bottom '6 CF 1 sludge i n s i d e I CF 1 ins ide t CF 1 sludge I CF 1 top I CF 2 bottom I CF 1 sludge i n s i d e I CF 1 i n s i d e I CF 2 sludge '6 CF 2 t o p '6 CF 3 bottom I CF 1 sludge i n s i d e I CF 1 i n s i d e $ CF 3 sludge I CF 3 t op 5 CF 4 bottom I CF 1 sludge i n s i d e '6 CF 1 i n s i d e I CF 4 sludge t CF 4 top I CF 5 bottom '6 CF 1 sludge i n s i d e '6 CF 1 ins ide t CF 5 sludge '6 CF 5 t o p t CF 6 bottom t CF 1 sludge ins ide 5 CF 1 ins ide '6 CF 6 sludge 5 CF 6 top 5 CF 7 bottom I CF 1 sludge i n s i d e t CF 1 ins ide I CF 7 sludge I CF 7 top

    5 Water surrounding CFs I Water below ( i n s i d e ) I Cage wa l l 5 Cage bottom I Water above cage I Water around cage '6 Water below cage I Outside Everything

    5 CF 1 inner surface ( cen te r ) 16 CF 1 outer surface I CF 2 inner surface 5 CF 2 outer surface '6 CF 3 inner surface 5 CF 3 outer surface I CF 4 inner surface I CF 4 outer surface I CF 5 inner surface 5 CF 5 outer surface I CF 6 inner surface I CF 6 outer surface B CF 7 inner surface 5 CF 7 outer surface

    5 Top of f i l t e r (outs ide) 5 Top of f i l t e r ( i ns ide ) 5 Sludge leve l ( i f needed) 5 Bottom of f i l t e r ( i ns ide ) 5 Bottom of f i l t e r (outs ide) 5 Cage bottom ( i ns ide )

  • WHC-SD-SNF-CSER-002 Rev. 1

    21 pz 0.0000 22 cz 32.385 23 cz 33.020 24 cz 65.000 25 pz 105.000 26 pz -31.000

    1 Cage bottom (outs ide) I Cage ( i n s i d e ) I Cage (outs ide) 1 water surroundingcage $ water above cage '6 water below cage

    mode n 1mp.n 141r 0 m l 1001.50~ -1.94102E-02 I H S1 udge

    8016.50~ -2.53095E-01 IO 92235.50~ -6.89389E-03 111235 92238.50~ -7.18779E-01 111238 94239.55~ -1.60319E-03 IPu239 94240.50~ -2.18617E-04 IPu240

    14000.50~ -0.0100 I s i 24000 50C -0.1900 $ Cr 25055.50~ -0.0200 I Mn 26000.55~ -0.6871 I Fe 28000.50~ -0.0925 I N i

    8016.50~ 1 $ 0

    m t l I w t r . 0 l t I Hydrogen i n water 300 m2 6000.50~ -0.0004 $ C sta in less s tee l 304 (8.03 ql-cc)

    m3 1001.50~ 2 B H H20

    mt3 l w t r . 0 l t I Hydrogen i n water 300 kcode 1000 0 5 5 100 ksrc 0 0000 0 0000 15 0 0.0000 0 0000 45.0 0.0000 0 0000 70.0

    0 0000 20 9550 15 0 0.0000 20.955045.0 0.0000 20.9550 70.0 18 1476 10.4775 15.0 18.1476 10 477545.0 18.1476 10.477570.0 18 1476 -10.4775 15.0 18.1476 -10.4775 45.0 18.1476 -10.4775 70.0 0.0000 -20.9550 15.0 0 0000 -20 955045.0 0.0000 -20.955070.0

    -18 1476 -10.4775 15.0 -18.1476 -10.477545.0 -18.1476 -10.4775 70.0 -18,1476 10 4775 15.0 -18.1476 10 477545.0 -18.1476 10.4775 70.0

    t o t n u p r i n t ctme 60

    Case CFO31B. Th is case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 1.25%. The f i l t e r media volume i s completely f u l l w i t h 4 . 0 g/cm3 sludge, as i s t h e volume i n s i d e t h e f i l t e r . message.

    CFO31b ~ C a r t r i d g e F i l t e r U:Pu=400, H U=6.366. U235=1 25%. no ends, f u l l sludge C c m

    1 3 -1 00 2 1 -4 00 3 3 -1 00 4 1 -4 5 3 -1 00 6 3 -1 00 7 1 -4 00 8 3 -1 00 9 1 -4 10 3 -1 00 11 3 -1.00 12 1 -4 00 13 3 -1.00 14 1 -4 1s 3 -1.00 16 3 -1.00 17 1 -4.00 18 3 -1.00 19 1 -4 20 3 -1.00 21 3 -1.00 22 1 -4.00 23 3 -1 00 24 1 -4 25 3 -1.00 26 3 -1 00

    x - x y - y -2 19 -18 -1 18 -17 -1 17 -16 -2 1 18 -16 -2 16 -15 -4 19 -18 -3 18 -17 -3 17 -16 -4 3 18 -16 -4 16 -15 -6 19 -18 -5 18 -17 -5 17 -16 -6 5 18 -16 -6 16 -15 -8 19 -18 -7 18 -17 -7 17 -16 -8 7 18 -16 -8 16 -15 -10 19 -18 -9 18 -17 -9 17 -16 -10 9 18 -16 -10 16 -15 -12 19 -18

    z -z r - r u= imp n= $ I CF 1 bottom 0 CF 1 sludge i n s i d e I CF 1 i n s i d e $ CF 1 sludge I CF 1 top I CF 2 bottom I CF 1 sludge i n s i d e I CF 1 i n s i d e 16 CF 2 sludge I CF 2 top I CF 3 bottom I CF 1 sludge i n s i d e I CF 1 i n s i d e '6 CF 3 sludge 1 CF 3 top 0 CF 4 bottom I CF 1 sludge i n s i d e $ CF 1 i n s i d e $ CF 4 sludge I CF 4 top I CF 5 bottom I CF 1 sludge i n s i d e I CF 1 i n s i d e $ CF 5 sludge I CF 5 top I CF 6 bottom

    B - 7

  • WHC-SD-SNF-CSER-002 Rev. 1

    27 1 -1 00 28 3 -1.00 29 1 -4. 30 3 -1.00 31 3 -1.00 32 1 -4.00 33 3 -1 00 34 1 -4 35 3 -1.00 36 3 -1.0 37 3 -1.0 38 3 -1.00 35 3 -1.00 40 3 -1 0 41 3 -1 0 42 3 -1.0 43 0

    -11 18 -17 -11 17 -16 -12 11 18 -16 -12 16 -15 -14 19 -18 -13 18 -17 -13 17 -16 -14 13 18 -16 -14 16 -15 -22 -15 19 2 4 -22 -19 20 -23 22 -15 20 -23 -20 21 -24 -25 15 -24 23 -15 21 -24 -21 26 24: 25.-26

    1 C Z 2 cz 3 c l z 4 C I Z 5 c l z 6 c l z 7 c l z 8 C I Z 9 C I Z

    10 C I Z 11 e12 12 C I Z 13 c l z 14 c l z 15 pz 16 pz 17 pz 18 pz 15 pz 20 pz 21 pz 22 cz 23 cz 24 c z 25 pz 26 pz

    4 7625 7 4613 0.000 20.955 0.000 20.955 18.1476 10.4775 18.1476 10.4775 18.1476 -10.4775 18.1476 -10.4775 0.000 -20.955 0 000 -20.955

    -18 1476 -10.4775 -18,1476 -10.4775 -18 1476 10.4775 -18 1476 10.4775 72.3900 71.1200 71 1159 12 3825 11 4300 0 6350 0 0000 32 385 33 020 65.000 105 000 -31 000

    4.7625 7.4613 4 1625 7.4613 4.7625 7.4613 4.7625 7.4613 4.7625 7.4613 4.7625 7.4613

    imp n ml

    m t 1 m2

    m3

    mt3 kcode k s r c

    6 8 10 12 14

    S CF 1 sludge i n s i d e I CF 1 i n s i d e I CF 6 sludge I CF 6 t o p 4 CF 7 b o t t m S CF 1 sludge i n s i d e I CF 1 i n s i d e I CF 7 sludge I CF 7 top

    '6 Water surrounding CFs (I Water below ( i n s i d e ) I Cage w a l l S Cage bottom $ Water above cage '6 Water around cage 4 Water below cage I Outside Everything

    I CF 1 inner surface (center) 4 CF 1 outer surface

    I CF 2 inner surface I CF 2 outer surface $ CF 3 inner surface $ CF 3 outer surface $ CF 4 inner surface I CF 4 outer surface $ CF 5 inner surface '6 CF 5 outer surface $ CF 6 inner surface $ CF 6 outer surface I CF 7 inner surface $ CF 7 outer surface

    '6 Top o f f i l t e r (outs ide) $ Top of f i l t e r ( i n s i d e ) $ Sludge l e v e l (if needed) $ Bottom o f f i l t e r ( i n s i d e ) $ Bottom o f f i l t e r (outs ide) '6 Cage bottom ( i n s i d e ) $ Cage bottom (outs ide) B Cage ( i n s i d e ) $ Cage (outs ide) $ water surrounding cage $ water above cage $ water below cage

    mode n 1 41r 0

    92235 50c -9 07091E-03 8U235 92238 50c -7 16602E-01 4U238 94235 55c -1 60319E-03 IPu239 54240 50c -2 18617E-04 BPu240 l w t r O l t

    14000.50~ -0 0100 I 81 24000 50c -0 1500 4 Cr 25055.50~ -0.0200 4 Mn 26000.55~ -0.6871 $ Fe 28000 50c -0.0925 I N i 1001 50c 2 I H H20 8016 50c 1 $ 0

    l w t r Olt 1000 0 5 5 100 0 0000 0.0000 15.0 0.0000 0 000045.0 0 0000 0.0000 70.0 0 0000 20 9550 15.0 0.0000 20 955045 0 0.0000 20.955070.0 18 1476 10 4775 15 0 18.1476 10 477545.0 18.1476 10.477570.0 18 1476 -10 4775 15.0 18 1476 -10 477545 0 18.1476 -10.477570 0 0 0000 -20 9550 15 0 0 0000 -20 9550 45 0 0 0000 -20.9550 70 0 18 1476 -10 4775 15.0 -18 1476 -10 477545 0 -18.1476 -10.477570 0 18 1476 10 4775 15.0 -18.1476 10 477545 0 -18 1476 10 4775 70 0

    1001 50c -1 94102E-02 4H Sludge 8016 50c -2 53095E-01 $0

    $ Hydrogen i n water 300 6000 50c -0 0004 B C s ta in less s tee l 304 ( 8 03 g l c c )

    $ Hydrogen i n water 300

    t o t n u p r i n t ctme 60

    B-8

  • WHC-SD-SNF-CSER-002 Rev. 1

    Case CFOOPA. Th is case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f 10 and t h e 235U enrichment i s 0.95%. The f i l t e r media volume i s completely f u l l w i t h 4.0 g/cm3 sludge. message:

    CF002a - C a r t r i d g e F l l t e r U.Pu=lO. WU-7.005. U235-0 95%. no ends C c m

    1 3 -1.00 2 3 -1.00 3 1 -4. 4 3 -1.00 5 3 -1 .00 6 3 -1 .00 7 1 -4 8 3 -1 00 9 3 -1.00

    10 3 -1.00 11 1 - 4 12 3 -1 00 13 3 -1 .00 14 3 -1 00 15 1 -4 16 3 -1 00 17 3 -1 00 18 3 - 1 00 15 1 - 4 20 3 -1.00 21 3 -1.00 22 3 - 1 00 23 1 -4. 24 3 -1 00 25 3 - 1 . 0 0 26 3 -1 .00 27 1 -4. 28 3 -1 00 25 3 -1 0 30 3 -1 0 3: 3 -1 00 32 3 -1.00 33 3 -1 0 34 3 - 1 0 35 3 - 1 0 36 0

    x - x y -2 19 -18 -1 18 -16 - 2 1 18 -2 16 -15 - 4 19 -18 - 3 18 -16 -4 3 18 - 4 16 -15 - 6 19 -18 -5 18 -16 - 6 5 18 -6 16 -15 - 8 19 -18 - 7 18 -16 -8 7 18 -8 16 -15

    -10 19 -18 - 9 18 -16

    -10 9 18 -10 16 -15 -12 19 -18 -11 18 -16 -12 11 18 -12 16 -15 -14 19 -18 -13 18 -16 -14 13 18 -14 16 -15 -22 -15 19 -22 -15 20 -23 22 -15 -23 -20 21 -24 -25 15 -24 23 -15 -24 -21 26

    24 25 -26

    -y z -z r - r u= imp:n=

    -16

    - 16

    -16

    - 16

    - 16

    -16

    -16

    2 4 6 8 10 12 14

    20

    21

    ‘6 I CF 1 bottom $ CF 1 ins ide I CF 1 sludge ‘6 CF 1 t o p I CF 2 bottom I CF 2 i n s i d e I CF 2 sludge I CF 2 t o p I CF 3 bottom I CF 3 i ns ide $ CF 3 sludge $ CF 3 top $ CF 4 bottom 16 CF 4 i n s i d e I CF 4 sludge I CF 4 top I CF 5 bottom ‘6 CF 5 i ns ide I CF 5 sludge I CF 5 top ‘6 CF 6 bottom I CF 6 i ns ide $ CF 6 sludge I CF 6 top I CF 7 bottom I CF 7 i ns ide I CF 7 sludge I CF 7 top

    5 Water surrounding CFs $ Water below ( i n s i d e ) I Cage wa l l $ Cage bottom I Water above caqe 6 Water around cage 0 Water below cage I Outside Everything

    B- 9

  • WHC-SD-SNF-CSER-002 Rev. 1

    mode n imp'n 134r 0 ml 1001 50c -1.94505E-02 $H

    8016.50~ -2.53342E-01 SO 92235.50~ -6.27803E-03 111235 92238.50~ -6 54567E-01 111238 94239.55~ -5 83987E-02 IPu239 94240 50c -7.96346E-03 IPu240

    14000 50c -0.0100 $ s i 24000 50c - 0 1900 I Cr 25055 50c -0.0200 I Mn 26000.55~ -0.6871 I Fe 28000.50~ -0.0925 I N i

    8016.50~ 1 $ 0

    mtl l w t r . 0 l t I Hydrogen i n water 300 m2 6000.50~ -0.0004 $ C s ta in less s tee l 304 (8 .03 g l c c )

    m3 1001 50c 2 1 6 H H20

    mt3 l w t r . 0 l t 5 Hydrogen i n water 300 kcode 1000 0 5 5 100 ksrc 0.0000 0 .0000 15.0 0.0000 0.000045.0 0.0000 0.0000 70.0

    0 0000 20.9550 15.0 0.0000 20.955045.0 0.0000 20.9550 70.0 18.1476 10 4775 15 0 18.1476 10.477545.0 18.1476 10.4775 70.0 18 1476 -10.4775 15.0 18.1476 -10.477545 0 18.1476 -10.477570.0 0.0000 -20.9550 15.0 0.0000 -20.955045.0 0 0000 -20.955070.0

    -18 1476 -10.4775 15.0 -18.1476 -10.477545.0 -18.1476 -10.4775 70.0 -18.1476 10 4775 15.0 -18.1476 10.477545.0 -18.1476 10.4775 70.0

    t o tnu p r i n t ctme 60

    Case CF012A. 10 and t h e 235U enrichment i s 1.25%. w i t h 4 . 0 g/cm3 sludge.

    This case models t h e seven c a r t r i d g e f i l t e r s w i t h a U:Pu r a t i o o f The f i l t e r media volume i s completely f u l l

    message

    CF012a - Cartr idge F i l t e r U:Pu=lO. H.U=7 005. U = l 25% no ends

    c m 1 3 -1 00 2 3 -1 00 3 1 -4 4 3 - 1 00 5 3 -1 00 6 3 -1 00 7 1 -4 8 3 -1 00 9 3 -1 00 10 3 -1 00 11 1 -4 12 3 -1 00 13 3 -1 00 14 3 -1 00 15 1 -4 16 3 -1.00 17 3 -1 00 18 3 -1 00 19 1 -4 20 3 -1 00 21 3 -1 00 22 3 -1.00 23 1 -4 24 3 -1 00 25 3 -1 00 26 3 -1 00 27 1 - 4 28 3 -1 00 29 3 -1 0 30 3 -1 0 31 3 -1 00

    2 - i x - x y - y - 2 19 -18 -1 18 -16 -2 1 18 -16 -2 16 -15 -4 19 -18 - 3 18 -16 -4 3 18 -16 - 4 16 -15 -6 19 -18 -5 18 -16 -6 5 18 -16 -6 16 -15 -8 19 -18 -7 18 -16 -8 7 18 -16 -8 16 -15 -10 19 -18 -9 18 -16 -10 9 18 -16 -10 16 -15 -12 19 -18 -11 18 -16 -12 11 18 -16 -12 16 -15 -14 19 -18 -13 18 -16 -14 13 18 -16 -14 16 -15 -22 -15 19 2 4 6 -22 -19 20 -23 22 -15 20

    8

    u= imp:n=

    10 12 14

    CF 1 bottom CF 1 i ns ide CF 1 sludge CF 1 t op CF 2 bottom CF 2 i ns ide CF 2 sludge CF 2 t op CF 3 bottom CF 3 i ns ide CF 3 sludge CF 3 t op CF 4 bottom CF 4 i n s i d e CF 4 sludge CF 4 t o p CF 5 bottom CF 5 i n s i d e CF 5 sludge CF 5 t op CF 6 bottom CF 6 i ns ide CF 6 sludge CF 6 t op CF 7 bottom CF 7 i n s i d e CF 7 sludge CF 7 t o p

    Water surroundi ng CFs Water below ( i ns ide ) Cage wa l l

    B -10

  • WHC-SO-SNF-CSER-002 Rev. 1

    32 3 -1.00 -23 -20 21 33 3 -1 0 -24 -25 15 34 3 -1.0 -24 23 -15 21 35 3 - 1 . 0 -24 -21 26 36 0 24: 25.-26

    S Cage bottom $ Water above cage I Water around cage I Water below cage S Outside Everything

    1 cz 4.7625 '6 CF 1 inner surface (center) 2 cz 7.4613 5 CF 1 outer surface 3 c l z 0.000 20.955 4.7625 '6 CF 2 i nne r surface 4 c l z 0 000 20 955 7.4613 $ CF 2 outer surface 5 c l z 18.1476 10.4775 4.7625 $ CF 3 inner surface 6 c l z 18 1476 10.4775 7.4613 P CF 3 outer surface 7 CIZ 18 1476 -10.4775 4 7625 I CF 4 inner surface 8 c l z 16.1476 -10 4775 7 4613 '6 CF 4 outer surface 9 c l z 0 000 -20.955 4 7625 '6 CF 5 inner surface

    10 c / z 0.000 -20.955 7.4613 '6 CF 5 outer surface 11 c l z -18 1476 -10.4775 4 7625 I CF 6 inner surface 12 c l z -18.1476 -10 4775 7 4613 I CF 6 outer surface 13 c l z -18 1476 10.4775 4.7625 $ CF 7 i nne r surface 14 c l z -18.1476 10.4775 7.4613 5 CF 7 outer surface 15 pz 72.3900 B Top of f i l t e r (outs ide) 16 p r 71 1200 B Top o f f i l t e r ( i ns ide ) 17 pz 22 3825 $ Sludge leve l ( i f needed) 16 pz 12 3825 $ Bottom of f i l t e r ( i ns ide ) 19 pz 11.4300 I Bottom of f i l t e r (outs ide) 20 pz 0.6350 '6 Cage bottom ( i ns ide ) 21 pz 0.0000 B Cage bottom (outside) 22 cz 32.385 B Cage ( i ns ide ) 23 cz 33 020 B Cage (outside) 24 cz 65 000 B water surrounding cage 25 pz 105.000 I water above cage 26 pz -31 000 I water below cage

    mode n imp n 1 3 4 r 0 m l 1001 50c -1.94505E-02 I H Sludge

    8016 .50~ -2.53342E-01 $0 92235.50~ -8.26056E-03 lU235 92238.50~ -6.52584E-01 lU238 94239 55c -5.83987E-02 IPu239 94240.50~ -7.96346E-03 IPu240

    14000 50c -0.0100 I s1 24000 50c -0 1900 I Cr 25055 50c -0.0200 '6 Mn 26000 55c -0 6671 I Fe 28000 50c -0.0925 '6 N i

    8015 50c 1 B O

    mtl l w t r Olt B Hydrogen i n water 300 m2 6000 50c -0.0004 $ C s ta in less steel 304 (8 03 g l cc )

    m3 1001 50c 2 B H h20

    m t 3 l w t r Olt B Hydrogen i n water 300 kcode 1000 0 . 5 5 100 k s r c 0 0000 0 0000 15 0 0.0000 0.0000 45 0 o 0000 o 0000 70.0

    0 0000 20 9550 15 0 0 0000 20 9550 45.0 0 0000 20 9550 70 0 16 1476 10 4775 15 0 18 1476 10 4775 45 0 16 1476 10 4775 70 0 18 1476 -10 4775 15 0 18 1476 -10 4775 45 0 18.1476 -10 4775 70 0 0 0000 -20 9550 15 0 0 0000 -20 9550 45 0 0 0000 -20.9550 70 0

    -18 1475 -10 4775 15 0 -16.1476 -10 477545 0 -16 1476 -10 4775 70.0 -18 1476 10 4775 15.0 -18.1476 10 4775 45 0 -18 1476 10.477570 0

    t o tnu p r i n t ctme 60

    B - 1 1

  • WHC-SD-SNF-CSER-002 Rev. 1

    Case CF122 This case models a 27.3 cm hemisphere of 4 . 0 g/cm3 sludge w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 0.95%. message.

    CF122 - 27 30 cm Hemisphere. U:Pu=400. H:U=6.366. U235-0.95% C c m dens geom

    1 1 -4 000 - 1 2 2 2 -1 000 -1 -2 3 2 -1 00 1 -3 4 0 3

    I C m e n t imp:n=l I sludge hemi imp.n=l '6 water hemi r e f l imp:n=l I water r e f l e c t o r imp'n-0 I outs ide everything

    $s here f o r sludge Ipyane f o r hemi $sphere f o r r e f l e c t o r

    $H Sludge $0 $11235 W238 SPu239 IPu240 I Hydrogen i n water 300 $ H H20 s n $ Hydrogen i n water 300

    0 0 2 0 0 0 . 0 10 .0

    -10 0 10.0

    Case CF121 This case models a 32.5 cm hemisphere o f 4 . 0 g/cm3 sludge w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 0.95%. message:

    CF121 ~ 32 50 cm Hemisphere. U.Pu=400. H:U=6 366. U235=0.95% C c m dens geom

    1 1 -4 000 - 1 2 2 2 - 1 000 - 1 -2 3 2 - 1 00 1 -3 4 0 3

    1 so 32.50 0.00 !; 72.50

    Komnent imp:n=l I sludge hemi imp:n=l $ water hemi r e f l imp.n=l I water r e f l e c t o r imp'n=0 $ outs ide everything

    $sphere f o r sludge $plane for hemi $sphere for r e f l e c t o r

    $H Sludge $0 $11235 $11238 $Pu239 IPu240 $ Hydrogen i n water 300 P H H20 s n i Hydrogen i n water 300

    0.0 20.0 0 . 0 10 0

    -10 .0 10 0

    p r i n t ctme

    8-12

  • WHC-SD-SNF-CSER-002 Rev. I

    Case CF112 Th is case models a 27.3 cm hemisphere o f 4.0 g/cm3 sludge w i t h a U:Pu r a t i o of 400 and t h e 235U enrichment i s 1.25%. message:

    CF112 - 27.30 cm Hemisphere. U:Pu=400. H:U=6.366. U235=1.25% C c m dens geom

    1 1 - 4 000 -1 2 2 2 -1.000 - 1 -2 3 2 -1.00 1 -3 4 0 3

    1 so 27.30

    ; 7;:;; mode m l

    m t 1 m2

    mt2 kcode ksrc

    n 1001.50~ 8016 50c 92235.50~ 92238.50~ 94239.5% 94240.50~ l w t r . 0 l t 1001 50c 8016.50~

    1wtr .Ol t 1000 1 0 0.0 0.0

    10 .0 0.0 0.0 1 0 . 0

    -1.94102E-02 -2.53095E-01 -9.07091E-03 -7.16602E-01 -1.60319E-03 -2.18617E-04

    2 1

    SComnent 1mp.n-1 I sludge hemi imp:n=l I water hemi r e f l imp:n=l ‘6 water r e f l e c t o r imp:n=O I outs ide everything

    Is here f o r sludge $p?ane f o r hemi Isphere for re f lector

    OH Sludge $0 $U235 IU238 IPu239 IPu240 $ Hydrogen i n water 300 $ H H20 $ 0 I Hydrogen i n water 300

    5 100 1 0 . 0 0.0 0 0 20 .0 10 0 -10 0 0.0 10.0

    ’ 1 0 . 0 0 0 - 1 0 . 0 10.0 t o t n u p r i n t ctme

    Case C F l l l Th is case models a 32.5 cm hemisphere o f 4.0 g/cm3 sludge w i t h a U:Pu r a t i o o f 400 and t h e 235U enrichment i s 1.25%. message.

    CFlll - 32.50 cm Hemisohere. U:Pu=400. H.U=6.366. U235=1.25% C c m dens geom

    1 1 -4.000 -1 2 2 2 -1.000 -1 -2 3 2 -1.00 1 -3 4 0 3

    1 so 32 50 2 pz 0 00 3 so 72.50

    mode m l

    m t l m2

    m t 2 kcode ksrc

    n 1001.50~ -1.94102E-02 8016.50~ -2.53095E-01 92235 50c -9 07091E-03 92238.50~ -7.16602E-01 94239.55~ -1 60319E-03 94240 50c -2 18617E-04 l w t r O l t 1001 50c 2 8016 50c 1

    l w t r O l t 1000 1 0 5 100 0 0 0 0 10 0 0 . 0

    10 0 0 0 1 0 . 0 -10 0 0 0 1 0 0 1 0 0 0 0

    $Comment imp n=l I sludge hemi imp n=l I water hemi r e f l imp n = l $ water r e f l e c t o r imp n=O $ outside everything

    Is here for sludge $p?ane f o r hemi Isphere f o r r e f l e c t o r

    I H Sludge IO Ill235 $11238 ‘6Pu239 ‘6Pu240 I Hydrogen i n water 300 I H H20 $ 0 I Hydrogen i n water 300

    0 0 200 0 0 1 0 0

    -10 0 10 0 t o t n u p r i n t ctme

    8-13

  • WHC-SD-SNF-CSER-002 Rev. 1

    Case CF105 Th is case models a 27.3 cm hemisphere o f 4.0 g/cm3 sludge w i t h a U:Pu r a t i o o f 10 and t h e z35U enrichment i s 1.25%. message:

    CF105 - 27.30 cm Hemisphere. U Pu=lO. H:U=7.005. U235=1.25% C c m dens geom

    1 1 -4.000 -1 2 2 2 -1.000 -1 -2 3 2 -1 00 1 -3 4 0 3

    1 so 27.30 2 pz 0.00 3 so 67.30

    mode m l

    m t 1 m2

    mt2 kcode k s r c

    to tnu p r i n t ctme

    Komnent imp.n=l I sludge hemi imp:n-1 $ water hem1 ref1 imp,n=l I water r e f l e c t o r imp n=O I outside everything

    $sphere f o r sludge $plane f o r hemi $sphere f o r r e f l e c t o r

    I H Sludge $0 su235 $11238 IPuZ39 IPu240 $ Hydrogen i n water 300 I H H20 $ 0 I Hydrogen i n water 300

    0 0 2 0 0 0 0 1 0 0 10 0 10 0

    6-14

  • WHC-SO-SNF-CSER-002 Rev.1

    APPENDIX C

    BASIN URANIUM AND PLUTONIUM CONCENTRATION DATA

    c-1

  • WHC-SD-SNF-CSER-002 Rev. 1

    KE Center-of -bas in uranium and plutonium concentrat ion data. from personal communications w i t h M . A . Green o f t h e Spent Nuclear Fuel D i v i s i o n , i s from sample analys is done by the 2225 Labs. The plutonium g/L column assumes ~ w t % 2 4 0 ~ u i n i t s conversion from pCi/L t o g/L.

    This data came

    The fo l l ow ing l i s t i s a compi la t ion o f KE sample p o i n t #10 data, and

    I I I I

    I I I I Avg I 1.697E-04 I 1.811E-02 I 0.00326 1 2.213E.07 Max I1.520E-031 4.510E-02 I 0.00995 15.512E-0

    c -2

  • WHC-SD-SNF-CSER-002 Rev. 1

    APPENDIX D

    WHC-SD-SNF-CSER-002 Rev. 0 (REFERENCE)

    D - l

  • WHC-SD-SNF-CSER-002 Rev. 1 ?:

    This page i n t e n t i o n a l l y l e f t blank

    D-2

  • WHC-SD-SNF-CSER-002 Rev.1 - - - - 7

    Page 1 01 r 1

    1 €01 13rIlfifl ENGINEERING DATA TRANSMllTAL 1 NOJ23 1994 ;J 1 A . a

    2 TO. IRccewng Organ3z~C~onl 3 From (Originating Organization) A Related EOT NO

    1 D i s t r i b u t i o n N u c l e a r A n a l y s i s and

    C h a r a c t e r i z a t i o n

    A p p r o v a l / Re lease I

    D-3

  • .. --

    WHC-SD-SNF-CSER-002 Rev. 1 J

    This page intentionally left blank

    D-4

  • WHC-SD-SNF-CSER-002 Rev. 1

    RELEASE AUTHORIZATION

    Tide: C r i t i c a l i t y Safety Evaluat ion Report f o r K Basin F i l t e r Cart r idges

    Release Date: November 8 , 1994

    This document was reviewed following the procedures described in WHC-CM-34 and is:

    APPROVED FOR PUBLIC RELEASE

    WHC Information Release Administration Specialin:

    11/8/94 H.N. Boston

    1-6001-400.2 (09194) YEF256

  • WHC-SD-SNF-CSER-002 Rev. 1 .:

    T h i s page intentionally left blank

    D-6

  • WHC-SO-SNF-CSER-002 Rev. 1

    SUPPORTING DOCUMENT

    2. T i t i .

    Criticality Safety Evaluation Report for K Basin Filter Cartridges

    Filter cartridge KE Basin Criticality Alarm System

    S. Key Words

    I 1. TOC.1 PW" E 3 4. Rw Yo.

    k : ~ : s ~ R : o o * 1 0 6. Author

    YI: Kevin N. Schwinkendorf

    Orguriut lwCh.r9. cod. 80520 / E35511

    A criticality safety evaluation of the K Basin filter cartridge assemblies was completed to support operations without a criticality alarm system. show that for normal operation, the cartridge assembly is far below the safety limit

    The results

    o f k,,, = 0.95.

    3. RELEASE srwp

  • WHC-SD-SNF-CSER-002 Rev. I

    This page intentionally left blank

    D-8

  • WHC-SD-SNF-CSER-002 Rev. 1

    WHC-SO-SNF-CSER-002 Rev. 0

    ABSTRACT

    A criticality safety evaluation of the K Basin filter cartridge assemblies has been completed to support operations without a criticality alarm system. The results show that for normal operation, the filter cartridge assembly is far below the safety limit o f k,,, - 0.95, which is applied to plutonium systems at the Hanford Site.

    During normal operating conditions, uranium, plutonium, and fission and corrosion products in solution are continually accumulating in the available void spaces inside the filter cartridge medium. Currently, filter cartridge assemblies are scheduled to be replaced at six month intervals in KE Basin, and at one year intervals in KU Basin. According to available plutonium concentration data for KE Basin and data for the U/Pu ratio, it will take many times the six-month replacement time for sufficient fissionable material accumulation to take place to exceed the safety limit of kef, - 0.95, especially given the conservative assumption that the presence of fission and corrosion products is ignored. typical o f that measured in the sand filter backwash pit will not lead to a kef, - 0.95 value.

    Accumulation of sludge with a composition

    For off-normal scenarios, it would require at least two unlikely, independent, and concurrent events to take place before the k,,, - 0.95 limit was exceeded. Contingencies considered include failure to replace the filter cartridge assemblies at the scheduled time resulting in additional buildup of fissionable material, the loss of geometry control from the filter cartridge assembly breaking apart and releasing the individual filter cartridges into an optimal configuration, and concentrations of plutonium at U/Pu ratios less than measured data for KE Basin, typically close to 400 according to extensive measurements in the sand filter backwash pit and plutonium production informat ion.

    i i i

    D-9

  • WHC-SD-SNF-CSER-002 Rev. I

    T h i s page i n t e n t i o n a l l y l e f t blank

    D-10

  • WHC-SD-SNF-CSER-002 Rev . 1

    WHC-SO-SNF-CSER-002 Rev . 0

    CONTENTS

    1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 DESCRIPTION OF SYSTEM AND FACILITY . . . . . . . . . . . . . . . . . 1 3.0 REQUIREMENTS DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . 1

    5.0 DISCUSSION OF CONTINGENCIES . . . . . . . . . . . . . . . . . . . . 4 6.0 EVALUATION AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . 5

    6.1 NORMAL CONDITIONS . . . . . . . . . . . . . . . . . . . . . . 5 6.2 OFF-NORMAL CONDITIONS . . . . . . . . . . . . . . . . . . . . 9

    6.2.2 Material Segregation . . . . . . . . . . . . . . . . . 9 6.2.3 Loss o f Intact Geometry . . . . . . . . . . . . . . . 11

    REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    4.0 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    6.2.1 Material Buildup . . . . . . . . . . . . . . . . . . . 9

    7 . 0 DESIGN FEATURES AN0 ADMINISTRATIVELY CONTROLLED LIMITS AND

    8.0 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . 9.0 REFERENCES . . . . . . . . . . . . . . . . . . . APPENDICES

    A . ADDITIONAL SUPPORTING CALCULATIONAL RESULTS . . . . B . URANIUM AND PLUTONIUM ANALYTICAL CHEMISTRY

    RESULTS COMPARED TO ORIGEN2 CALCULATIONS . . . . . . . . . . .

    . . 13

    . . 15

    A- 1

    E- 1

    C . SAMPLE INPUT FILES FOR WIMS-E LATTICE AND CLUSTER CALCULATIONS . C-1 0 . INDEPENDENT REVIEW . . . . . . . . . . . . . . . . . . . . . . . 0-1

    i v

    D-11

  • WHC-SD-SNF-CSER-002 Rev. 1

    This page intentionally l e f t blank

    D-12

  • WHC-SD-SNF-CSER-002 Rev. 1

    WHC-SD-SNF-CSER-002 Rev. 0

    CRITICALITY SAFETY EVALUATION REPORT FOR K BASIN FILTER CARTRIDGES

    1 .O INTRODUCTION

    A nuclear criticality analysis has been performed for filter cartridge cage assemblies used in the Hanford Site KE and KW Basins. cartridge assembly holds 88 filter cartridges arranged in a cluster configuration. The filter cartridge cage assembly removes particulates from the basin water by trapping materials in the polypropylene fiber of the filter cartridges. plutonium buildup beyond 225 g in each filter cartridge assembly.

    filter cartridge assembly cluster geometry using the W-PIJ module of the British YIMS-E code (Gubbins et al. 1982). Data were obtained for an average uranium and plutonium concentration typical o f the center-of-basin in KE Basin. These data, along with the flow rate through the filter cartridge assembly, allowed for the estimation of the fissionable material buildup inside the filter assembly with time. Several off-normal contingencies were analyzed, including buildup of fissionable material beyond the planned replacement period, loss of geometry control within the filter assembly, and lower-than-expected U/Pu ratios. The effects of reduced density moderation were also calculated, a condition which would occur as the filter cartridge assembly is raised out of the basin during replacement and placed in dry storage. Additional calculations evaluating criticality physics trends are discussed in Appendix A.

    Each filter

    The previous administrative limit was designed to prevent

    Normal operation was analyzed by performing explicit calculations of the

    2.0 OESCRIPTION OF SYSTEN AND FACILITY

    The filter cartridge cage assembly contains 88 filter cartridges placed in concentric rings. made of a polypropylene fiber wound around a hollow, 304 stainless steel core. The stainless steel core wall is 0.028 cm (0.011 in.) thick, and has an outer diameter of 2.7041 cm (1.0646 in.) The outer diameter of the filter cartridge i s 6.35 cm (2.5 in.) The internal arrangement of filter cartridges inside the cage assembly i s shown in Figure 1. The filter cartridges are held in place by two end plates, pulled together with tie rods. cartridge assembly is 76.2 cm (30 in.) assemblies in the basin and water flows through the assembly in operation at 107,880 L/hr (28,500 gal/hr). located near the bottom of the basin floor in the K Basins. cartridge cage assemblies are separated by a sufficient amount of water to provide neutronic isolation, approximately 51 cm (20 in.) A layout o f the K'Basins showing the location of the filter cartridge assemblies is shown in Figure 2.

    Each filter cartridge is 76.2 cm (30 in.) long, and is

    The diameter of the filter There are two filter cartridge

    The filter cartridge cage assemblies are The two filter

    3.0 REQUIRENENTS OOCUNENTATION

    There are no unique requirements applicable to this evaluation.

    0-13

  • -~

    WHC-SD-SNF-CSER-002 Rev. 1

    WHC-SD-SNF-CSER-002 Rev. 0

    Flgure 1. Cross Sectional Layout of Fllter Cartridges inside Filter Cartrldge Cage Assembly,

    I 0'

    2

    D-14

  • .-

    WHC-SD-SNF-CSER-002 Rev. 1

    WC-SD-SNF-CSER-002 Rev. 0

    Figure 2 105K Prlmary Recirculatlon System.

    ..............

    . 51.

    ' t f i

    ..... I . ...... J 'Ti

    3

    D-15

  • .-

    WHC-SD-SNF-CSER-002 Rev. 1 .:

    WHC-SO-SNF-CSER-002 Rev. 0

    4.0 M€THOOOL06Y

    The criticality analysis used the WIMS-E computer code (Gubbins et al. 1g82), a commercially licensed software system from the British ANSWERS organization. designed to execute and communicate using a comnon set Of interfaces. nuclear cross section data library accessed by WIMS-E is the '1986' WIMS library (Halsall, et al. 1986). Site on several different HP workstations. executes WIMS-E on any one of several HP735 workstations at the 3200 George Washington Way building. the home directory of the Hanford Site WIMS-E code custodian.

    As a commercially licensed software product, WIMS-E has been extensively benchmarked and validated against a large set of test problems supplied by the British. In addition to this set of test problems, WIMS-E has been thoroughly validated against low-enriched uranium metal and plutonium systems such as those at the Hanford Site. plutonium solutions (Schwinkendorf 1992b). N Reactor MKIA tube-in-tube fuel assemblies and uranium rods of various enrichments and diameters (Schwinkendorf 1992a), and uranium metal billets (Erickson 1991). WIMS-E has been shown to conservatively predict criticality in a highly consistent manner. The two-dimensional WIMS-E module W-PIJ was used at Hanford previously to calculate core reactivity for the 300 Area Neutron Radiography Facility (Schwinkendorf 1990). core loading arrangement of the reactor in (r,e) geometry, using integral transport theory. With an axial leakage buckling correction and an outer albedo normalized t o initial startup data, this model successfully predicted the shutdown margin for a proposed new loading.

    The GOLF computer code (Schwinkendorf 1994) was used to calculate finite hemisphere dimensions for kef, - 0.95 and k,,, = 1.0 masses for the contingency analysis in which the filter cartridge assembly breaks apart and the individual filter cartridges come together into an optimum geometry. The GOLF code is a one-dimensional neutron diffusion theory program used at the Hanford Site in the past for the calculation of minimum critical and safe masses in various geometries. GOLF may use either two- or four-group, lattice-averaged, macroscopic cross sections generated by WIMS-E.

    It is a collection of neutron transport and utility programs The

    WIMS-E is licensed for use at the Hanford Westinghouse Hanford currently

    The shell script that executes WIMS-E is located in

    WIMS-E has been validated against uranium and

    W-PIJ was used to model the explicit, full

    The core geometry was arranged in concentric rings.

    5.0 DISCUSSION OF CONTINGENCIES

    Off-normal scenarios considered in this criticality safety evaluation include failure to replace the filter cartridge assembly when required to do so (resulting in an ever-increasing loading of fissionable material), the loss of geometry in the filter cartridge assembly (resulting in optimal spacing of the filter cartridges within the assembly), and lower-than-expected values for U/Pu. The loss of fission and corrosion products was assumed for all scenarios analyzed.

    4

    D-16

  • WHC-SD-SNF-CSER-002 Rev. 1

    UHC-SO-SNF-CSER-002 Rev. 0

    The maximum credible amount of sludge material to accumulate iniide the filter cartridge medium was assumed to be a "thick paste" of 4.0 g/cm heavy m tal oxide solution, in which the heavy metal was composed of both 0.95-wtX

    The U/Pu ratio was assumed to equal 400 for normal conditions, and U/Pu - 10 was used in the contingency analyses; U/Pu - 10 is lower than any U/Pu data available for KE Basin, so this is considered a bounding case. Extensive chemical analysis of K Basin sludge samples has established that U/Pu - 400 is a best-estimate (see Appendix 8). calculations. The nominal time required for this amount of buildup (4.0 g/cm3 of mixed uranium plutonium oxide in the available void spaces inside the filter medium) was determined to be just over two years at U/Pu - 400.

    in uranium and 12-wtX 2'0Pu in plutonium.

    This value is also consistent with reactor production

    As fissionable material builds up inside the filter cartridge assembly, the amount o f water moderator required for maximum reactivity will shift to maintain $he optimum. At the maximum credible plutonium loading analyzed (4.0 g/cm o f oxide), the system is undermoderated with full density moderation.

    6.0 EVALUATION AND RESULTS

    6.1 NORMAL CONOITIONS

    The filter cartridge is a particulate removal system very similar to the sand filter. It will remove particles of uranium oxide, plutonium oxide, fission products, and corrosion products. These materials will be trapped by the polypropylene fiber and accumulate there. In the sand filter the sand is periodically cleaned by a back wash, and the collected particulates are washed into the sand filter backwash pit. Extensive characterization o f the sludge in the backwash pit has taken place, detailed chemical and isotopic analyses have been performed, and the sludge's composition is well known. The filter cartridge should be removing the same type of sludge from the water. Therefore as the filter cartridge becomes loaded, it will have sludge in it very similar to that found in the backwash pit.

    Under normal operation the filter cartridges will collect sludge consisting of fission and corrosion products and uranium and plutonium oxides in a ratio of U/Pu = 400. Calculations have shown that at these U/Pu ratios, with fission products and corrosion products present, the filter cartridge cage cannot be made critical under any coqditions irrespective of whether the uranium enrichment is 0.95- or 1.25-wtX U (Erickson 1994a, 1994b).

    If a very conservative assumption is made that the fission products and corrosion products disappear and we are left only with a uranium and plutonium oxide system in the filter cartridge, the system still cannot be made critical wlth any amount of plutonium present. than 0.95 for typical conditions of moderation and material loadings. highest k f f calculated for a 10-year accumulation of uranium and plutonium is equal to 6.813. Therefore, normal operation of filter cartridges in water and in dry storage will be substantially subcritical and will not exceed keff = 0.95.

    In other words, the k +, will be less