ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine...

26
Ch 10 MOS Digital – Pt. 1 ECES 352 Winter 2007 Ch 10 MOSFETs and MOS Digital Circuits * Examine MOSFET use in inverters * Inverter = two transistors in series Input to gate of driver (at least) Second transistor acts as load Output off connection between transistors * NMOS Inverters Enhancement driver, resistor load Enhancement driver and load Enhancement driver, depletion load * CMOS Inverter N channel driver, P channel load * Analyze to find inverter performance: * Voltage transfer characteristic * Noise margins * Power dissipation * Switching speed Driver Load V i V o

Transcript of ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine...

Page 1: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

1ECES 352 Winter 2007

Ch 10 MOSFETs and MOS Digital Circuits* Examine MOSFET use in inverters

* Inverter = two transistors in series Input to gate of driver (at least) Second transistor acts as load Output off connection between

transistors

* NMOS Inverters Enhancement driver, resistor load Enhancement driver and load Enhancement driver, depletion load

* CMOS Inverter N channel driver, P channel load

* Analyze to find inverter performance: * Voltage transfer characteristic * Noise margins * Power dissipation * Switching speed

Driver

Load

Vi

Vo

Page 2: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

2ECES 352 Winter 2007

MOSFETs and MOS Digital Circuits

* Inverters combined in series and parallel to form digital circuits such as AND’s, NAND’s, OR’s, NOR’s, flip-flops, etc.

* Understanding inverter operation is basic to understanding and describing digital circuit operation

* Also important in modifying their design to enhance their performance, e.g. speed, power dissipation, susceptibility to noise, and fan-out capability

Page 3: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

3ECES 352 Winter 2007

N-Channel Enhancement MOSFET

* Positive voltage on gate attracts electrons to surface to form “induced channel of electrons”.

* Channel forms path for electron flow between source and drain.

* Without channel, have back-to-back diodes in series between source and drain so negligibly small current

Page 4: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

4ECES 352 Winter 2007

N-Channel Enhancement MOSFET* Basics of device operation

VTh = threshold voltage

No channel of electrons for vGS < VTh

No current for vGS < VTh

VTh > 0 for enhancement mode n-channel MOSFET

VTh

Saturation mode operation (large VDS)

iDS

vGS

Increasing vGS

iDS

vDS

Increasing vGS

Channel formation for vGS > VTh

Page 5: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

5ECES 352 Winter 2007

N-Channel Enhancement MOSFET

iDS

vDS

Constant vGS

curve

vDS sat = v GS – VTh

Page 6: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

6ECES 352 Winter 2007

N-Channel Enhancement MOSFET* Cutoff region (vGS < VTh)

* Triode region (vDS < vDSsat)

* Triode-saturation boundary at vDS = vDSsat = vGS - VTh OR

where vGS - vDS = VTh

* Saturation region (vDS > vDSsat)

flow)current the(along

channel theoflength L

flow)current ular to(perpendic

channel theofwidth

strength field electric

elocityelectron v

E

v

secin channel in themobility electron

2

1

n

2

W

/Vcm

tC

L

WCK

n

ox

oxox

oxn

]2[ 2DSDSThGSD vvVvKi

2ThGSD VvKi

where

0DiiDS

vDS

vDS sat = v GS – VTh

Page 7: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

7ECES 352 Winter 2007

* Basics of device operation VTh < 0 for depletion mode n-

channel MOSFET VTh = threshold voltage Channel exists even when no bias

is applied to the gate, i.e for vGS = 0.

Drain current can flow for vGS = 0 and for any vGS > VTh.

No channel of electrons for vGS < VTh

No drain current for vGS < VTh

N-Channel Depletion MOSFET

N-type channel

VTh

Saturation mode operation

iDS

vGS

Page 8: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

8ECES 352 Winter 2007

* Cutoff region (vGS < VTh)

* Triode region (vDS < vDSsat)

* Triode-saturation boundary at vDS = vDSsat = vGS - VTh ORwhere vGS - vDS = VTh

* Saturation region (vDS > vDSsat)

N-Channel Depletion MOSFET

]2[ 2DSDSThGSD vvVvKi

2ThGSD VvKi

flow)current the(along channel theoflength L

flow)current ular to(perpendic channel theofwidth

strength field electric

elocityelectron v

E

v

secin channel in themobility electron

2

1

n

2

W

/Vcm

tC

L

WCK

n

ox

oxox

oxn

* Only difference from enhancement mode device is that the gate voltage may be negative. But vGS must still be larger than the threshold voltage for the device to be on!

0Di

iDS

vDSCutoff

vDS sat = v GS – VTh

vGS= 0

Page 9: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

9ECES 352 Winter 2007

* Cutoff region (vGS < VTh)

* Triode region (vDS < vDSsat)

* Triode-saturation boundary at vDS = vDSsat = vGS - VThORwhere vGS - vDS = VTh

* Saturation region (vDS > vDSsat)

N-Channel Enhancement vs Depletion MOSFET

]2[ 2DSDSThGSD vvVvKi

2ThGSD VvKi

flow)current the(along channel theoflength L

flow)current ular to(perpendic channel theofwidth

strength field electric

elocityelectron v

E

v

secin channel in themobility electron

2

1

n

2

W

/Vcm

tC

L

WCK

n

ox

oxox

oxn

0Di

Depletion MOSFET (VTh < 0 )

Enhancement MOSFET (VTh > 0 )

vGS < VTh

vGS = 0

iDS

vDS

iDS

vDS

Page 10: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

10ECES 352 Winter 2007

NMOS Inverter (E-MOSFET + Resistor Load)* Analyze to find inverter

performance: voltage transfer characteristic, noise margins, power dissipation and switching speed

* Transistor characteristics (driver)

KR

VV

D

DD

2

5

vi

+

_

vo

+

_

2

272

27

614

ox

6

2

/3.0

)1

5)(/1077.1sec)(/700(

2

12

1

/1077.1

)102/()/1085.89.3(

/ ecapacitanc oxide Gate

10220s thicknesoxide Gate

sec/700mobility Electron

1 Llength Channel,5 width Channel

)modent (enhanceme0.1

VmA

m

mcmFxVcm

L

WCK

cmFx

cmxcmFxxC

tC

cmxnmt

Vcm

mmW

VV

oxn

ox

oxox

ox

n

Th

Page 11: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

11ECES 352 Winter 2007

* Device operation in inverter Load line comes from connections of transistor in the circuit

For a given vGS, e.g. 3V (=VTh+2V), transistor’s operating point is where load line crosses vGS = 3V transistor characteristic.

Transistor must operate on load line as gate voltage changes. At points A, the transistor is in cutoff mode (small vGS). Between points A and C (larger vGS), transistor is in saturation mode. Between points C and D (even larger vGS), transistor is in triode

mode.

NMOS Inverter - Load Line

VDD

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

A.C

D

DS

D

DDD

DSDDDDo

R

v

R

Vi

orviRVv

DVDD/RD

=5V/2K=2.5 mA

Load line

+

_

vo = v DS

iDS

vDS

Increasing vGS

Page 12: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

12ECES 352 Winter 2007

* Voltage transfer characteristic Vo versus Vi

* Region I (A to B) 0 < Vi < VTh

iD = 0 since transistor is off, i.e. in cutoff.

NMOS Inverter (E-MOSFET + Resistor Load)

vi

+

_

vo

+

_

vi

vo

00

A B

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

5V

VTh=1V

A to B

.5V

I

iDS

vDS

Page 13: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

13ECES 352 Winter 2007

* Region II (B to C) Vi > VTh and iD > 0 since transistor is on.

iD is increasing as Vi = vGS increases

Transistor is operating in saturation mode since vDS > vDSsat

NMOS Inverter (E-MOSFET + Resistor Load)

vi

+

_

vo

+

_

vi

vo

00

A B

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

5V

VTh =1V

A to B

.5V

C

V

VvV

VvV

mAKViRVv

iVvV

mAVvKi

i

iRDDDo

RiThGSD

2

22

22

2

16.05

13.025

13.0

C

I II

vDSsat

iDS

vDS

Page 14: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

14ECES 352 Winter 2007

* Where is point C and what are the corresponding values of Vi and Vo?

* At C, transistor is operating at the edge of the saturation mode where

NMOS Inverter (E-MOSFET + Resistor Load)

vi

+

_

vo

+

_

vi

vo

00

A B

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

5V

VTh

A to B

.5V

C

VVVV(at C)v(at C)vThen

V(at C)vsoandVorV

KVmA

VKVmA

KR

VKR-(at C) v

v

RVvKVVv

RVvKViRVv

VvVvvvv

Thi

i

D

DDDi

i

DThiDDThi

DThiDDRDDDo

ThiThGSDSsatDSo

2.10.12.2

2.2)possiblenot(8.32.22.1

6.31

2)/3.0(2

)5(2)/3.0(411

2

411

get wefor Solving

get we

equation Line Load with combining So

0

2

2

C

2.2V

1.2V

I II

iDS

vDS

Page 15: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

15ECES 352 Winter 2007

* Region III (C to D) Vi > VTh and iD > 0 since transistor is still on.

Transistor is operating in triode mode so

NMOS Inverter (E-MOSFET + Resistor Load)

vi

+

_

vo

+

_

vi

vo

0

0.95V

A B

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

5V

VTh

A to B

.5V

C

C

I II III

D

K

RKV

RVvK

K

RVvK

v

R

V

RVvKvKv

R

vVii

andvvVvKvvVvKi

D

DD

DThi

DThi

o

D

DD

DThioo

D

oDDRD

ooThiDSDSThGSD

2

412

2

12

01

2

get wegrearrangin and combining so

]2[]2[

2/12

2

22

DAt D, vi = 5V and vo= 0.95V or 8.7V (not possible).

1.2V

2.2V

iDS

vDS

Page 16: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

16ECES 352 Winter 2007

Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load)

* Noise margin for low state Measures degree of

inverter sensitivity to noise for the low state, i.e. how large an input noise signal causes problems at output.

Assumes identical inverter providing input signal

Noise Margin = NML = VIL - VOL where

VOL = output voltage when input set to VOH

VIL = maximum input voltage recognized as a low input

For this inverter design, NML is very low (0.05V) !

Can change by changing R or VTh or transistor’s K.

vi

vo

VOL=0.95V

VOH = 5V

VIL=VTh

= 1.0V

5V

Vi =VOL

= 0.95V

NML= VIL - VOL

= 1.0 V- 0.95 V = 0.05 V

Normal low input signal size without noise.

Input signal size with noise that causes problems..

high lowhigh

Page 17: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

17ECES 352 Winter 2007

Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load)

* Noise margin for high state Measures degree of inverter

sensitivity to noise for the high state, i.e. how large a negative input noise signal causes problems at the output.

Assumes identical inverter providing input signal

Noise Margin = NMH

= VOH - VIH where VOH = output high voltage

when input set to VOL

VIH = minimum input voltage recognized as a high input

Can change by changing R or VTh or transistor’s K.

How do we find VIH?

vi

voVOH = 5V

VIH

5V

NMH = VOH - VIH

Vi=VOH

VOL= 0.95V

Slope = -1

Normal high input signal size without noise.

Input signal size with noise that causes problems.

low highlow

Page 18: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

18ECES 352 Winter 2007

* Noise margin for high state Noise Margin = NMH = VOH - VIH

where VOH = output high voltage when

input set to VOL

VIH = minimum input voltage recognized as a high input

Can find VIH by using expression derived for region II

This VIH is less than 2.2V where FET enters region III, so our guess that device at VIH is in region II is okay.

Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load)

vi

voVOH = 5V

VIH

5V

NMH = VOH - VIH

= 5 V- 1.83 V = 3.17 V

Vi=VOH

VOL=0.95V

Slope = -1

VVmAK

V

KRVVv

soVvKRdv

dv

VvKRViRVv

DThIHi

ThiDi

ThiDDDRDDDo

83.1)/3.0)(2(2

11

2

1

120

2

C

2.2V

II III

low highlow

Page 19: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

19ECES 352 Winter 2007

Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load)

* Alternate analysis for Noise margin for high state

Noise Margin = NMH = VOH - VIH

Can find VIH by using expression derived for region III

The noise margin for the high state NMH now becomes smaller.

NMH = VOH – VIH = 5 V- 4.5 V = 0.5 V This is smaller than the previously

determined value, but is still a factor of ten larger than that for the low state NML = 0.05 V.

vi

voVOH = 5V

VIH

5V

NMH = VOH - VIH

= 5 V- 4.5 V = 0.5 V

VOH

VOL= 0.95V C

2.2V

II III

IHi

i

io

D

DD

DThioo

VVvso

v

vforgetweVvpickwe

R

V

RVvKvKv

5.4

02

5

2

1)1)(3.0(2)1(3.0

,1If

01

2

2

2

VO= 1.0 V

low highlow

Page 20: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

20ECES 352 Winter 2007

* Input low, output high. Transistor is off, iD = 0. Power dissipation PH = 0

* Input high (5 V), output low (0.95 V).

* Average Static Power Dissipation P

Power Dissipation for NMOS Inverter (E-MOSFET + Resistor Load)

vi

+

_

vo

+

_

vi

vo

0

0.95V

A B

KR

VV

D

DD

2

5

2/3.0

0.1

VmAK

VVTh

5V

VTh

A to B

.5V

CC

I II III

D

D

1.2V

2.2V

mWmAVP

mAK

VVi

VDvv

L

D

DSo

10)0.2(5

0.22

95.05

95.0)(

mWmW

PPP LH 52

10

2

1

iDS

vDS

Page 21: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

21ECES 352 Winter 2007

Propagation Delays and Switching Times for NMOS Inverters

* Previously considered static characteristics of inverters, e.g. Voltage transfer characteristic.

* Switching performance is also of interest.

* Finite switching times are due to the capacitance load on the output and RC charging and discharging times.

* Capacitance load comes from: 1) gate capacitance of subsequent inverters to which the output is connected and 2) capacitance of interconnect wires to inputs of other gates.

* Propagation delays tPHL = output high to low tPLH = output low to high tP = (1/2)(tPHL+ tPLH) )

defines the speed of the inverter.

vi

+

_

vo

+

_

t

vo

vi

t

Page 22: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

22ECES 352 Winter 2007

Propagation Delays and Switching Times for NMOS Inverters

* Output goes from Low to High Drive transistor turns off Load resistor provides current to

charge up C.

tPLH = time to charge to the midpoint ½(VOH+VOL) = 1/2(5V + 0.95V) = 3.0V

C

iD= 0

iR

iC

Driver

Load

KRD 2

Resistor

24

1

11

1

101.3

1 L ,5

0.1

V

AxK

mmW

VVTh

CRtOLDDDDo

t

D

tv

V oDD

o

D

oDDR

oC

D

o

OL

eVVVtv

dtCRvV

dv

R

vVi

dt

dvCi

/

0

)(

1

vi=VOL

t

+

_

vo

+

_

vo

VDD

VOL=0.95V

sec140.35

95.05ln)10(2

0.3ln

,10

0.3)( /

nVV

VVpFK

VV

VVCRt

pFCFor

VeVVVtv

DD

OLDDDPLH

CRtOLDDDDPLHo

DPLH

tPLH

3V

Page 23: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

23ECES 352 Winter 2007

Propagation Delays and Switching Times for NMOS Inverters

* Output goes from High to Low Drive transistor turns on But load resistor continues to

provide some current so

tPHL = time to discharge from VOH = VDD to

(VOH+VOL) = 1/2(5V + 0.95V) = 3.0V

C

iD

iR

iC

Driver

Load

KRD 2

Resistor

24

1

11

1

101.3

1 L ,5

0.1

V

AxK

mmW

VVTh

CRtOHDDDDDDDDo

t

D

tv

V DDoDD

o

ThOHThiD

DD

oDDDR

oC

D

o

OH

eVRiVRiVtv

dtCRRivV

dv

VVKVvKi

iR

vVii

dt

dvCi

/

0

22

)(

1

!constant a

t

+

_

vo

+

_

vo

VDD

VOL=0.95V

sec5.40.3)2(55

5)2(55ln)10(2

0.3ln

,10

0.3)( /

nVKmAV

VKmAVpFK

VRiV

VRiVCRt

pFCFor

VeVRiVRiVtv

DdDD

OHDdDDDPHL

CRtOHDDDDDDDDPHLo

DPHL

tPHL

3V

vi =VOH

mAVVV

Ax

VVKVvKi ThOHThiD

5)15(101.3 22

4

22

vi = VOH

Page 24: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

24ECES 352 Winter 2007

Propagation Delays Time for NMOS Inverters

* Output goes from Low to High Drive transistor turns off Load resistor provides current to

charge up C.

* Output goes from High to Low Drive transistor turns on to discharge

the capacitor but Load resistor continues to provide

current.

* Average Propagation Time tPD

sec5.40.3

ln nVRiV

VRiVCRt

DdDD

OHDdDDDPHL

C

iD= 0

iR

iC

Driver

Load

KRD 2

Resistor

24

1

11

1

101.3

1 L ,5

0.1

V

AxK

mmW

VVTh

vi=VOL

t

+

_

vo

+

_

voVDD

VOL=0.95V

sec140.3

ln nVV

VVCRt

DD

OLDDDPLH

tPLH

3V

sec10sec14sec5.42

1

2

1nnnttt PLHPHLPD

vo

VDD

VOL=0.95V

tPHL

3V

t

Page 25: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

25ECES 352 Winter 2007

Propagation Delay for NMOS Inverter

* Output goes from High (VOH = 5V) to Low (VOL = 0.95V)

Driver transistor Q

(starts from P R S T) At outset, Q is off (P), and

vDS1 = vo = VOH = 5V, vi < VTh

Driver turns on (P to R) when vGS is switched to VOH = 5 V.

Driver initially is in saturation mode, then eventually moves into triode as capacitor discharges and vo (= vDS) decreases

Q moves along constant vGS characteristic (R S T).

Ends at (T) in triode region, where vDS = vo = VOL = 0.95V.

Load resistor continuously providing current opposing discharge of capacitor.

* Output goes from Low to High Drive transistor is off

(vi = 0.95 V < VTh = 1.0 V Transistor moves from T P as the

output voltage vo rises to 5 V.

C

iD

iR

iC

Load

Driver

Driver

P

SR

T

vo =VOH = 5 V

vi = vGS = VOH =5 V

vo=VOL

=0.95V

iDS

vDS

Page 26: ECES 352 Winter 2007 Ch 10 MOS Digital – Pt. 1 1 Ch 10 MOSFETs and MOS Digital Circuits *Examine MOSFET use in inverters *Inverter = two transistors in.

Ch 10 MOS Digital – Pt. 1

26ECES 352 Winter 2007

* Resistor’s Undesirable Effects

Wasted power for transistor on (output low)

Resistor provides limited charging current

Maximum iR = 2 mA, but iR decreases

as vo rises.

iR slows down discharge of C when

output goes low.

Power-Delay Product for NMOS Inverter (E-MOSFET + Resistor Load)

* Average Propagation Time tPD

* Average Power Dissipation P

* Power-Delay Product DP

C

sec10sec14sec5.42

1

2

1nnnttt PLHPHLPD

mWmW

PPP LH 52

)100(

2

1

pJnmWtPDP PD 50sec)10(5

mWPmAK

VV

R

VVi L

D

OLDDR 10 and 0.2

2

95.05

* Problems with this inverter: * Unequal noise margins! NML = 0.05 V, NMH = 3.17 V * Unequal transition times! τPHL = 4.5 nsec, τPLH = 14 nsec * Significant power dissipation!Can we improve on this inverter ?