ECE685 Nanoelectronics – Semiconductor Devices

45
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li

description

ECE685 Nanoelectronics – Semiconductor Devices. Lecture given by Qiliang Li. Silicon Structure. Unit cell of silicon crystal is cubic. Each Si atom has 4 nearest neighbors . Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Si. Dopants, Electrons and holes. As. B. - PowerPoint PPT Presentation

Transcript of ECE685 Nanoelectronics – Semiconductor Devices

Page 1: ECE685 Nanoelectronics – Semiconductor Devices

ECE685 Nanoelectronics – Semiconductor Devices

Lecture given by Qiliang Li

Page 2: ECE685 Nanoelectronics – Semiconductor Devices

• Unit cell of silicon crystal is cubic.

• Each Si atom has 4 nearest neighbors.

Silicon Structure

Page 3: ECE685 Nanoelectronics – Semiconductor Devices

Si Si Si

Si Si

Si Si Si

Si Si Si

Si Si

Si Si Si

As B

Dopants, Electrons and holes

Page 4: ECE685 Nanoelectronics – Semiconductor Devices

N-type

P-type

Relationship between Resistivity and Dopant Density

= 1/

DOPA

NT D

ENSI

TY c

m-3

RESISTIVITY

(cm)

Page 5: ECE685 Nanoelectronics – Semiconductor Devices

GaAs, III-V Compound Semiconductors, and Their Dopants

As AsGa

Ga

· GaAs has the same crystal structure as Si.· GaAs, GaP, GaN are III-V compound semiconductors, important for optoelectronics.· Wich group of elements are candidates for donors? acceptors?

GaAs

AsGa Ga

Page 6: ECE685 Nanoelectronics – Semiconductor Devices

Energy Band Model

· Energy states of Si atom (a) expand into energy bands of Si crystal (b).· The lower bands are filled and higher bands are empty in a semiconductor.· The highest filled band is the valence band.· The lowest empty band is the conduction band .

2p

2s

(a) (b)

conduction band)(

(valence band)

Filled lower bands

} Empty upper bands

}

Page 7: ECE685 Nanoelectronics – Semiconductor Devices

Energy Band Diagram

Conduction band Ec

Ev

Eg

Band gap

Valence band

· Energy band diagram shows the bottom edge of conduction band, Ec , and top edge of valence band, Ev .

·

Ec and Ev are separated by the band gap energy, Eg .

Page 8: ECE685 Nanoelectronics – Semiconductor Devices

Donor and Acceptor in the Band Model

Conduction Band Ec

EvValence Band

Donor Level

Acceptor Level

Ed

Ea

Donor ionization energy

Acceptor ionization energy

Ionization energy of selected donors and acceptors in silicon

AcceptorsDopant Sb P As B Al In

Ionization energy, E c –E d or E a –E v (meV) 39 44 54 45 57 160

Donors

Page 9: ECE685 Nanoelectronics – Semiconductor Devices

Device Fabrication

Oxidation

Lithography &Etching

Ion Implantation

Annealing & Diffusion

Page 10: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Beginning from a silicon wafer

Page 11: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Thermal Oxidation

Page 12: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Spin-on Photo Resist (PR)

Page 13: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Alignment, UV Expose and Develop Photo Resist (PR)

Page 14: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Oxide Etched

Page 15: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Remove Photo Resist (PR)

Page 16: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Doping (implantation or diffusion)

Page 17: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Grow Field Oxide (wet/dry) and dopant diffusion

Page 18: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Spin-on Photo Resist (PR)

Page 19: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Alignment, UV Expose and Develop Photo Resist (PR)

Page 20: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Oxide Etched

Page 21: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Remove Photo Resist (PR)

Page 22: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Grow Gate Oxide (dry)

Page 23: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Spin-on Photo Resist (PR)

Page 24: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Alignment, UV Expose and Develop Photo Resist (PR)

Page 25: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Field Oxide Etched

Page 26: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Field Oxide Etched

Page 27: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Metal (e.g., Aluminum) deposition

Page 28: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Spin-on Photo Resist (PR)

Page 29: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Alignment, UV Expose and Develop Photo Resist (PR)

Page 30: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Aluminum Etched

Page 31: ECE685 Nanoelectronics – Semiconductor Devices

Side View Top View

Remove Photo Resist (PR), annealing - complete

Page 32: ECE685 Nanoelectronics – Semiconductor Devices

PN junction is present in perhaps every semiconductor device.

N P

VI

– +

PN Junction

V

I

Reverse bias Forward bias

Donor ions

N-type

P-type

Page 33: ECE685 Nanoelectronics – Semiconductor Devices

Energy Band Diagram of a PN Junction

A depletion layer exists at the PN junction where n 0 and p 0.

Ef is constant at equilibrium

Ec and Ev are smooth, the exact shape to be determined.

Ec and Ev are known

relative to Ef

N-region P-region(a) Ef

(c)

Ec

Ev

Ef

(b)

Ec

Ef

Ev

Ev

Ec

(d)

Depletionlayer

Neutral P-region

NeutralN-region

Ec

Ev

Ef

Page 34: ECE685 Nanoelectronics – Semiconductor Devices

Light emitting diodes (LEDs)•LEDs are made of compound semiconductors such as InP and GaN.• Light is emitted when electron and hole undergo radiative recombination.

Ec

Ev

Radiative recombination

Non-radiative recombination through traps

Page 35: ECE685 Nanoelectronics – Semiconductor Devices

LED Materials and Structure

)(24.1

energy photon24.1 m) ( h wavelengtLED

eVEg

Page 36: ECE685 Nanoelectronics – Semiconductor Devices

Common LEDs

AlInGaP Quantun Well

Page 37: ECE685 Nanoelectronics – Semiconductor Devices

V

I

Reverse bias Forward bias

V = 0

Forward biased

Reverse biased

Schottky Diodes

Page 38: ECE685 Nanoelectronics – Semiconductor Devices

MOS: Metal-Oxide-Semiconductor

SiO2

metal

gate

Si body

Vg

gate

P-body

N+

MOS capacitor MOS transistor

Vg

SiO2

N+

Page 39: ECE685 Nanoelectronics – Semiconductor Devices

Surface Accumulation

fbgox VVV

)( fbgoxacc VVCQ

oxsox CQV /

oxaccox CQV /Gauss’s LawVg <Vt

Page 40: ECE685 Nanoelectronics – Semiconductor Devices

ox

ssa

ox

depa

ox

dep

ox

sox C

qNC

WqNCQ

CQV

2

Surface Depletion ( )gV > Vfb

Ec, Ef

Ev

Ec

Ef Ev

M O S

qVg

depletion region

qs

Wdep

qVox

- - --SiO

2

gate

P-Si body

+ + + + + + - - - - - - -

V - - - - - - -

depletion layer charge, Q dep

- - - - - - -

Page 41: ECE685 Nanoelectronics – Semiconductor Devices

Threshold Condition and Threshold Voltage

Threshold (of inversion):ns = Na , or

(Ec–Ef)surface= (Ef – Ev)bulk , or

A=B, and C = D

i

aBst n

Nq

kT ln22

i

a

a

v

i

vbulkvf

gB n

Nq

kTNN

qkT

nN

qkTEE

Eq lnlnln|)(

2

Ec, Ef

M O S

Ev

Ef

Ei

Ec

A

B

C = qB

Ev

DqVg

= qVt

st

ox

BsaBfbgt C

qNVthresholdatVV

222

Page 42: ECE685 Nanoelectronics – Semiconductor Devices

Threshold Voltage

ox

BssubBfbt C

qNVV

222 + for P-body,

– for N-body

(a)

(b)

Tox = 20nm

V t(V), N

+ gat

e/P-bo

dy

V t(V), P

+ ga

te/N-

body

Body Doping Density (cm-3)

Body Doping Density (cm-3)

V t(V), P

+ ga

te/N-

body

V t(V), N

+ ga

te/P-b

ody

Tox = 20nm

Page 43: ECE685 Nanoelectronics – Semiconductor Devices

Strong Inversion–Beyond Threshold

Ec, Ef

Ev

Ec

Ef Ev

M O S

qVg

-

-

- - --

a

Bsdmaxdep qN

WW 22Vg > Vt

SiO2

gate

P - Si substrate

++++++++++

V

Vg > Vt

- - - - - --- - - - - - - -

Q dep Qinv

Page 44: ECE685 Nanoelectronics – Semiconductor Devices

Basic MOSFET structure and IV characteristics

+ +

Page 45: ECE685 Nanoelectronics – Semiconductor Devices

)(0 dstgsnsoxeds

ds mVVVCL

WdVdI

m

VVV tgs

dsat