ECE606: Solid State Devices Lecture...

21
Klimeck – ECE606 Fall 2012 – notes adopted from Alam ECE606: Solid State Devices Lecture 10 Gerhard Klimeck [email protected] Klimeck – ECE606 Fall 2012 – notes adopted from Alam Outline 2 1) Derivation of SRH formula 2) Application of SRH formula for special cases 3) Direct and Auger recombination 4) Conclusion Ref. ADF, Chapter 5, pp. 141-154

Transcript of ECE606: Solid State Devices Lecture...

Page 1: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State DevicesLecture 10

Gerhard [email protected]

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

2

1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion

Ref. ADF, Chapter 5, pp. 141-154

Page 2: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Sub-processes of SRH Recombination

3

(1)

(3)

(2)

(4)

(1)+(3): one electron reduced from Conduction-band & one-hole reduced from valence-band

(2)+(4): one hole created in valence band and one electron created in conduction band

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

SRH Recombination

4

Physical picture

(1)

(3)

(2)

(4)

(1)+(3): one electron reduced from C-band & one-hole reduced from valence-band

Equivalent picture

(1)

(3)

(2)

(4)

(2)+(4): one hole created in valence band & one electron created in conduction band

Page 3: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Changes in electron and hole Densities

5

1 2,

n

t

∂ =∂

− n Tc n p ( )1n T ce n f+ −

p Tc p n− υ+ p Te p f3 4,

p

t

∂ =∂

(1) (2)

(3) (4)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Detailed Balance in Equilibrium

6

1 2,

n

t

∂ =∂ 0 0− n Tc n p 0+ Tne n

(1) (2)

(3) (4)

0 0 00 = − +T n Tnn p e nc

0 01

0

= ≡T

Tn nn

n pn

nce c

( )0 0 0 10 = − −T Tn n p n nc

p Tc p n−p Te p+

3 4,

p

t

∂ =∂

0 0 00 p T T pc p n p e= − +0 0

10

p Tp p

T

c p ne c p

p≡ =

( )0 0 0 10 = − −T Tp p n p pc

( )1 1cf− ≈ Assume non-degenerate

Fundamental concept of detailed balance,

connecting 2 counteracting

processes.

Subscripts 0 indicate equilibrium

Page 4: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Expressions for (n1) and (p1)

7

01

0 0= T

T

n p

nn

(1) (2)

(3) (4)

01

0 0= T

T

p n

pp

0 0 0 0

0 01 1 = ×T T

T T

n p nn

p

n pp 2

0 0= = in p n

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Expressions for (n1) and (p1)

8

001

0

=T

Tpnn

n

( ) ( )

( )1

F i T F

T i

E E E Ei D

E Ei D

n n e g e

n g e

β β

β

− −

=

=

21 1 = ip n n

( )

21 1

1 i T

i

E Ei D

p n n

n g eβ −−

=

=

( )( )

00

000 1

=−

T

T

Nn

N f

f

( ) ( )0001

1 β −= =+

−T F

TT T E E

D

Nn

g efN

ET

Trap is like a donor! f00=empty trap prob.

( )00

11

1 expf

g=

+− 00

11

1 xf

g e p= −

+

00 1

g expf

g exp=

+00

00 111

1

g exp/ g exp

g exp g exf

f p= =

+ +−

Page 5: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Dynamics of Trap Population

9

Tn

t

∂ =∂ 3 4,

p

t

∂+∂

(1)

(3)

(2)

(4)

n Tc n p= n Te n− p Tc pn− p Te p+

1 2,

n

t

∂−∂

( )1n T Tc np n n= − ( )1p T Tc p n p p− −

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Steady-state Trap Population

10

0Tn

t

∂ =∂

( )1n T Tc np n n= − ( )1p T Tc p n p p− −

( ) ( )1

1 1

n T p TT

n p

c N n c N pn

c n n c p p

+=

+ + +

(1)

(3)

(2)

(4)

T T TN p n= +

T T Tp N n= −

( )( ) ( )( )1 10 n T T T p T T Tc n N n n n c pn N n p= − − − − −

( )1 1 1T n n p p n T p Tn c n c n c p c p c nN c p N+ + + = +

Page 6: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Net Rate of Recombination-Generation

11

( ) ( )

2

1 1

1 1

−=

+ + +

i

p T n T

np n

n n p pc N c N

(1)

(3)

(2)

(4)

( )1= − = −p T T

dpR c p n p p

dt

τ n τ p

( ) ( )1

1 1

n T p TT

n p

c N n c N pn

c n n c p p

+=

+ + +

T T Tp N n= −

( )1 1p T T Tc p n N p n p= − +

( )1 1p T p Tc n p p c N p= + −

1n T p Tc N n c N p

A

+=

( ) 11 1

n T p Tp p T

c N n c N p Ac p p c N p

A A

+= + −

( )1 1 1 1 1 1 1 1 1 1p T

n n p p n n p p

c Npc n p c n pc p p c p p c n p c n p c p p c p

A= + + + − − − −

( )1 1p T nc N c

pn p nA

= −

21 1 ip n n=

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Net Rate of Recombination-Generation

12

( ) ( )

2

1 1

1 1

−=

+ + +

i

p T n T

np n

n n p pc N c N

(1)

(3)

(2)

(4)

( )1= − = −p T T

dpR c p n p p

dt

τ n τ p

Page 7: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

13

1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 1: Low-level Injection in p-type

14

( )( )( ) ( )

20 0

0 1 0 1τ τ∆

∆∆+ + −

=+ ∆+ + + +

i

p n

n p n

n n pn

n

p p

n

( ) ( )2

1 1

i

p n

np nR

n n p pτ τ−=

+ + +

( )( ) ( )

20 0

0 1 0 1τ τ+ +

=+ ∆+ +

∆ ∆∆ + +p n

nn n

n

p

n pn p p

2

0 0

0n

p n n

∆ ≈∆≫ ≫

( )( )

0

0τ τ∆=

∆=

n n

p

p

n n

0 ∆+n n

0 ∆+p n

Lots of holes, few electrons => independent of holes

Page 8: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 2: High-level Injection

15

( )( )( ) ( )

20 0

0 1 0 1τ τ∆

∆∆+ + −

=+ ∆+ + + +

i

p n

n p n

n n pn

p

p p

n

( ) ( )2

1 1

i

p n

np nR

n n p pτ τ−=

+ + +

( )( ) ( )

0 0

0 1 1

2

0τ τ+ +

=+ ∆+ +

∆ ∆∆ + +p n

nn n

n

p

n nn p p

0 0n p n∆ ≫ ≫( ) ( )2

τ τ τ τ∆ ∆

∆= =

+ +n p n p

n n

n

0 ∆+n n

0 ∆+p n

e.g. organic solar cells

Lots of holes, lots of electrons => dependent on both relaxations

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

High/Low Level Injection …

16

0 0n p n∆ ≫ ≫( )high

n p

lowp

nR

nR

τ τ

τ

∆=+

∆= 0 0p n n∆≫ ≫

which one is larger and why?

Page 9: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 3: Generation in Depletion Region

( ) ( )2

1 1

i

p n

np nR

n n p pτ τ−=

+ + +

( ) ( )2

1 1

i

p n

n

n pτ τ−=+

1 1n n p p≪ ≪

Depletion region – in PN diode: n=p=0

NEGATIVE Recombination => Generation

n=p=0 << ni => generation to create n,pEquilibrium restoration!

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

18

1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion

Page 10: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Band-to-band Recombination

19

( )( ) 20 0 0∆ = + + −∆ × ∆≈iR B n p n Bppn n

( )2 2i iR B np n Bn= − ≈ −

( )2iR B np n= −

( )0 0n n p p∆ = ∆≪ ≪

0n, p∼

Direct generation in depletion region

Direct recombination at low-level injection

B is a material property

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Auger Recombination

20

22

1ττ

≈ =∆ =∆p A auger

auger p A

R c Nc N

nn

( ) ( )2 2

29 6

2 2

10 cm /sec−

= + −−n p i

n

i

p

R c c np n p

c ,c ~

n p n n

( ) ( )0 0 An n p p N∆ = ∆ =≪ ≪

Auger recombination at low-level injection

2 electron & 1 hole

Page 11: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effective Carrier Lifetime

21

SRH direct AugerR R R R= + +

Light

( ) ( )0 τ−

∆ = ∆ = eff

t

n t n t e∆n 1 1 1

SRH direct Auger

nτ τ τ

= ∆ + +

( )2n T D n,auger Dn c N BN c N= ∆ + +

( ) 12τ−

= + +eff n T D n,auger Dc N BN c N

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effective Carrier Lifetime with all Processes

22

ND

( ) 12τ−

= + +eff n T D n,auger Dc N BN c N

2τ −≈eff n,auger Dc N

Elec. Dev. Lett., 12(8), 1991.

Page 12: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Conclusion

23

SRH is an important recombination mechanism in important semiconductors like Si and Ge.

SRH formula is complicated, therefore simplification for special cases are often desired.

Direct band-to-band and Auger recombination can also be described with simple phenomenological formula.

These expressions for recombination events have been widely validated by measurements.

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

24

1) Nature of interface states

2) SRH formula adapted to interface states

3) Surface recombination in depletion region

4) Conclusion

REF: ADF, Chapter 5, pp. 154-167

Page 13: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Surface states: Little bit of history

25

Emitter Base

Collector

Hoerni’s diagram of Mesa and planar transistors

One of the fundamental advances in semiconductor history

Emitter Base

Collector

Defect Induced Leakage Path

Silicon oxide

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Atomic configuration of Surface States

26

Single bonds

Page 14: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Surface States

27

x

E

k

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Multiple Levels of Surface States

28

x

E E

k

Page 15: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Multiple Levels of Surface States

29

xwrongokay

x

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

30

1) Nature of interface states

2) SRH formula adapted to interface states

3) Surface recombination in depletion region

4) Conclusion

Page 16: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Surface Recombination Current

31

( ) ( )

2

1 1

1 1i

bulk

p nT TN

np nR

n n p pc c N

−=+ + +

( ) ( ) ( )( ) ( )

2

1 1

1 1

−=

+ + +

s s i

s s s sp

T

s ns

Dn p nR E

n n pc c

E

p

E d

( )C

V

E

E

R R E dE= ∫

For single level bulk traps ….

( )( ) ( )

2

1 1

1 1i

p n

Tnp n

n n p pc c

N−=

+ + +

For single level interface trap at E …

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 1: Minority Carrier Recombination

32

( ) ( )( ) ( )( ) ( )

20 0

0 1 0 0

0 0

0 1

1 1

+ ∆

+ ∆ − =+ + ∆+ + +

s s i

s s

s

s

s IT

s s sps ns

n p n

n

n p D E d

p

ER

pE

n n pc c

( )0

1

0

0

10

0

1

∆=

+ +

s IT

s ss

ps ps s ns s

s p D E dE

n pn

c c n c n

n

( )0

1 1

0 0

1

∆=

+ +

ps s IT

pss s

s ns s

c p D E dE

cn p

n c n

Donor doped

ns0+∆ns0

ps0+∆ps0

Page 17: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Consider the Denominator …

33

( )

( )

( )

( )1i

F i

i

F i

ps

ns

E Ei

E E E Ei i

E Ei n ec

n

n

n

e

e ec− −

− − −

= + +β

β

β

β

1 1

0

1

0

11 1s s

ps ps

ns ns

ss s

D

s

D

n n

n n

c cD

c c

p p

N N= + + = + +

( ) ( )1 F FE E E Eps

ns

ce e

c− −= + +β β

( )1 x xFe ae x E E−= + + ≡ −β

ns0+∆ns0

ps0+∆ps0

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Consider the Denominator …

34

At 0 1 1 2psF i

ns

cE E E , x D small

c= > = = + + × ≈

FE 'FE

At 1 1psi ii

D ns D

cn nE E D

N c N= ⇒ = + + ≈

At 1 1 2F iE E ' E , D small= < = + + =

( ) ( )1

i iE E E Epsi i

D ns D

cn e n eD

N c N

β β− − −

= + +

iE

1

2

iEFE

D

FE '( ) ( )1 F FE E E Eps

ns

ce e

cβ β− −= + +

Page 18: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Approximate the Denominator …

35

iE

FE 'FE

( ) ( )1

i iE E E Epsi i

D ns D

cn e n eD

N c N

− − −

= + +β β

iE

1

2

FE

D

FE '

1 for

otherwise

'F FE E E

D ≤ ≤

≈ ∞

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Integrated Recombination

36

( ) ( )0

1 1

0 0

1

∆= =

+ +

∫ ∫C C

V V

E Eps s IT

psE E s s

s ns s

c p D E dER R E

cn p

n c n

( )0≈ ∆∫F

'F

E

ps s

E

c p D E dE

FE 'FEiE

1

2D

Page 19: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Surface Recombination Velocity

37

( )0≈ ∆∫F

F

E

ps s IT

E

R c p D E dE

Surface recombination velocity

( ) 0'

ps IT F F sc D E E p= − ∆

0sgs p= ∆

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

38

1) Nature of interface states

2) SRH formula adapted to interface states

3) Surface recombination in depletion region

4) Conclusion

Page 20: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 2: Recombination in Depletion

39

( ) ( ) ( )( ) ( )

2

1 1

1 1

−=

+ + +

i IT

s sp

s s

s nss s

n p n D E

n

dER E

n pc c

p

( )

( )2 1

i

i

E E

ns IT iE Ens

ps

e dEc D n

ce

c

−= −

+

β

β

( )

( )2 1

C i

iV

E E E

ns IT iE EnsE

ps

e dER c D n

ce

c

−= −

+∫

β

β

ps~0

ns~0( ) ( ) ( )β β− − −= −+

i i

ii ITE E E E

i i

ps ns

nn D E dE

n e n e

c c

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Case 2: Recombination in Depletion

40

( )

( )2 1

i

i

E E

ns IT iE Ens

ps

e dEc D n

ce

c

β

β

+∞ −

−−∞

= −+

( )

( )2 1

C i

iV

E E E

ns IT iE EnsE

ps

e dER c D n

ce

c

−= −

+∫

β

β

Ps~0

ns~0

20 1

psns IT i

ns

c dxc D n

c xφ

+∞

= −+∫

2ns ps IT ic c D nπβ= −

Page 21: ECE606: Solid State Devices Lecture 10sbisc.sharif.edu/~sarvari/25798/purdue.edu-ECE606_f12_Lecture10.p… · ECE606: Solid State Devices Lecture 10 Gerhard Klimeck gekco@purdue.edu

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Why do donors/acceptors not act as R-G Centers?

41

( ) ( )0

1 1

0 0

1

ps sD

pss s

s ns s

c p D E dER E

cn p

n c n

∆=

+ +

FE 'FE iE

1

2D

( )0 0Dps

D

s Nc p

D E

∆= →

( ) ( )0

1 1

0 0

1

ps sA

pss s

s ns s

c p D E dER E

cn p

n c n

∆=

+ +

( )0 0Aps

A

s Nc p

D E

∆= →

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Summary

42

( )

Interface (depletion)2

Interface (minority)

Bulk (minority)

ns ps IT i

'ps IT F F s

p T

R c c D n

R c D E E p

R c N p

πβ= − ×

= − ∆

= ∆