ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State...

27
Klimeck – ECE606 Fall 2012 – notes adopted from Alam ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck [email protected] Klimeck – ECE606 Fall 2012 – notes adopted from Alam Outline 2 1) Square law/ simplified bulk charge theory 2) Velocity saturation in simplified theory 3) Few comments about bulk charge theory, small transistors 4) Flat band voltage - What is it and how to measure it? 5) Threshold voltage shift due to trapped charges 6) Conclusion Ref: Sec. 16.4 of SDF Chapter 18, SDF

Transcript of ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State...

Page 1: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State DevicesLecture 23

MOSFET I-V CharacteristicsMOSFET non-idealities

Gerhard [email protected]

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

2

1) Square law/ simplified bulk charge theory2) Velocity saturation in simplified theory3) Few comments about bulk charge theory, small

transistors 4) Flat band voltage - What is it and how to measure it?5) Threshold voltage shift due to trapped charges6) Conclusion

Ref: Sec. 16.4 of SDF Chapter 18, SDF

Page 2: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Post-Threshold MOS Current (VG>Vth)

3

( )0

= − ∫DSV

D effch

iQI VVW

dL

µ

1) Square Law

2) Bulk Charge

3) Simplified Bulk Charge

4) “Exact” (Pao-Sah or Pierret-Shields)

[ ]) )( = − − −i G G TC V VQ mVV

[ ]) )( = − − −G Ti GC V VV VQ

( )2 22( )

+ = − − − − −

Si A BG Gi FB B

O

Qq N V

C V V VVC

ε φψ

Formula overview –derivation to follow

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

2ψ B

Effect of Gate Bias

4

P

S G D

B

VGS

n+ n+

Gated doped or p-MOS with adjacent n+ regiona) gate biased at flat-bandb) gate biased in inversion

A. Grove, Physics of Semiconductor Devices, 1967.

WDM

VGS > VT

WD

VBI

y

No source-drain bias

Page 3: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

The Effect of Drain Bias

Alam ECE-606 S09 5

2D band diagram for an n-MOSFET

a) device

b) equilibrium (flat band)

c) equilibrium (ψS > 0)

d) non-equilibrium with VG and VD >0 applied

SM. Sze, Physics of Semiconductor Devices, 1981 and Pao and Sah.

FNDepletion very different in source and drain side Gate voltage must ensure channel formation=> LARGE

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effect of a Reverse Bias at Drain

6

ψ S = 2ψ B + VRVBI + VR

WDM

VGS > VT VR( )

WD

VRVR

Gated doped or p-MOS with adjacent, reverse-biased n+ regiona) gate biased at flat-bandb) gate biased in depletionc) gate biased in inversion

A. Grove, Physics of Semiconductor Devices, 1967.

VR

Page 4: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Inversion Charge in the Channel

7

P

S G

B

n+ n+ ( )

( ( 0)( ) )i ox G th

TA T

Q C V V V

q VVN W W

= − − −+ − =

VG=0VD=0

VVB

VG=0VD>0

VD

VB

VG>0VD>0

D

Channel - Drain)Band diagrams (Gate –

Channel - Drain)

Body potential = constant, n+ region potential lowered

Due to drain bias, additional gate voltage (as compared to threshold in MOSCAP) is now needed to invert the channel throughout its

length

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Inversion Charge at one point in Channel

8

VGVD

VBVG

( )* 2( )A

th Fox

Tq W VNV V

Cφ= + −2

( 0)A Tth F

ox

Wq

C

VNV φ= =−

( )* ( ( 0))T TAth th

ox

qNV V

W WVV

V

C

=−= + −

*( )i ox G thQ C V V= − −

V

Threshold voltage in the presence of drain

bias

Page 5: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Approximations for Inversion Charge

9

( )( ) ( ) ( 0)i O G th A T TQ C V V V qN W V W V= − − − + − =

( ) ( )2 2( ) 22 = − − − + −

+O G th S o A S oB A BC V V V q N q NVφ φκ ε κ ε

( )i ox G thQ C V V V≈ − − −

( )i ox G thQ C V VmV≈ − − −

Approximations:

Square law approximation …

Simplified bulk charge approximation …

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

The MOSFET

10

P

S G D

B

n+ n+

VS = 0 VD > 0

Fn = Fp = EF

Fn = Fp − qVD

Fn increasingly negative from source to drain(reverse bias increases from source to drain)

Page 6: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Elements of Square-law Theory

11

VG VD>00

y

GCA : Ey << Ex

[ ]( ) ( )i ox G thQ y C V V mV y= − − −

VG V VG

Voltage and hence inversion charge vary spatially

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Charge along the channel ….

p

n

( )− −= C nE FCn N e β ( )−= V pE F

Cp N e β

Page 7: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Charge along the channel …

( )− −= C nE FCn N e β ( )−= V pE F

Cp N e β

VG VD>00

VD

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Depletion into the channel ….

NA

n

( )− −= C nE FCn N e β ( )−= V pE F

Cp N e β

VG

WT(VD=0) WT(VD)

VD

Page 8: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Depletion into the channel …

VG VD>00

Depletion

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Another view of Channel Potential

16

FP

FNFN

FPFP

FN

EC

EFEV

N+ N+P-doped

Source Drain

x

x

Page 9: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Square Law Theory

17

VG VD>00

VD

Q

V1, 1,

1, 0

( )D

ii

i N i N

V

Dox G th

i N

J dyQ dV

Jdy C V V mV dV

µ

µ

= =

=

=

= − −

∑ ∑

∑ ∫

1 1 1 1

1

2 2 2 2

2

3 3 3 3

3

4 4 4 4

4

dVJ Q Q

dy

dVJ Q Q

dy

dVJ Q Q

dy

dVJ Q Q

dy

µ µ

µ µ

µ µ

µ µ

= =

= =

= =

= =

E

E

E

E

( )2

2ox D

D G th Dch

C VJ V V V m

L

µ = − −

Q1Q2 Q3 Q4

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Square Law or Simplified Bulk Charge Theory

18

( )2

2o

D G Tch

W CI V V

mL

µ= −ID

VDS

VGS

( )D o G T D

WI C V V V

Lµ= −

VDSAT = VGS − VT( )/ m

( )2

2ox D

D G th Dch

C VI W V V V m

L

µ = − −

( )2

2ox D

D G th Dch

C VJ V V V m

L

µ = − −

( ) ( )*,0= = − − ⇒ = −D

G th D D sat G th

dIV V mV V V V m

dV

Region of validity for the expression for currents

Unphysical, since current does not decrease with increase in

Vd

Page 10: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Why square law? And why does it become invalid

19

( )2

2o

D G Tch

W CI V V

mL

µ= −

ID

VDS

VGS

VDSAT = VGS − VT( )/ m

( )i ox G thQ C V V mV≈ − − −

VG VD>00

Q

This situation doesn’t arise since electrons travelling from left to right are swept into the drain under the effect of the reverse bias applied

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Linear Region (Low VDS)

20

ID

VDS small

VGS

( )D o G T Dch

DS

CH

WI C V V V

L

V

R

µ= −

=

Actual

SubthresholdConduction

VT

Mobility degradation at high VGS

Slope gives mobility

Intercept gives VT

Can get VT also from C-V

( )2

2ox D

D G th D

ch

C VI W V V V m

L

µ = − −

Page 11: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

21

1) Square law/ simplified bulk charge theory2) Velocity saturation in simplified theory3) Few comments about bulk charge theory, small

transistors 4) Flat band voltage - What is it and how to measure it?5) Threshold voltage shift due to trapped charges6) Conclusion

Ref: Sec. 16.4 of SDF Chapter 18, SDF

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity vs. Field Characteristic (electrons)

Electric field V/cm --->

velo

city

cm

/s -

-->

107

104

υ = υ sat

1/ 221 ( )

−= +

d

c

µυ E

E E

1 ( )

−=+d

c

µυ E

E E

, =d sat cυ µEυ = µE

22

Velocity saturates at high fields because of scattering

This expression can be used to re-derive the expression for current since since mobility is now, in principle, a function of distance

Page 12: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Recap - derivation for MOSFET current

23

VG VD>00

1 1 1 1 1 1

1

2 2 2 2 2 2

2

3 3 3 3 3 3

3

4 4 4 4 4 4

4

dVJ Q Q

dy

dVJ Q Q

dy

dVJ Q Q

dy

dVJ Q Q

dy

µ µ

µ µ

µ µ

µ µ

= =

= =

= =

= =

E

E

E

E1, 1,( )= =

⇒ =∑ ∑ii

i N i N

J dyQ dV

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity Saturation

24

VD

Q

V

υ vsat

1, 00

( )

1=

= − −

+

∑ ∫DV

D ox G thi N

c

dyJ C V V mV dV

µE

E

( )2

0

2ox D

D G th DD

chc

C mVJ V V V

VL

µ = − −

+E

( )2

0 0 2

11

+ = − −

∫chL

D Dox G th D

c

J mVdy C V V V

dV

dyµ E

( )2

0 0 2

+ = − −

∫ ∫ch DSL

D

V

Dox G t D

chD

mVC

Jd VJ V V

EVdy

VG VD>00

Page 13: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Significance of the new expression

25

( )2

0

2ox D

D G th DD

chc

C mVJ V V V

VL

µ = − −

+E

• At very small channel lengths and high drain biases, the current expression becomes independent of the channel length

• In the linear region in the I-Vd characteristics, you have a resistance that doesn’t depend on the length of the channel

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Calculating VDSAT

dID

dVDS

= 0

( )2

2

= − −

+

D o ox DG th D

Dch

c

I C VV V V m

VW L

µ

E

VDSAT

=2 V

G−V

th( ) / m

1+ 1+ 2µo

VG

−Vth( ) mυ

satL

ch

26

Take log on both sides and then set the derivative to zero ….

<V

GS−V

T( )m

Page 14: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity Saturation in short channel devices

( )= −D ox sat G TI WC V VυID

VDS

VGS

( )2

,

,0, , 2

= − −

+

D satoxD sat G th D sat

cD sat

Ch

mVCJ V V

LV

E

27

This expression can be derived by plugging in the value of Vd,sat for the short channel regime

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

‘Linear Law’ Expression at the limit of L --> 0

( )( )0

2 /

1 1 2

−=

+ + −G th

DSAT

G th sat ch

V V mV

V V m Lµ υ

( )= −DSAT ox sat G thI W C V Vυ

( ) 02→ −DSAT sat ch G thV L V V mυ µ

( ) ( )( )

0

0

1 2 1

1 2 1

+ − −= −

+ − +G th sat ch

DSAT ox sat G th

G th sat ch

V V m LI W C V V

V V m L

µ υυ

µ υ

Complete velocity saturation

Current independent of L

28

Page 15: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

‘Signature’ of Velocity Saturation

29

ID

VDS

VGS

( )−=D sa G ht toxI W C V Vυ

ID

VDS

VGS

( )0

2

2

−=D ox

ch

G thWI C

V V

L mµ

Can pull out oxide thickness from experimental curves… How?

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ID and (VGS - VT): In practice …..

30

ID

VDS

VGS

( )( ) ~= −D D DD G thI V V V Vα

1< α < 2

Long channelComplete velocity saturation

Page 16: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

31

1) Square law/ simplified bulk charge theory2) Velocity saturation in simplified theory3) Few comments about bulk charge theory, small

transistors 4) Flat band voltage - What is it and how to measure it?5) Threshold voltage shift due to trapped charges6) Conclusion

Ref: Sec. 16.4 of SDF Chapter 18, SDF

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Approximations for Inversion Charge

( )( ) ( ) ( 0)i O G th A T TQ C V V V qN W V W V= − − − + − =

( ) ( )( ) 2 2 2 2O G th S o A B S o A BC V V V q N V q Nκ ε φ κ ε φ= − − − + + −

( )i ox G thQ C V V V≈ − − −

( )i ox G thQ C V V mV≈ − − −

Approximations:

Square law approximation …

Simplified bulk charge approximation …

32

One could substitute the expression for Qi above explicitly instead of using m to simplify the equation, resulting in a more complete bulk charge expression

Page 17: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Complete Bulk-charge Theory

01,0 0

[.........( ) .]=

= − − +∑ ∫ ∫D DV

DO G th

i N

VJ

dy C V V V dV dVµ

( )3 / 22

0 4 31 1

3 2 42

+ − +

= − − −

A T D DF

O F

ox DD G th D

ch F

C VJ V V V

L

qN W V V

φµ

φ

00 0 0

[...... . .]( ) . .= − − +∫ ∫ ∫ch D DL V

DO G th

VJ

dy C V V V dV dVµ

(Eq. 17.28 in SDF) …. Explicit dependence on bulk doping

33

Additional V dependent terms abstracted into m previously

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity Overshoot

0.0 10 0

5.0 10 6

1.0 10 7

1.5 10 7

2.0 10 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5

Ave

rage

vel

ocity

(cm

/s)

Kin

etic

ene

rgy

per

elec

tron

(eV

)

Position (µm)

103 V/cm 103 V/cm105 V/cm

υ ≠ µn E( )E

υsat

34

Valid for bulk semiconductors, not valid at top of the barrier

Page 18: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity Overshoot in a MOSFET

35

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intermediate Summary

1) Velocity saturation is an important consideration for short

channel transistors (e.g., VD=1V, Lch=20nm). Therefore,

α ~ 1 for most modern transistors.

2) Bulk charge theory explains why MOSFET current

depends on substrate (bulk) doping. In the simplified bulk

charge theory, doping dependence is encapsulated in m.

3) Additional considerations of velocity overshoot could

complicate calculation of current.

4) Good news is that for very short channel transistors,

electrons travel from source to drain without scattering. A

considerably simpler ‘Lundstrom theory of MOSFET’

applies. 36

Page 19: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

37

1) Square law/ simplified bulk charge theory2) Velocity saturation in simplified theory3) Few comments about bulk charge theory, small

transistors 4) Flat band voltage - What is it and how to measure

it?5) Threshold voltage shift due to trapped charges6) Conclusion

Ref: Sec. 16.4 of SDF Chapter 18, SDF

,

( )IT sM M Fth th ideal

O OMS

O

QQ QV V

C C C

φγφ= + − − −

( )( ) ~= −D D DD G thI V V V Vα

1< α < 2

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

(1) Idealized MOS Capacitor

38

Substrate (p)yχs

Φm

χi

EC

EVEF

p semiconductormetal insulator

Vacuum level

,( )= −i ox G th idealQ C V V

Recall that

,

2=

= −s F

Bth ideal s

ox

QV

C ψ φ

ψ

In the idealized MOS capacitor, the Fermi Levels in metal and semiconductor align perfectly so that at zero applied bias, the energy bands are flat

Page 20: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Potential, Field, Charges

39

χs

Φm

χiV

E

Vbi=0 ρ

x

x

x

No built in potential, fields or charges at zero applied bias in the idealized MOS structure

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Real MOS Capacitor with ΦΦΦΦM < ΦΦΦΦS

40

ΦM = qφm χS

ΦS

qψ S > 0

EC

EV

EF

EVAC

EC

EV

EF

Note the difference

Do we need to apply less or more VG to invert the channel ?

In reality, the metal and semiconductor Fermi Levels are never aligned perfectly � when you

bring them together there is charge transfer from the bulk of the semiconductor to the

surface so that we have alignment

Page 21: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Physical Interpretation of Flatband Voltage

41

ψS = 0 flat band

EC

EV

EF

0FB ms biV Vφ= = − <

VG = VFB < 0

EC

EV

EF

VG = 0

Vbi = −φms > 0+ −

The Flatband Voltage is the voltage applied to the gate that gives zero-band bending in the MOS structure. Applying this voltage nullifies the effect of the built-in potential. This voltage needs to be

incorporated into the idealized MOS analysis while calculating threshold voltage

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

How to Calculate Built-in or Flat-band Voltage

42

χs

Φm

Vacuum level

EV

EF

EC

( )= + − ∆ −

=

Φ

≡bi g p

FB MS

s MqV E

qV φ

χ qVbi

( )i ox G thQ C V V= −

Therefore,

2

= − −

Bth F

oxFB

QV

CVφ

The presence of a flatband voltage lowers or raises the threshold voltage of a MOS structure. Engineering question � Is it desirable to have a metal having a work function greater or less

than the electron affinity+(Ec-Ef) in the semiconductor?

Page 22: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measure of Flat-band shift from C-V Characteristics

43

C/Cox

VG

Ideal Vth

Actual Vth

The transition point between accumulation and depletion in a non-ideal MOS structure is shifted to the left when the metal work function is smaller that the electron affinity +(Ec-Ef). At zero applied bias the semiconductor is already depleted so that a very small positive bias inverts the channel. The flatband voltage is the amount of voltage required to shift the

curve such that the transition point is at zero bias.

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

44

1) Square law/ simplified bulk charge theory2) Velocity saturation in simplified theory3) Few comments about bulk charge theory, small

transistors 4) Flat band voltage - What is it and how to measure it?5) Threshold voltage shift due to trapped charges6) Conclusion

Ref: Sec. 16.4 of SDF Chapter 18, SDF

,

( )= + − −− M M F IT st

o

h th ideal M

x

S

ox ox

Q QV

CCV

C

Q φγφ

Page 23: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

(2) Idealized MOS Capacitor

45

χsΦm

χi

EC

EV

EF

p semiconductormetal insulator

Vacuum level

,( )= −i ox G th idealQ C V V

Recall that

,

2=

= −s F

Bth ideal s

ox

QV

C ψ φ

ψ

Substrate (p)y

Qox

=0

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Distributed Trapped charge in the Oxide

46

EC

EV

EF

Ox

0x

= − −F Mth S

oM

x ox

Q QV

C Cψ γ

0

( )OX

M ox xQ dxρ= ∫

0

0

0

00

0

( )

( )

≡ =∫

ox

ox

x

MM

x

x dxx

xxx dx

ργ

In the absence of charges in the oxide, the field is constant (dV/dx = constant). The presence of a charge distribution inside the oxide changes the field inside the oxide and effectively traps field lines comping from the gate. As a result, depending on the polarity of charges in the oxie, the threshold voltage is modified.

xm represents the centroid of the charge distribution – one can think of this as replacing the entire distribution with a

delta charge at this point

Page 24: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

An Intuitive View

47

Ideal charge-free oxide

-E

0

Bulk charge

-E

0

-E

Interface charge

0

Reduced gate charge

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Gate Voltage and Oxide Charge

48

VG

=Vox

+ψs

2

20

( )− = =ox o

o

xx o

x

d V d

dx d

x

x κρ

εE

0 0( )

0( )

( ') 'x x

oxox

oxx x

x dxd

ρκ ε

=∫ ∫E

E

E

−dV

ox

dx=E

ox(x

0) −E

ox(x ) =E

ox(x

0) −

ρox

(x ')dx '

κox

ε00

x

Vox

S

κox

x0E

S(x

0) − dx

0

x0

∫ρ

ox(x ')dx '

κox

ε00

x0

S

κox

x0E

S(x

0) −

x ρox

(x )dx

κox

ε00

x0

-E

0

Kirchoff’s Law – balancing voltages

Known from boundary conditions in semiconductor

and continuity of E

Page 25: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Gate Voltage and Oxide Charge

49

0

0 00 0

(

( 2 )

1( 2 ) )) (

= = + ∆

= = + − ∫

th s F ox

x

Sos F xS

ox o

V V

x x x dxC x

x

ψ φ

κψ φκ

ρE

0

0

0

0

0

00

( )( )

x

Sox S

ox

x

o

o xx dxV x

xx

xκ ε

κκ

ρ∆ = −

∫E

0

0 00 0

( () )1= − ∫

oox

x

SS

ox x

x x x dxx

xCκ

ρκE

0

,0 0

,

( )1= −

= −

∫ o

x

th ideal

ox

Mth ideal

ox

x

M

V x dxC x

QV

C

γ

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Interpretation for Bulk Charge

50

0

1,0

1,

0

1

0

( ) ( )

(

1

)

= −

= −

−∫x

th th idealo

th id

o

o

x

Meal

V V x x x dx

Q x

xC x

xV

x C

ρ δ

C/Cox

VG

Ideal VT

New VT

Page 26: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Interpretation for Interface Charge

51

0

*

0 0

*

( ) ( )1

ox o

x

th th

o

Fth

o

V V x dxC x

V

x x

C

x

Q

ρ δ= −

= −

−∫

C/Cox

VG

Ideal VT

New VT

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Time-dependent shift of Trapped Charge

52

E

0

, 10 0

1,

0

1( ) ( ( ))

( ) ( )

= − × −

= − ×

∫x

th th ideal oxox

oxth ideal

ox

V V xQ x x x t dxC x

x t Q xV

x C

δ

Sodium related bias temperature instability (BTI) issue

C/Cox

VG

Ideal VT

Page 27: ECE606: Solid State Devices Lecture 23 MOSFET I-V ...ee606/downloads/... · ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Bias Temperature Instability (Experiment)

53

----------

+++++

+++++

M O S

(-) biases

0 xo

0.1xo

x

ρio

n

M O S----------

+++

++

+++++

(+) biases

x

0 xo

ρio

n

0.9xo

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Conclusion

54

1) Non-ideal threshold characteristics are important

consideration of MOSFET design.

2) The non-idealities arise from differences in gate and

substrate work function, trapped charges, interface

states.

3) Although nonindeal effects often arise from transistor

degradation, there are many cases where these

effects can be used to enhance desirable

characteristics.