ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created...

72
Copyright © by Jose E. SchuttAine , All Rights Reserved ECE 598JS, Spring 2012 1 1 ECE 598 JS Lecture 12 I/Os Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Transcript of ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created...

Page 1: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 11

ECE 598 JS ‐ Lecture 12I/Os

Spring 2012

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 22

- Loads are nonlinear- Need to model reactive elements in the time domain- Generalize to nonlinear reactive elements

Zo

Zo C

Motivations

Page 3: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 33

dvi Cdt

For linear capacitor C with voltage v and current i which must satisfy

Using the backward Euler scheme, we discretize time and voltage variables and obtain at time t = nh

'1 1n n nv v hv

Time-Domain Model for Linear Capacitor

Page 4: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 44

11' n

nivC

11

nn n

iv v hC

1 1 - n n nC Ci v vh h

After substitution, we obtain

so that

The solution for the current at tn+1 is, therefore,

Time-Domain Model for Linear Capacitor

Page 5: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 55

i

v C

Backward Euler companion model at t=nh Trapezoidal companion model at t=nh

Time-Domain Model for Linear Capacitor

Page 6: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 66

Step response comparisons

0 10 20 30 40 50 600.0

0.1

0.2

0.3

0.4

ExactBackward EulerTrapezoidal

Time (ns)

Vo (v

olts

)

Time-Domain Model for Linear Capacitor

Page 7: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 77

div Ldt

1 1: n n nBackward Euler i i hi

11

nn

viL

1 1n n nL Lv i ih h

i

V+

-

R=

Vn1+

-

in+1

L

Lh

-

+Lh

i n

Time-Domain Model for Linear Inductor

Page 8: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 88

1 12n n n nhi i i i

1 12 2

n n nL Lv i vh h

R=

Vn1

+

-

in+1

-

+

2Lh

2Lh

in Vn

i

V+

-L

If trapezoidal method is applied

Time-Domain Model for Linear Inductor

Page 9: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 9

• Diode Properties– Two-terminal device that conducts current freely in one direction

but blocks current flow in the opposite direction.– The two electrodes are the anode which must be connected to a

positive voltage with respect to the other terminal, the cathode in order for current to flow.

+

-

V

I

9

The Diode

Page 10: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 10

out DV V

/ 1D TV VD SI I e

( )S D D D D DV RI V RI V V

Nonlinear transcendental system Use graphical method

Vs/R

VD

ID

VSVout

Load line(external characteristics)

Diode characteristics

Solution is found at itersection of load line characteristics and diode characteristics

Diode Circuits

Page 11: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 11

NPN Transistor

// 1 1BC TBE T v Vv V SC S

R

Ii I e e

// 1 1BC TBE T v Vv VSE S

F

Ii e I e

// 1 1BC TBE T v Vv VS SB

F R

I Ii e e

1F

FF

1

RR

R

Describes BJT operation in all of its possible modes

11

B

C

E

BJT Ebers-Moll Model

Page 12: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1212

Problem: Wish to solve for f(x)=0

Use fixed point iteration method:

( ) ( ) ( )Define F x x K x f x

1: ( ) ( ) ( )k k k k kx F x x K x f x

With Newton Raphson:1

1( ) [ ( )] dfK x f xdx

therefore, 11: [ ( )] ( )k k k kx x f x f x

Newton Raphson Method

Page 13: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 13

Newton Raphson Method(Graphical Interpretation)

Page 14: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1414

11: k k k kN R x x A f x

1 ( ) .k k k k k kA x A x f x S

xk+1 is the solution of a linear system of equations. LU factk kA x S

Forward and backward substitution.

Ak is the nodal matrix for Nk

Sk is the rhs source vector for Nk.

Newton Raphson Algorithm

Page 15: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1515

0 00. 0, ,

voltage controlled current controlled

k gives V i1. , mod .k kFind V i compute companion els

, , ,c c

k k k k

V C

G I R E

2. , .k kObtain A S

3. .k k kSolve A x S

14. kx Solution

15. .k kCheck for convergence x x , .If they converge then stop

6. 1 , 1.k k and go to step

Newton Raphson Algorithm

Page 16: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1616

It is obvious from the circuit that the solution must satisfyf(V) = 0 We also have

/1'( ) tV Vs

t

If V eR V

The Newton method relates the solution at the (k+1)thstep to the solution at the kth step by

1( )- '( )

kk k

k

f VV Vf V

/ 1

1/

- 1

V Vk t

k t

k es

k kV Vs

t

V E IRV V I eR V

Newton Raphson - Diode

Page 17: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1717

After manipulation we obtain

11 -k k k

Eg V JR R

/ k tV Vsk

t

Ig eV

/ ( -1) -k tV Vk s k kJ I e V g

Newton Raphson

Page 18: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 18

out DV V

/( ) 1 0D TV VD SD S

V Vf V I eR

Newton-Raphson Method

Procedure is repeated until convergence to final (true) value of VD which is the solution. Rate of convergence is quadratic.

1( 1) ( ) ( ) ( )'( ) ( )k k k kx x f x f x

/1'( ) D TV VSD

T

If V eR V

( )

( )

( )/

( 1) ( )

/

1

1

kTD D

kTD

kV VS

Sk k

D D V VS

T

V VI e

RV V I eR V

Where is the value of VD at the kth iteration( )kDV

11 '( ) ( )k k k kx x f x f x

Use:

Diode Circuit – Iterative Method

Page 19: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1919

Newton-Raphson representation of diode circuit at kth iteration

/k tV Vsk

t

Ig eV

/ ( -1) - Vk Vtk s k kJ I e V g

Newton Raphson for Diode

Page 20: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2020

+

-V

i

ik

V

I

Companion

+

-

Rk

Ek

+

-

( )

k

ki i

dh iRdi

( )k k k kE h i R i

Current Controlled

Page 21: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2121

Let x = vector variables in the network to be solved for. Let f(x) = 0 be the network equations. Let xk be the present iterate, and define

Let Nk be the linear network where each non-linear resistor is replaced by its companion model computed from xk.

( )k k kA f x Jacobian of f at x x

j -

j ++

-Vj

ij

( )j j jI g V

General Network

Page 22: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2222

jk j k j kV P P j -

j +

IkGk

Vk

I

V

( )

k

kV V

dg VGdV

k k k kI g V G V

Companionmodel

General Network

Page 23: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2323

C(v) Jk Jngk

+

-

V Vn+1

+

-

in+1in+1

Vn+1

+

-

q(V)h

Jn

( ) , dqq f v idt

1

1n

n nt t

dqq q hdt

1 11 1 1

( ), ( )n n nn n n

q q f vor i i vh h h

Nonlinear Reactive Elements

Page 24: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2424

General Element

Page 25: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2525

E

B

C

Vbc

Vbe

Ide

rIdc

Cbc

Cbe

E

C

B

fIde

IdcIB IC

IE

Bipolar Transistor

Page 26: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2626

R1

Vcc

Vout

Q1Q6Vin

RE

Q2Q3

R2R3

Q4

Q5

R4 R5

Vin

R4 R5

RE

R1

R2

Vout

R3

Iout

Vcc

TTL Gate

Page 27: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2727

0 1 2 3 4-200

-100

0

100

200

Vin=0.8VVin=1.4VVin=1.6VVin=1.8V

AS04 TT LI o

ut(m

A)

Vout

IV Curves for TTL Gate

Page 28: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

• I/O Buffer Information Specification is a Behavioral method of modeling I/O buffers based on IV curve data obtained from measurements or circuit simulation.

• The IBIS format is standardized and can be parsed to create the equivalent circuit information needed to represent the behavior of an IC.

• Can be integrated within a circuit simulator using an IBIS translator.

IBIS

Page 29: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

• Protection of proprietary information

• Adequate for signal integrity simulation

• Models are free from vendors

• Faster simulations (with acceptable accuracy)

• Standardized topology

Advantage of IBIS

Page 30: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 3030

PowerClamp

Threshold&

EnableLogic

GNDClamp

GNDClamp

GNDClamp

PowerClamp

PowerClamp

InputPackage

EnablePackage

OutputPackage

PullupRamp

PulldownRamp

PullupV/I

PulldownV/I

IBIS Diagram

Page 31: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Power_Clamp

GND_Clamp

Vcc

R_pkg

C_pkg

L_pkg

C_comp

GNDGND

IBIS Input Topology

Page 32: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 3232

Vcc Vcc

Power_ClampGND_Clamp

GND GND

C_pkgL_pkg

R_pkg

C_omp

PullupPulldownRamp

IBIS Input Topology

Page 33: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 3333

Create an IBIS modelfrom either simulation

or empirical data

Model fromEmpirical data?

No

Yes

Collect Data

Data in IBIStext file

Run IBIS Parser

Parser Pass

Get SPICE I/Oinfo

No

Yes

Run modelon

Simulator

YesModelvalidated?

No Adoptmodel

Run SPICE to IBISTranslator

IBIS Model Generation

Page 34: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 34

IBIS Model

Static data

Page 35: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 35

IBIS Model

Dynamic data

Page 36: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 36

IBIS VT Waveforms

Page 37: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 37

|************************************************************************| Model lvpclpf5_ew|************************************************************************|[Model] lvpclpf5_ewModel_type I/OPolarity Non-InvertingEnable Active-HighVinl = 1.4500VVinh = 1.7500VVmeas = 1.6000V|C_comp 1.737pF 1.396pF 2.077pF||[Temperature Range] 25.0000 70.0000 0.000[Voltage Range] 3.3000V 3.0000V 3.6000V[Pulldown]| voltage I(typ) I(min) I(max)|-3.3000 -62.3070mA -48.2070mA -75.0990mA-3.1000 -62.3070mA -48.2070mA -75.0990mA-2.9000 -62.3070mA -48.2070mA -75.0990mA

IBIS File

Page 38: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 38

|[Pullup]| voltage I(typ) I(min) I(max)|-3.3000 50.6898mA 38.3720mA 61.1590mA-3.1000 50.6898mA 38.3720mA 61.1590mA-2.9000 50.6898mA 38.3720mA 61.1590mA:|[GND_clamp]| voltage I(typ) I(min) I(max)|-3.3000 -7.7650A -6.8810A -8.3930A-3.2000 -7.4070A -6.5660A -8.0040A-3.1000 -7.0490A -6.2520A -7.6150A:|[POWER_clamp]| voltage I(typ) I(min) I(max)|-3.3000 1.1410A 1.1150A 1.1710A-3.2000 1.0910A 1.0670A 1.1200A-3.1000 1.0420A 1.0190A 1.0690A:

IBIS File

Page 39: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 39

[Ramp]| variable typ min maxdV/dt_r 1.7344/9.6534e-11 1.4944/1.4735e-10 1.9469/7.9570e-11dV/dt_f 1.7528/1.4479e-10 1.5200/2.2995e-10 1.9609/1.2362e-10R_load = 50.0000 |[Rising Waveform]R_fixture = 50.000V_fixture = 0.000V_fixture_min = 0.000V_fixture_max = 0.000|| time V(typ) V(min) V(max)|0.000S 3.587e-04 4.167e-04 3.253e-04132.000pS 7.977e-05 1.311e-04 2.383e-04:[Rising Waveform]R_fixture = 50.000V_fixture = 3.300V_fixture_min = 3.000V_fixture_max = 3.600|| time V(typ) V(min) V(max)|0.000S 4.774e-01 5.704e-01 4.246e-0143.200pS 4.772e-01 5.701e-01 4.244e-01

IBIS File

Page 40: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 40

|[Falling Waveform]R_fixture = 50.000V_fixture = 0.000V_fixture_min = 0.000V_fixture_max = 0.000|| time V(typ) V(min) V(max)|0.000S 2.808e+00 2.415e+00 3.156e+0063.000pS 2.809e+00 2.416e+00 3.156e+00126.000pS 2.808e+00 2.416e+00 3.156e+00:|[Falling Waveform]R_fixture = 50.000V_fixture = 3.300V_fixture_min = 3.000V_fixture_max = 3.600|| time V(typ) V(min) V(max)|0.000S 3.299e+00 2.999e+00 3.599e+0052.200pS 3.300e+00 2.999e+00 3.600e+00121.800pS 3.299e+00 2.999e+00 3.599e+00:|| End

IBIS File

Page 41: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 41

1. Arrange static IV data

2. Pulldown data (current vs voltage) Ipd, mpd points

3. Pullup data (current vs voltage) Ipu, mpu points

4. Ground clamp data (current vs voltage) Igc , mgcpoints

5. Power clamp data (current vs voltage) Ipc , mpcpoints

IBIS Processing

Page 42: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 42

• Next Get VT data. VT data is presented as: Rising waveform:

• Voltage versus time for Vfix low VR1 , mr1 points

• Voltage versus time for Vfix high VR2 , mr2 points: Falling waveform:

• Voltage versus time for Vfix low VF1 , mf1 points

• Voltage versus time for Vfix high VF2 , mf2 points

IBIS Processing

Page 43: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 43

out fixtfixt

fixt

V VI

R

out outcap fixt

V t V t tI C

t

out cap fixtI I I out

comp fixt outIV L Vt

IBIS Circuit Analysis

Page 44: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 44

• Pick value Vcomp1• Find closest corresponding currents in static IV data• Set them as Ipd1, Ipu1, Igc1 and Ipc1• Pick value Vcomp2• Find closest corresponding currents in static IV data• Set them as Ipd2, Ipu2, Igc2 and Ipc2

IBIS Circuit Analysis

We need to extract Ku and Kd

Page 45: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 45

1 1 1 1 1out u pu d pd pc gcI K I K I I I

2 2 2 2 2out u pu d pd pc gcI K I K I I I

1 1 1 1 1 1u pu d pd out pc gc RHSK I K I I I I I

2 2 2 2 2 2u pu d pd out pc gc RHSK I K I I I I I

1 1 1

2 2 2

pu pd u RHS

pu pd d RHS

I I K II I K I

Rearrange as:

or

IBIS Circuit Analysis2 equations, two unknown system

Solve for Ku and Kd

Page 46: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 46

Example of Ku and Kd

Page 47: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 47

IBIS Simulations

u pu comp d pd comp pc comp gc compK I V K I V I V I V

0comp compout comp C comp G compI V I V I V

Solve using Newton-Raphson

Page 48: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 48

IBIS Simulations

Page 49: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

IBIS for Signal Integrity

• Crosstalk• Ringing, Overshoot, undershoot• Distortion, Nonlinear effects• Reflections issues• Line termination analysis• Topology scheme analysis

Visit http://www.eigroup.org/ibis/ibis.htm

Page 50: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 50

The Node Voltage method consists in determining potential differences between nodes and ground (reference) using KCL

1 1 1 2 0m

A B C

V V V V VZ Z Z

For Node 1:

Nodal Analysis

Page 51: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 51

22 1 2 0n

C D E

V VV V VZ Z Z

For Node 2:

1 21 1 1 1 1

mA B C C A

V V VZ Z Z Z Z

Rearranging the terms gives:

1 21 1 1 1 1

nC C D E E

V V VZ Z Z Z Z

Defining: 1 1 1 1 1, , , ,A B C D EA B C D E

G G G G GZ Z Z Z Z

Nodal Analysis

Page 52: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 52

Rearranging the terms gives:

1

2

A B C C A m

C C D E E m

G G G G G VVG G G G G VV

The system can be solved to yield V1 and V2.

Nodal Analysis

Page 53: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 53

1 1 1 25 0 10 45 010 5 2 2

V V j V Vj j

For Node 1:

For Node 2: 2 1 2 2 02 2 3 4 5V V V V

j j

Nodal Analysis

Page 54: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 54

Rearranging the terms gives:

1 21 1 1 1 5 0 10 45

10 5 2 2 2 2 10 5V V

j j j j

1 21 1 1 1 0

2 2 2 2 3 4 5V V

j j j

Nodal Analysis

Page 55: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 55

1

2

1 1 1 1 50 05 2 4 4 5

50 901 1 1 154 4 2 2

j VV

j

Nodal Analysis

Page 56: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 56

1

10 0.2525 0.75 0.5 13.5 56.3 24.7 72.25

0.45 0.5 0.25 0.546 15.950.25 0.75 0.5

j jV V

jj

1

0.45 0.5 100.25 25 18.35 37.8 33.6 53.75

0.45 0.5 0.25 0.546 15.950.25 0.75 0.5

jj

V Vj

j

Nodal Analysis

Page 57: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 57

• Nonlinear DevicesDiodes, transistors cannot be simulated in the

frequency domainCapacitors and inductors are best described in the

frequency domainUse time-domain representation for reactive elements

(capacitors and inductors)• Circuit SizeMatrix size becomes prohibitively large

Limitations

Page 58: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 58

* SPICE

* Asymptotic Waveform Evaluation

* Complex Frequency Hopping

* Passive Multipoint Matching Method

* Latency Insertion Method

Y(t) v(t) = I(t)Given, Y and I, find v

Board/Module Chip

Circuit Simulation

Page 59: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 59

spice3f4

conf examples lib doc

helpdir scripts

bjt

utiltmppatches srcnotesman

man1 man3 man5 unsuppobin include lib skeleton

ckt cp dev fte hlp inp mfb mfbpc misc ni sparse mac

asrc bsim1 bsim2 cap cccs ccvs csw dio disto ind isrc mes

mos1

ltrajfet

mos2 mos3 mos6 res sw tra urc vccs vcvs vsrc

lib

Parser StampFromNetlist I=YVDevice To

Solver

Directory Structure

SPICE

Page 60: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 60

.

+- +-

+

-

+

-

+

-

+- +-

+

-

+

-

+

-

+- +-

+

-

+

Latency Insertion Method

Page 61: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 61

- Up to 16 layers- Hundreds of vias- Thousands of TLs- High density- Nonuniformity

Vertical parallel-plate capacitance 0.05 fF/m2

Vertical parallel-plate capacitance (min width) 0.03 fF/mVertical fringing capacitance (each side) 0.01 fF/mHorizontal coupling capacitance (each side) 0.03

Mitsumasa Koyanagi," High-Density Through Silicon Vias for 3-D LSIs"Proceedings of the IEEE, Vol. 97, No. 1, January 2009

TSV Density: 10/cm2 - 108/cm2

Source: M. Bohr and Y. El-Mansy - IEEE TED Vol. 4, March 1998

Packaging Complexity

Chip Complexity

Challenges in Integration

Page 62: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 62

X cells

Y cells

+- +-

+

-

+- +-

+

-

+

-=Unit cell

Typical workstation simulation time for a 1200-cell network is 2 h 40 min.

Too time consuming!

- Determine R,L,G,C parameters and define cell- Synthesize 2-D circuit model for ground plane- Use SPICE (MNA) to simulate transient

Modeling

PDN Modeling

Page 63: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 63

• MNA has super-linear numerical complexity• LIM has linear numerical complexity• LIM has no matrix ill-conditioning problems• Accuracy and stability in LIM are easily

controlled• LIM is much faster than MNA for large circuits

Why LIM?

Page 64: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 64

Each branch must have an inductor*

Each node must have a shunt capacitor*

Express branch current in terms of history of adjacent node voltages

Express node voltage in terms of history of adjacent branch currents

Latency Insertion Method

* If branch or node has no inductor or capacitor, insert one with very small value

Page 65: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 65

• Represents network as a grid of nodes and branches

• Discretizes Kirchhoff's current and voltage equations

• Uses ”leapfrog” scheme to solve for node voltages and branch currents• Presence of reactive elements is required to generate latency

1 1/2 1/2n n n n nij ij i j ij ij

ij

tI I V V R IL

1/2

1/2 1

aNnn ni ii ik

n ki

ii

CV H ItV C G

t

Node structureBranch structure

LIM Algorithm

Page 66: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 66

1 1/2 1/2n n n n nij ij i j ij ij

ij

tI I V V R IL

1/2

1/2 1

aNnn ni ii ik

n ki

ii

CV H ItV C G

t

1 2

1/2 3/2 5/2

n n nij ij ij

n n ni i i

I I I

V V V

n: time

LIM: Leapfrog Method

Leapfrog method achieves second-order accuracy, i.e., error is proportional to t2

Page 67: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 67

1 1/2 1/2 1/2n n n n n nij ij i j ij ij ij

ij

tI I V V R I EL

For branch =1, NbUpdate current as per Equation:

For time=1, Nt

Next branch;For node=1, Nn

Update voltage as per Equation

1/2

1 11/2

iMn Nn n ni ii ik q

k qni

ii

CV H I Jt

V C Gt

Next node;Next time;

timeloop

branchloop

nodeloop

LIM Code

Page 68: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 68

No of Nodes

20,000 30,000 40,000 50,000

SPICE(sec)

1224 2935 4741 7358

LIM(sec)

9 13 17 21

Speedup 136 225 278 350

Simulation Times

Standalone LIM vs SPICE

Page 69: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 69

0 0.5 1 1.5 20

20

40

60

80

100

120

140

Log Size (normalized to 2,000 nodes)

Spe

edup

Fac

tor

LIM v.s. SPICE

LIM vs SPICE

Page 70: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 70

Mutual inductanceuse reluctance (1/L) Branch capacitors special formulation Shunt inductors special formulation Dependent sourcesaccount for dependenciesFrequency dependence use macromodels

LIM: Problem Elements

Page 71: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 71

-0.2

0

0.2

0.4

0.6

0.8

1

Volts

0 5 10 15 20 25 30

Time (ns)

Drive Line at Near End

35 40

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Volts

0 5 10 15 20 25 30

Time (ns)

Sense Line at Near End

35 40

Computer simulations of distributed model (top) and experimental waveforms of coupled microstrip lines (bottom) for the transmission-line circuit shown at the near end (x=0) for line 1 (left) and line 2 (right). The pulse characteristics are magnitude = 4 V; width = 12 ns; rise and fall times = 1 ns. The photograph probe attenuation factors are 40 (left) and 10 (right).

LIM Simulations

Page 72: ECE 598 JS Lecture 12 I/Osjsa.ece.illinois.edu/ece598js/Lect_12.pdf · Author: StoneCreek Created Date: 3/28/2012 9:19:04 AM

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Twisted-pair cable Simulation setupGeneralized model [3]

Ideal line lossy linelossy line

Simulation results Measured response

LIM Simulation Examples