Ece 513 Chap 1 Slides

download Ece 513 Chap 1 Slides

of 155

Transcript of Ece 513 Chap 1 Slides

  • 7/27/2019 Ece 513 Chap 1 Slides

    1/155

    FUNDAMENTAL DSP CONCEPTS

    C. Williams & W. Alexander

    North Carolina State University, Raleigh, NC (USA)

    ECE 513, Fall 2013

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 1 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    2/155

    Outline

    1 Introduction2 Digital Signal Processing Applications3 Why Digital Signal Processing4 Representation of DiscreteTime Signals5 Operations on Sequences6 Normalized Frequency Representation7 The ZTransform

    8 Region of Convergence9 Frequency Representation of DiscreteTime Systems10 Difference Equation Representation11 The Frequency Response12 PoleZero Plots

    13 System Response14 Frequency Shifting15 Inverse ZTransform for Systems with Complex Poles16 Inverse ZTransform for Systems with Multiple Poles17 Cascade Implementation of Digital Filters18 Stabilization of an Unstable FilterC. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 2 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    3/155

    Introduction

    Signals play an important role in many activities in our daily lives.Examples include:

    SpeechMusicBiomedical signalsVideoDigital Television

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 3 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    4/155

    Introduction

    A deterministic signalis a function of an independent variable such as time, distance,position, temperature, and pressure. Itcan be uniquely determined by

    a well-dened process such as a mathematical expression of one or

    more independent variables,or by table look up.

    For example,

    s (t ) = 3sin (2 .1 t + 0 .3198 ) u (t ) (1)

    is a deterministic signal with independent variable t .

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 4 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    5/155

    Introduction

    A speech signal can not be described functionally by amathematical expression.However, a recorded segment of speech can be represented to ahigh degree of accuracy as the sum of several sinusoids ofdifferent amplitudes and frequencies such as [1]

    s (t ) =N

    k = 1

    Ak (t ) sin [2 F k (t )t + k (t )] (2)

    A signal that is determined in a random way and can not bepredicted ahead of time is a random signal.Statistical approaches are often used to analyze random signals.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 5 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    6/155

    DSP Applications

    Digital signal processing is heavily used in information technology.Information technology includes such diverse subjects as

    digital signal processing,image processing,multimedia applications,computational engineering,visualization of data,database management,teleconferencing,remote operation of robots,

    autonomous vehicles,computer networks, etc.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 6 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    7/155

    Why DSP?

    Many applications involving continuoustime signals use digitalsignal processing.This often involves

    1 sampling the continuoustime signal at regular intervals,2 quantizing the samples to obtain a digital sequence,3 processing the digital system using a computer or a digital system,4 converting the output digital sequence to a continuoustime

    system.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 7 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    8/155

    Digital signal processing of a continuoustime signal using thisapproach may be preferable over processing the signal directly inthe continuoustime domain for many of the following reasons:

    1 Programmability

    2 Accuracy3 Data storage without degradation4 Multiplexing of signals5 Easy to process low frequency signals6 Cost is generally low due to volume production7 It is easy to use encryption to provide security with digital signals.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 8 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    9/155

    Why DSP?

    Disadvantages associated with digital signal processing:1 A digital signal processing system is often more complicated than a

    corresponding analog signal processing system.2

    The upper frequency for digital systems is determined by thesampling frequency.3 Digital systems are constructed using active circuits that consume

    power. Analog systems, that consume less power, can be designedusing only passive circuits.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 9 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    10/155

    Representation of DiscreteTime Signals I

    A discretetime signal x (n ) is a function of an independentvariable that can only take on discrete values.We can represent a discretetime signal using:

    1 A table as given in Table 1,

    n 0 1 2 3 4 5 6x(n) -3 -1 -2 5 0 4 -1

    Table: A tabular representation of a discretetime function.

    2 A functional representation such as

    x (n ) =0 for n < 0(0 .2)n for 0 n 100 for n > 10

    (3)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 10 / 155

    f l

  • 7/27/2019 Ece 513 Chap 1 Slides

    11/155

    Representation of DiscreteTime Signals II

    3 A sequence representation such as

    x (n ) = 3, 1, 1 , 5,

    0 , 4 , 1 (4)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 11 / 155

    O i S I

  • 7/27/2019 Ece 513 Chap 1 Slides

    12/155

    Operations on Sequences I

    We often desire to operate on an input sequence x (n ) using a set

    of prescribed rules to obtain an output sequence.The basic operations for this course include

    1 Modulation - y (n ) = h (n )x (n ) (point by point multiplication of twosequences) as shown in Figure 1.

    x(n)

    Figure: Modulation.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 12 / 155

    O ti S II

  • 7/27/2019 Ece 513 Chap 1 Slides

    13/155

    Operations on Sequences II

    2 Addition - y (n ) = h (n ) + x (n ) (point by point addition of twosequences) as shown in Figure 2.

    x(n)

    Figure: Addition.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 13 / 155

    O ti S III

  • 7/27/2019 Ece 513 Chap 1 Slides

    14/155

    Operations on Sequences III

    3 Multiplication - y (n ) = ax (n ) (multiplication of each point by aconstant) as shown in Figure 3.

    x(n)

    Figure: Multiplication.

    4 Delay - y (n ) = x (n 1) as shown in Figure 4.

    Z-1

    x(n) x(n-1)

    Figure: Delay.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 14 / 155

    Operations on Sequences IV

  • 7/27/2019 Ece 513 Chap 1 Slides

    15/155

    Operations on Sequences IV

    Division is an important operation for many practical DSPoperations.

    Division is a more complicated operation than multiplication oraddition, etc.

    Therefore, division for DSP operations is typically implemented by1 Replacing division by a constant with multiplication by the

    reciprocal of the constant,2 Dividing by a power of two by shifting twos complement numbers to

    the right or to the left as appropriate.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 15 / 155

    Normalized Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    16/155

    Normalized Frequency Representation

    When we sample a continuoustime signal:1 We obtain a sequence that can be represented by replacing the

    independent variable t by nT in the case where t is the

    independent variable.2 This results in a normalized representation of the frequencycontent.

    3 We can replace the continuoustime radial frequency by thediscretetime frequency = T .

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 16 / 155

    Normalized Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    17/155

    Normalized Frequency Representation

    Example (1.1)

    Consider the signalx (t ) = Ae j t u (t ) (5)

    After sampling, we have

    x (n ) = Ae j nT = Ae j n (6)

    Thus, we see that the normalized discretetime frequency isobtained by multiplying the continuoustime frequency by the

    sampling interval T . = T (7)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 17 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    18/155

    Example (1.1)

    We know from the Sampling Theorem that the largest possiblesampling interval to avoid aliasing is

    T max =

    N (8)

    Thus, the normalized discretetime Nyquist frequency is always

    N = N T max =N N

    = (9)

    We will be primarily concerned with the normalized discretetimefrequencies (10)

    in this course since we will be studying discretetime signals.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 18 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    19/155

    The Z Transform for a discretetime sequence x (n ) is dened as

    the power series [1]

    X (z ) =

    n = x (n )z n (11)

    In most of our examples, the sequence of interest begins at somedesignated sample which we arbitrarily assign the index 0.In this case, the sequence does not exist prior to n = 0 and

    X (z ) =

    n = 0x (n )z

    n (12)

    This is called the right sided ZTransform .

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 19 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    20/155

    Region of Convergence

    The ZTransform of a discretetime sequence only exists forthose values of z for which the innite power series converges.The region of convergence (ROC) for the Z Transform is the set ofall values of z for which this innite power series converges.

    An innite power series may have more than one ROC and thediscretetime sequence associated with each of these ROCs maybe different.Thus, Z Transform for a specic discretetime sequence must alsoinclude the ROC.We will use an example to illustrate this concept [1].

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 20 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    21/155

    Region of Convergence

    Example (1.2)

    Consider the sequence

    x (n ) = a n , n 0

    b n

    , n 1(13)

    Using the denition, the Z Transform for this sequence is given by

    X (z ) =1

    n = ( b n )z n +

    n = 0

    a n z n (14)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 21 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    22/155

    g g

    Example (1.2)

    We can obtain a closed form expression for X (z ) since it is ageometric series. Let

    S 1 =1

    n =

    ( b n )z n (15)

    and

    S 2 =

    n = 0

    a n z n (16)

    Then

    S 1 =

    m = 1

    b m z m =

    m = 1(b 1z )m (17)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 22 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    23/155

    g g

    Example (1.2)

    A geometric series in the form

    Y =N

    n = 0

    c n (18)

    can be written in closed form as

    Y =1 c N + 1

    1 c (19)

    where c may be complex as well as real.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 23 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    24/155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    25/155

    Example (1.2)

    Ifb 1z < 1 (|z | < |b |) (22)

    thenlim

    M (b 1z )M + 1 = 0 (23)

    andS 1 =

    11 (b 1z )

    1 (24)

    Simplifying this result, we obtain

    S 1 =z

    z b (25)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 25 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    26/155

    Example (1.2)

    We can obtain a closed form expression for S 2 in a similar way.

    S 2 = limN

    1 (az 1 )N + 1

    1 (az 1)(26)

    Ifaz 1 < 1 (|a | < |z |) (27)

    thenlim

    N

    (az 1)N + 1 = 0 (28)

    andS 2 =

    11 (az 1 )

    (29)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 26 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    27/155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    28/155

    Example (1.2)

    On the other hand, if |b | < |a |, we have chosen the wrong way topartition X (z ). The two sequences S

    1and S

    2have no common

    region of convergence.Figure 5 shows the region of convergence (in gray) for S 1 withb = 3.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 28 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    29/155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    30/155

    Example (1.2)

    Figure 6 shows the region of convergence (in gray) for a = 0 .5.

    Figure: Region of convergence for S 2 with a = 0.5.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 30 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    31/155

    Region of convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    32/155

    We can obtain the discretetime sequence corresponding to a ZTransform by evaluating it within the ROC.We will use an example to illustrate this concept.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 32 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    33/155

    Example (1.3)

    This example involves nding a bounded sequence with thefollowing ZTransform

    X (z ) =0 .81 z

    z + 0 .62+

    0 .5815 z z + 1 .6129

    (34)

    Note that X (z ) has been expanded into partial fractions.Let

    X 1(z ) =0 .81 z

    z + 0 .62(35)

    andX 2(z ) =

    0 .5815 z z + 1 .6129

    (36)

    such thatX (z ) = X 1(z ) + X 2(z ) (37)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 33 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    34/155

    Example (1.3)

    We will nd the appropriate sequence for each term and then addthe two sequences.

    X 1(z ) =0 .81

    1 ( 0 .62 z 1)(38)

    If 0 .62 z 1 < 1 (39)

    so thatlim

    N ( 0 .62 z 1)N + 1 = 0 (40)

    then

    X 1(z ) = 0 .81

    n = 0

    ( 0 .62 )n z n (41)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 34 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    35/155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    36/155

    Example (1.3)

    It follows that

    x (n ) = 0 .5815 ( 1 .6129 )n for n 10 .81 ( 0 .62 )n for 0 n (45)

    Figure 8 gives a stem plot of x (n ) for n = 50 to n = 50.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 36 / 155

    Region of Convergence

  • 7/27/2019 Ece 513 Chap 1 Slides

    37/155

    Example (1.3)

    50 40 30 20 10 0 10 20 30 40 500.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Stem plot of x(n) for n = 50 to n = 50

    sample number

    m a g n

    i t u d e

    Figure: Stem plot of x(n) for n = - 50 to n = 50.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 37 / 155

    Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    38/155

    We will consider the frequency representation of a discretetimesequence.We rst consider an aperiodic sequence and we will later considerthe frequency representation of periodic and nite durationsequences.The two-sided ZTransform is given by

    X (z ) =

    n = x (n )z n (46)

    The two-sided ZTransform can represent an aperiodic sequenceover the range of n .The region of convergence must include the unit circle in order forthe sequence x (n ) to be nite for all values of n.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 38 / 155

    Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    39/155

    The unit circle is dened where z = e j

    e j = 1 (47)

    We can evaluate X (z ) on the unit circle as follows.

    X () = X (z )| z = e j =

    n = x (n )e j n (48)

    We dene Equation 48 as the Fourier Transform of the aperiodic,discretetime sequence x (n ).

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 39 / 155

    Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    40/155

    It is easy to show that X () is periodic since

    e j ( + 2k ) = e j e j 2k = e j ; k (49)

    where k is an integer and

    e 2 jk = 1 k (50)

    Thus, X ( j ) is periodic with period 2 or

    X () = X ( + 2k ) ; k (51)

    We can obtain the inverse transform of X () to obtain thesequence x (n ) if the region of convergence for X (z ) includes theunit circle.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 40 / 155

    Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    41/155

    Let us multiply X () by e j m and integrate it over one period toobtain

    X ()e j m d =

    n = x (n )e j n e j m d (52)

    If X () exist (implies that the region of convergence for X (z )includes the unit circle), then we can change the order ofsummation and integration.

    X ()e j

    m d =

    n = x (n )

    e j

    (m n )d (53)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 41 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    42/155

    Frequency Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    43/155

    We can obtain the frequency representation of a sequence byevaluating its Z-Transform on the unit circle as shown in theprevious section.We will present an example to illustrate the frequencyrepresentation of a discretetime sequence.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 43 / 155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    44/155

    Example (1.4)

    Consider the discretetime sequence

    x (n ) = 2 .0(0 .75 )n u (n ) (59)

    The corresponding ZTransform is given by

    X (z ) = 2 .0

    n = 0(0 .75 )n z n =

    2 .01 0 .75 z 1

    ; |z | > 0 .75 (60)

    Since the region of convergence includes the unit circle, X () isdened and

    X () =2 .0

    1 0 .75 e j (61)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 44 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    45/155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    46/155

    Example (1.4)

    0 0.5 1 1.5 2 2.5 3 3.51

    2

    3

    4

    5

    6

    7

    8

    Frequency Plot

    Frequency(radians)

    M a g n

    i t u

    d e

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 46 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    47/155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    48/155

    Example (1.4)

    These plots can be generated by using the following Matlab code.We can load the system transfer function coefcients usingb = [2.0];

    a = [1 -0.75];We can then compute the frequency response usingw = p i * (0.0:0.01:1.0);h = freqz(b,a,w);hmag = abs(h);hphase = angle(h);

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 48 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    49/155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    50/155

    Example (1.4)

    These plots provide the magnitude and phase of the systemresponse for the range 0 .It is important to note that since we have assumed that x (n ) is real

    X ( ) = X ()

    |X ( )| = |X ()|arg (X ()) = arg (X ()) (64)

    We can observe this by computing X () for the full range of .Note that X () is periodic so we can easily obtain X () fornegative values by subtracting multiples of 2 from the givenfrequencies.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 50 / 155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    51/155

    Example (1.4)

    We can use Matlab to compute X () for .The full range plots can be obtained with the following Matlabscript.dw = pi/100;w 3 = d w * (-100:100);h3 = freqz(b,a,w3);hmag3 = abs(h3);hphase3 = angle(h3);

    The corresponding magnitude response is given in Figure 11 andthe corresponding phase response is given in Figure 12.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 51 / 155

    Frequency Representation Example

    E l (1 4)

  • 7/27/2019 Ece 513 Chap 1 Slides

    52/155

    Example (1.4)

    4 3 2 1 0 1 2 3 41

    2

    3

    4

    5

    6

    7

    8Frequency Plot (Full Range)

    Frequency(radians)

    M a g n i

    t u d e

    Figure: Magnitude plot of X () for the full range for Example 1.4.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 52 / 155

    Frequency Representation Example

    E l (1 4)

  • 7/27/2019 Ece 513 Chap 1 Slides

    53/155

    Example (1.4)

    4 3 2 1 0 1 2 3 41

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1Phase Plot ( Full Range)

    Frequency (radians/sec)

    P h a s e

    A n g l e

    ( r a

    d i a n s

    )

    Figure: Phase plot of X () the full range for Example 1.4.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 53 / 155

    Frequency Representation Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    54/155

    Example (1.4)

    Alternately, the full range from 0 2 can be obtained usingthe following Matlab code.[h4,w4] = freqz(b,a,201, whole);hmag4 = abs(h4);hphase4 = angle(h4);

    The corresponding magnitude response is given in Figure 13 andthe corresponding phase response is given in Figure 14.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 54 / 155

    Frequency Representation Example

    Example (1 4)

  • 7/27/2019 Ece 513 Chap 1 Slides

    55/155

    Example (1.4)

    0 1 2 3 4 5 6 71

    2

    3

    4

    5

    6

    7

    8Magnitude Plot

    Frequency (radians)

    M a g n i

    t u d e

    Figure: Magnitude plot of X () for the full range for Example 1.4.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 55 / 155

    Frequency Representation Example

    Example (1 4)

  • 7/27/2019 Ece 513 Chap 1 Slides

    56/155

    Example (1.4)

    0 1 2 3 4 5 6 71

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1Phase Plot

    Frequency (radians)

    M a g n

    i t u

    d e

    Figure: Phase plot of X () the full range for Example 1.4.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 56 / 155

    Difference Equation Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    57/155

    The general form for the system transfer function of a linear,shift-invariant discretetime system is given by

    H (z ) =

    L

    k = 0

    b (k )z k

    1 .0 +L

    k = 1

    a (k )z k (65)

    Figure 15 gives a block diagram of the discretetime system.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 57 / 155

    Difference Equation Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    58/155

    H(z)X(z) Y(z)

    Figure: Block diagram for a discretetime system.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 58 / 155

    Difference Equation Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    59/155

    We can also write the system transfer function in terms of the ratioof the ZTransforms of the output and the input.

    H (z ) =Y (z )X (z )

    (66)

    It follows that

    Y (z ) 1 .0 +L

    k = 1

    a (k )z k = X (z )L

    k = 0

    b (k )z k (67)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 59 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    60/155

    Difference Equation Representation

  • 7/27/2019 Ece 513 Chap 1 Slides

    61/155

    Similarly, if y (n k ) = 0 n < k , we can write

    z k Y (z ) =

    n = 0

    y (n k )z n (71)

    We can use this result to modify Equation 67 to obtain

    n = 0[y (n ) + a (1)y (n 1) + + a (L)y (n L)] z n (72)

    =

    n = 0 [b (0)x (n ) + b (1)x (n 1) + + b (L)x (n L)] z n

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 61 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    62/155

    Difference Equation Representation

    It follows that the linear shiftinvariant discretetime system can

  • 7/27/2019 Ece 513 Chap 1 Slides

    63/155

    ybe represented in either of the following standard forms.

    H (z ) =

    L

    k = 0

    b (k )z k

    1 .0 +L

    k = 1

    a (k )z k

    y (n ) =L

    k = 0

    b (k )x (n k ) L

    k = 1

    a (k )y (n k ) (75)

    Note the relationship between the coefcients b (k ) and a (k ) in thesystem transfer function and the corresponding coefcients in thedifference equation.This relationship makes it easy to write the difference equation fora given system transfer function by inspection or vice versa.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 63 / 155

    Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    64/155

    The general form for the transfer function for a causal,discretetime is

    H (z ) =Y

    (z

    )X (z ) =

    L

    k = 0

    b (k )z k

    1 .0 +L

    k = 1

    a (k )z k (76)

    Note that H (z ) is represented using negative powers of z.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 64 / 155

    Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    65/155

    We can also write H (z ) in the form

    H (z ) =Y (z )

    X (z )=

    L

    k = 0

    b (k )z Lk

    z L + L

    k = 1

    a (k )z Lk (77)

    We can obtain this form by multiplying the numerator anddenominator of the previous form by z L.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 65 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    66/155

    Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    67/155

    It is easy to show this by considering the difference equation for adiscretetime system

    y (n ) +L

    k = 1

    a (k )y (n k ) =L

    k = 0

    b (k )x (n k ) (81)

    If we assume thaty (n ) = H ()e j n (82)

    then, we have

    y (n k ) = H ()e j (n k ) = y (n )e j k (83)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 67 / 155

    Frequency Response

    Substituting these values in the difference equation, we obtain

  • 7/27/2019 Ece 513 Chap 1 Slides

    68/155

    H ()e j n

    1 .0 +

    L

    k = 1 a (k )e j k

    = e j n

    L

    k = 0 b (k )e j k

    (84)

    Solving for H (), we obtain

    H () =

    L

    k = 0b (k )e

    j k

    1 .0 +L

    k = 1

    a (k )e j k (85)

    This result is equivalent to evaluating the system transfer function,H (z ), on the unit circle where

    z = e j (86)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 68 / 155

    Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    69/155

    It follows that

    H () = H (z )|z = e j =

    L

    k = 0

    b (k )e j k

    1 .0 +L

    k = 1

    a (k )e j k (87)

    We will provide examples of the representation of the frequencyresponse for both FIR and IIR discretetime systems.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 69 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    70/155

    FIR Filter Frequency Response Example

  • 7/27/2019 Ece 513 Chap 1 Slides

    71/155

    Example (1.5)

    Thus, we letx (n ) = e j n (90)

    Then

    x (n 1) = e j (n 1) = e j x (n )x (n 2) = e j (n 2) = e j 2 x (n )x (n 3) = e j (n 3) = e j 3 x (n )

    x (n 4) = e j (n

    4)

    = e j 4

    x (n ) (91)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 71 / 155

    FIR Filter Frequency Response Example

    Example (1.5)

  • 7/27/2019 Ece 513 Chap 1 Slides

    72/155

    It follows that

    H () = 0 .0110 + 0 .1637 e j + 0 .6947 e j 2

    + 0 .1637 e j 3 0 .0110 e j 4 (92)

    H () = 0 .0110 e 2 j e 2 j + e 2 j

    + 0 .1637 e 2 j e j + e j

    + 0 .6947 e 2 j (93)

    H () = e 2 j {0 .6947 + 0 .3274 cos () 0 .0220 cos (2)} (94)

    We can determine the magnitude and phase of H () at someparticular value of by substituting for in H ().

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 72 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    73/155

    FIR Filter Frequency Response Example

    Example (1.5)

  • 7/27/2019 Ece 513 Chap 1 Slides

    74/155

    Figure 16 gives the magnitude spectrum of H ().

    0 0.5 1 1.5 2 2.5 3 3.50.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Magnitude Spectrum for FIR Example

    Frequency (Radians/sec)

    M a g n

    i t u

    d e

    Figure: Magnitude Spectrum for FIR lter.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 74 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    75/155

  • 7/27/2019 Ece 513 Chap 1 Slides

    76/155

    IIR Filter Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    77/155

    Example (1.6)

    Read in the lter coefcients.b = [0.6283 -1.2565 0.6283];a = [1.0000 -1.1804 0.4816];

    Compute the frequency response using the Matlab function freqz .w = p i * (0:0.01:1.0);h = freqz(b, a, w);hmag = abs(h);hphase = angle(h);

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 77 / 155

    IIR Filter Frequency Response

    Example (1.6)

  • 7/27/2019 Ece 513 Chap 1 Slides

    78/155

    Plot the results.figure(1);plot(w, hmag)title(Frequency Response Plot)xlabel(Normalized Frequency (radians))

    ylabel(Magnitude)print -dps iirfreq.psfigure(2)plot(w, hphase)title(Phase Response Plot)xlabel(Normalized Frequency (radians))ylabel(Magnitude)print -dps iirphase.ps

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 78 / 155

    IIR Filter Frequency Response

    Example (1.6)

  • 7/27/2019 Ece 513 Chap 1 Slides

    79/155

    Figure 18 gives the resulting magnitude response.

    0 0.5 1 1.5 2 2.5 3 3.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Frequency Response Plot

    Normalized Frequency (radians)

    M a g n

    i t u

    d e

    Figure: Magnitude plot of H () for Example 1.6.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 79 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    80/155

    IIR Filter Frequency Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    81/155

    Example (1.6)

    Note that the magnitude of the frequency response is zero at

    = 0.The plot shows the phase equal to zero at this value of as well.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 81 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    82/155

    The location of the poles and zeros in the complex planedetermine the frequency response of the system.We can use polezero plots to help estimate the frequencyresponse of discretetime systems.For example, it is usually desirable to have the magnitude of a lowpass lter approach or equal to zero as the frequency approachesthe Nyquist frequency ( for normalized frequencies).

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 82 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    83/155

    Therefore, we expect to nd the zeros to be at or clustered aroundz = 1 for low pass lters.The location of the poles will then determine the value of the cutofffrequency which is typically dened as the point where themagnitude gain is equal to 22 or the power gain is equal to 0.5.For example, Figure 20 gives the polezero plot for a secondorder low pass lter with cutoff frequency of c = 0 .6 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 83 / 155

    PoleZero Plots

    1

    PoleZero Plot for Low Pass Filter

  • 7/27/2019 Ece 513 Chap 1 Slides

    84/155

    1 0.5 0 0.5 1

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    2

    Real Part

    I m a g

    i n a r y

    P a r t

    Figure: PoleZero Plot of H(z) for low pass lter with cutoff frequencyc = 0 .6 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 84 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    85/155

    The zeros are both located at z = 1 and the poles are located at

    p (1) = 0 .1848 + 0 .4021 j p (2) = p (1) = 0 .1848 0 .4021 j (97)

    Figure 21 gives the magnitude and phase response plots for thislter.

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 85 / 155

    PoleZero Plots

    1.5Magnitude of Frequency Response for H(z)

  • 7/27/2019 Ece 513 Chap 1 Slides

    86/155

    4 3 2 1 0 1 2 3 40

    0.5

    1

    Frequency (radians/sec)

    M a g n

    i t u

    d e

    4 3 2 1 0 1 2 3 44

    2

    0

    2

    4Phase of Frequency Response for H(z)

    Frequency (radians/sec)

    P h a s e

    ( r a

    d i a n s

    )

    Figure: Magnitude and Phase plots of H(z) for low pass lter with cutofffrequency c = 0 .6 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 86 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    87/155

    We also expect the gain of the low pass lter to be equal to nearly

    equal to one at = 0 or where z = 1.In this case, the second order low pass lter, with two zeros atz = 1, can be generally represented as

    H (z ) =A(z + 1)2

    z 2 2 e {p (1)}z + |p (1)|2 (98)

    We can set the gain to one at z = 1 to obtain the value of A. Itfollows that

    A =1 2 e {p (1)} + |p (1)|2

    4 (99)

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 87 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    88/155

    On the other hand, the gain for a high pass lter is desired to be ator near zero at = 0.Therefore, we expect the zeros of a high pass lter to be at orclustered around z = 1.The locations of the poles then determine the cutoff frequency.Figure 22 gives the polezero plot for a second order high passlter with a cutoff frequency of c = 0 .6 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 88 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    89/155

  • 7/27/2019 Ece 513 Chap 1 Slides

    90/155

    PoleZero Plots

    0.8

    1Magnitude of Frequency Response for H(z)

    e

  • 7/27/2019 Ece 513 Chap 1 Slides

    91/155

    4 3 2 1 0 1 2 3 40

    0.2

    0.4

    0.6

    Frequency (radians/sec)

    M a g n

    i t u

    d e

    4 3 2 1 0 1 2 3 44

    2

    0

    2

    4Phase of Frequency Response for H(z)

    Frequency (radians/sec)

    P h a s e

    ( r a

    d i a n s

    )

    Figure: Magnitude and Phase plots of H(z) for high pass lter with cutofffrequency c = 0 .6 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 91 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    92/155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    93/155

    The gain for a band stop lter is desired to be at or near zero forthe stop frequency which is normally given by s = 0 .5(1 + 2)where 1 and 2 are the low and high cutoff frequenciesrespectively.

    The locations of the poles then determine the cutoff frequencies.Figure 24 gives a polezero plot for a fourth order band stop lterwith cutoff frequencies of 1 = 0 .6 and 2 = 0 .75 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 93 / 155

    PoleZero Plots

    0.8

    1

    2

    PoleZero Plot for Band Stop Filter

  • 7/27/2019 Ece 513 Chap 1 Slides

    94/155

    1 0.5 0 0.5 1

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    2

    Real Part

    I m a g

    i n a r y

    P a r t

    Figure: PoleZero Plot of H(z) for band stop lter with cutoff frequencies at1 = 0 .6 and 2 = 0 .75 .

    C Williams & W Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 Fall 2013 94 / 155

    PoleZero Plots

    There are two zeros located at

    r (1) = r (3) = 0 5373 + 0 8434 j (102)

  • 7/27/2019 Ece 513 Chap 1 Slides

    95/155

    r (1) = r (3) = 0 .5373 + 0 .8434 j (102)

    and two zeros located at

    r (2) = r (4) = 0 .5373 0 .8434 j (103)

    The poles are located at

    p (1) = 0 .5810 + 0 .6372 j p (2) = 0 .5810 0 .6372 j p (3) = 0 .3187 + 0 .7678 j p (4) = 0 .3187 0 .7678 j (104)

    Figure 25 gives the magnitude and phase response plots for thislter.

    C Willi & W Al d (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 F ll 2013 95 / 155

    PoleZero Plots

    0.8

    1Magnitude of Frequency Response for H(z)

    d e

  • 7/27/2019 Ece 513 Chap 1 Slides

    96/155

    4 3 2 1 0 1 2 3 40

    0.2

    0.4

    0.6

    Frequency (radians/sec)

    M a g n

    i t u

    d

    4 3 2 1 0 1 2 3 410

    5

    0

    5

    10Phase of Frequency Response for H(z)

    Frequency (radians/sec)

    P h a s e

    ( r a

    d i a n s )

    Figure: Magnitude and Phase plots of H(z) for band stop lter with cutofffrequency 1 = 0 .6 and 2 = 0.75 .

    C Willi & W Al d (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 F ll 2013 96 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    97/155

    The gain for a band pass lter is desired to be at or near zero forboth = 0 and = .Therefore, we expect to nd zeros of the transfer function at orclustered near both z = 1 and at z = 1.

    The locations of the poles then determine the cutoff pass bandfrequencies.Figure 26 gives a polezero plot for a fourth order band pass lterwith cutoff frequencies of 1 = 0 .6 and 2 = 0 .75 .

    C Willi & W Al d (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 F ll 2013 97 / 155

    PoleZero Plots

    0.8

    1

    PoleZero Plot for Band Pass Filter

  • 7/27/2019 Ece 513 Chap 1 Slides

    98/155

    1 0.5 0 0.5 1

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    2 2

    Real Part

    I m a g

    i n a r y

    P a r t

    Figure: PoleZero Plot of H(z) for band pass lter with cutoff frequencies at1 = 0 .6 and 2 = 0 .75 .

    C Willi & W Al d (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513 F ll 2013 98 / 155

    PoleZero Plots

  • 7/27/2019 Ece 513 Chap 1 Slides

    99/155

    There are two zeros at z = 1 and two zeros at z = 1.Since the critical frequencies for this example are the same asthose for the band stop lter, the poles are located in the sameplace as there are for the band stop lter above.Figure 27 gives the frequency magnitude and phase plots for thislter.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 99 / 155

    PoleZero Plots

    0 6

    0.8

    1Magnitude of Frequency Response for H(z)

    u d e

  • 7/27/2019 Ece 513 Chap 1 Slides

    100/155

    4 3 2 1 0 1 2 3 40

    0.2

    0.4

    0.6

    Frequency (radians/sec)

    M a g n

    i t u

    4 3 2 1 0 1 2 3 410

    5

    0

    5

    10Phase of Frequency Response for H(z)

    Frequency (radians/sec)

    P h a s e

    ( r a

    d i a n s )

    Figure: Magnitude and Phase plots of H(z) for high pass lter with cutofffrequency 1 = 0 .6 and 2 = 0.75 .

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 100 / 155

    System Response

  • 7/27/2019 Ece 513 Chap 1 Slides

    101/155

    We can determine the response of a discretetime system for aninput sequence by obtaining the inverse Z Transform of theproduct of the Z Transforms of the input sequence X (z ) and thesystem transfer function H (z ).We can use partial fraction expansion to nd the inverse ZTransform in a convenient way.Consider the output Z Transform given by

    Y (z ) = H (z )X (z ) (105)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 101 / 155

    System Response

    We can expand Y (z )z to obtain an expansion of the form

    Y (z ) M c k ( )

  • 7/27/2019 Ece 513 Chap 1 Slides

    102/155

    ( )

    z =

    k = 1

    ck

    z p k (106)

    where there are M poles, c k represents the expansion coefcientsand p k represents the corresponding poles.We can then write

    Y (z ) =M

    k = 1

    c k z z p k

    =M

    k = 1

    c k 1 p k z 1

    (107)

    If all of the p k have magnitudes less than 1 ( |p k | < 1 k ), then

    y (n ) =M

    k = 1

    c k (p k )n u (n ) (108)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 102 / 155

    System Response Example

    l ( )

  • 7/27/2019 Ece 513 Chap 1 Slides

    103/155

    Example (1.7)

    The system response for a discretetime system is given by

    H (z ) =0 .1593 z 2 + 0 .3187 z + 0 .1593

    (z + 0 .472 )(z 0 .567 )(109)

    We want to nd the output for this system for 0 n when theinput is

    x (n ) = 2 .5(0 .76 )n u (n ) (110)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 103 / 155

    System Response Example

    Example (1.7)

  • 7/27/2019 Ece 513 Chap 1 Slides

    104/155

    Example (1.7)

    We rst nd X(z) and Y(z),

    X (z ) =2 .5z

    z 0 .76(111)

    Y (z ) = X (z ) H (z )

    =2 .5z (0 .1593 z 2 + 0 .3187 z + 0 .1593 )

    (z 0 .76 )(z + 0 .472 )(z 0 .567 )(112)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 104 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    105/155

    System Response Example

    Example (1 7)

  • 7/27/2019 Ece 513 Chap 1 Slides

    106/155

    Example (1.7)

    We can nd A,B,C as follows

    A =Y (z )

    z (z 0 .76 )|z = 0 . 76 = 5 .1889

    B = X (z )z

    (z + 0 .472 )|z = 0 . 472 = 0 .0866

    C =X (z )

    z (z 0 .567 )|z = 0 . 567 = 4 .877 (114)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 106 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    107/155

    System Response Example

    Example (1.7)

  • 7/27/2019 Ece 513 Chap 1 Slides

    108/155

    We used the geometric series to obtain the inverse transform

    X (z ) =

    n = 0

    x (n )z n (117)

    If |p | < 1, thenX (z ) =

    cz z p

    =c

    1 .0 pz 1(118)

    and

    x (n ) = c (p )n u (n ) (119)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 108 / 155

    Frequency Shifting

    Frequency shifting can be used to perform a frequencytransformation of a discretetime system.We will explore this analytically in this section.

  • 7/27/2019 Ece 513 Chap 1 Slides

    109/155

    The frequency response of a linear, shiftinvariant system can beobtained from its ZTransform.

    H (z ) =

    n = 0

    h (n )z n (120)

    where h (n ) is the impulse response of the system.

    H () = H (z )|z = e j =

    n = 0

    h (n )e j n (121)

    Assume that we multiply h (n ) by a complex exponential e j 1 toobtain

    h 1(n ) = h (n )e j 1n (122)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 109 / 155

    Frequency Shifting

    The resulting frequency response is given by

    H 1() =

    h (n )e j 1 n e j n (123)

  • 7/27/2019 Ece 513 Chap 1 Slides

    110/155

    1( )n = 0

    ( ) ( )

    H 1() =

    n = 0

    h (n )e j ( 1 )n

    = H ( 1) (124)

    We see that multiplying the impulse response h (n ) by the complexexponential e j 1 shifts the frequency response by 1 and thefrequency response at = 0 is shifted to the location =

    1.

    If we multiply h (n ) by the complex exponential e j 1 to obtain

    h 2(n ) = h (n )e j 1 n (125)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 110 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    111/155

    Inverse ZTransform for Systems with Complex Poles

  • 7/27/2019 Ece 513 Chap 1 Slides

    112/155

    We will consider the case where the system has complex poles inthis section.If the coefcients of both the numerator and denominatorpolynomials of H (z ) are real, then

    1 the poles and zeros of H (z ) are real, or2 they occur in complex conjugate pairs.

    We will consider the case where all of the poles are real except fortwo complex poles that are complex conjugates.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 112 / 155

    Inverse ZTransform for Systems with Complex Poles

    We can therefore use partial fraction expansion to expand thetransfer function H(z ) as

  • 7/27/2019 Ece 513 Chap 1 Slides

    113/155

    transfer function H (z ) as

    H (z ) =N 1

    m = 1

    F m (z ) +N 2

    k = 1

    C k z z p k

    (127)

    where all of the C k and p k are real and

    F m (z ) =D 1m z

    z p 1m +

    D 2m z z p 2m

    (128)

    The constants D 1m and D 2m are complex conjugates and thepoles p 1m and p 2m are complex conjugates.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 113 / 155

    Inverse ZTransform for Systems with Complex Poles

    We can compute the inverse ZTransform of F m (z ) to obtain

  • 7/27/2019 Ece 513 Chap 1 Slides

    114/155

    f m (n ) = [ D 1m (p 1m )n + D 2m (p 2m )n ] u (n ) (129)

    We can write p 1m and p 2m in complex exponential form as

    p 1m = e + j

    p 2m = e j (130)

    Then, we can write

    f m (n ) = D 1m

    e ( + j )n + D 2m

    e ( j )n (131)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 114 / 155

    Inverse ZTransform for Systems with Complex Poles

    However,

    e j n = cos (n) + jsin (n)

  • 7/27/2019 Ece 513 Chap 1 Slides

    115/155

    e cos (n ) + jsin (n )e j n = cos (n ) jsin (n ) (132)

    Thus,

    f m (n ) = ( D 1m + D 2m ) e n

    cos (n )u (n )+ j (D 1m D 2m ) e n sin (n )u (n ) (133)

    We observe that

    D 1m + D 2m = 2 e (D 1m )D 1m D 2m = 2 j m (D 1m ) (134)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 115 / 155

    Inverse ZTransform for Systems with Complex Poles

  • 7/27/2019 Ece 513 Chap 1 Slides

    116/155

    Thus

    f m (n ) = 2 e (D 1m ) e n cos (n )u (n )

    2 m (D 1m ) e n sin (n )u (n ) (135)

    We can further simplify f m (n ) by using the trigonometric equation

    cos (n + ) = cos () cos (n ) sin () sin (n ) (136)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 116 / 155

    Inverse ZTransform for Systems with Complex Poles

    We can then write f n in the form

  • 7/27/2019 Ece 513 Chap 1 Slides

    117/155

    We can then write f m (

    n )

    in the form

    f m (n ) = Ae n cos (n + ) (137)

    where

    = tan 1 m (D 1m )e (D 1m )

    A = 2 m (D 1m )2 + e (D 1m )2 (138)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 117 / 155

    Complex Poles Inverse ZTransform Example

    Example (1.8)

    We wish to nd the impulse response of the discretetime system

  • 7/27/2019 Ece 513 Chap 1 Slides

    118/155

    with its transfer function given by

    H (z ) =0 .5276 z 3 + 1 .5829 z 2 + 1 .5829 z + 0 .5276

    z 3 + 1 .76 z 2 + 1 .1829 z + 0 .2781(139)

    If x (n ) is an impulse, then

    X (z ) =

    n = (n )z n = 1 (140)

    Thus,Y (z ) = H (z )X (z ) = H (z ) (141)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 118 / 155

    Complex Poles Inverse ZTransform Example

    Example (1.8)

  • 7/27/2019 Ece 513 Chap 1 Slides

    119/155

    For convenience in obtaining the geometric series form, weexpand

    H (z )z =

    0 .5276 z 3 + 1 .5829 z 2 + 1 .5829 z + 0 .5276z (z 3 + 1 .76 z 2 + 1 .1829 z + 0 .2781 )

    =D 1

    z p 1+

    D 2z p 2

    +C 1

    z p 3+

    C 2z

    (142)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 119 / 155

    Complex Poles Inverse ZTransform Example

    Example (1.8)

    It follows that

  • 7/27/2019 Ece 513 Chap 1 Slides

    120/155

    p 1 = 0 .6252 + 0 .3935 j p 2 = 0 .6252 0 .3935 j = p 1p 3 = 0 .5097p 4 = 0 (143)

    and

    D 1 = 0 .3221 + 0 .1501 j D 2 = 0 .3221 0 .1501 j = D 1C 1 = 0 .7254C 2 = 1 .8972 (144)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 120 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    121/155

    Complex Poles Inverse ZTransform Example

    Example (1.8)

  • 7/27/2019 Ece 513 Chap 1 Slides

    122/155

    We have

    p 1 = e + j = e (cos () + jsin ())

    tan () =m (p 1)e (p 1)

    =0 .3935

    0 .6252

    = tan 1 0 .3935 0 .6252

    = 2 .5799

    e cos () = 0 .6252 e = 0 .6252cos ()

    = 0 .7387

    = log e (0 .7387 ) = 0 .3029 (146)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 122 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    123/155

    Complex Poles Inverse ZTransform Example

    Example (1.8)

  • 7/27/2019 Ece 513 Chap 1 Slides

    124/155

    We can simplify f 1(n ) further as

    f 1 (n ) = Ae 0 . 3029 n cos (2 .5799 n + )u (n ) (148)

    where

    A = 2 (0 .1501 )2 + ( 0 .3221 )2 = 0 .7107 = tan 1

    0 .1501 0 .3221

    = 2 .7055 (149)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 124 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    125/155

    Inverse ZTransform for Systems with Multiple Poles

    If the Z Transform has one or more multiple order poles, then thepartial fraction expansion must contain additional terms.For example, if the Z Transform has a pole of order 3 such that

    ( ) ( )

  • 7/27/2019 Ece 513 Chap 1 Slides

    126/155

    Y (z )z

    = B (z )M 1k = 1 (z p k ) (z p M )3

    (152)

    Then, the inverse Z Transform will have the form

    Y (z )z

    =M

    1

    k = 1

    C k z p k

    + C 1M z p m

    + C 2M (z p m )2

    + C 3M (z p m )3

    (153)

    The general equation for nding the residues for a system with Lpoles located at p m is given by [2]

    C k =1

    (L k )!( p m )Lk d Lk

    dz (z p m )L

    Y (z )z

    (154)

    We now consider an example where Y (z ) has multiple poles.C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 126 / 155

    Multiple Poles Inverse ZTransform Example

    Example (1.9)

    C id h di i i h f f i i b

  • 7/27/2019 Ece 513 Chap 1 Slides

    127/155

    Consider the discretetime system with transfer function given by

    H (z ) =0 .1584 z 3 + 0 .4752 z 2 + 0 .4752 z + 0 .1584

    z 3 0 .2z 2 0 .2275 z + 0 .0612(155)

    This can be rewritten as

    H (z ) =0 .1584 (z + 1)3

    (z 0 .35 )2 (z + 0 .5)(156)

    We want to nd the impulse response of this system.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 127 / 155

    Multiple Poles Inverse ZTransform Example

    Example (1.9)

    h l f ( ) l d

  • 7/27/2019 Ece 513 Chap 1 Slides

    128/155

    The poles of H (z ) are located at

    p (1) = 0 .5p (2) = p (3) = 0 .35 (157)

    We perform partial fraction expansion of H (z )z to obtain

    H (z )z

    =C 1

    z + 0 .5+

    C 2z 0 .35

    +C 3

    (z 0 .35 )2+

    C 4z

    (158)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 128 / 155

    Multiple Poles Inverse ZTransform Example

    Example (1.9)

  • 7/27/2019 Ece 513 Chap 1 Slides

    129/155

    C 1 =(z + 0 .5) H (z )

    z z = 0 . 5=

    0.1584 ( 0.5 + 1)3

    ( 0 .5 0.35 )2 ( 0.5)= 0 .05481

    C 3 = (z 0 .35 )2

    H (z )z z = 0 . 35= 0 .1584 (0.35 + 1)

    3

    0 .35 (0 .35 + 0 .5) = 1 .31

    C 4 =z H (z )

    z z = 0=

    0 .1584 (0 + 1)3

    (0 + 0 .5)(0 0 .35 )2= 2 .5861 (159)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 129 / 155

    Multiple Poles Inverse ZTransform Example

    Example (1.9)

    We can nd C 2 as

    d ( 0 35 )2 H(z )

  • 7/27/2019 Ece 513 Chap 1 Slides

    130/155

    C 2 =d (z 0 .35 )2 H (z )z

    dz z = 0 . 35

    = 2 .3729 (160)

    Thus,

    H (z ) = 0 .05481 z

    z + 0 .5

    2 .3729 z z 0 .35

    +1 .31 z

    (z 0 .35 )2+ 2 .5861 (161)

    Computing the inverse ZTransform, we obtain

    h (n ) = [ 0 .05481 ( 0 .5)n 2 .3729 (0 .35 )n ] u (n )

    +1 .310 .35

    n (0 .35 )n u (n ) + 2 .5861 (n ) (162)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 130 / 155

    Cascade Implementation of Digital Filters

    A given system transfer function for a discretetime system

    ( )

    L

    b (k )

  • 7/27/2019 Ece 513 Chap 1 Slides

    131/155

    H (z ) =B (z )A(z )

    = k = 0b (k )

    1 .0 +L

    k = 1

    a (k )

    (163)

    can be represented as a product of rst order or higher ordersystem transfer functions such that

    H (z ) =M

    m = 1

    H m (z ) (164)

    The a (k ) = 0 .0 for a FIR lter.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 131 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    132/155

    Cascade Implementation of Digital Filters I

    We can form each H k (z ) using one or more real q m or complexconjugate pairs of q m so that the coefcients of all of the H k (z ) are

    also real

  • 7/27/2019 Ece 513 Chap 1 Slides

    133/155

    also real.A standard practice for partitioning H (z ) into second ordersections is to:

    Order the q m and p m in increasing (or decreasing) magnitude.Combine the complex conjugate pairs in increasing (or decreasing)magnitude to form second order system transfer functions.

    H k (z ) =(z q m )(z q m )(z p m )(z p m )

    =z 2 2 (q m )z + q 2m z 2 2 (p m )z + |p 2m |

    (166)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 133 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    134/155

  • 7/27/2019 Ece 513 Chap 1 Slides

    135/155

    Cascade Implementation of Digital Filters

    It follows that

    H (z ) =K

    H (z ) = AK K

    H (z ) (170)

  • 7/27/2019 Ece 513 Chap 1 Slides

    136/155

    H (z ) =k = 1

    H k (z ) = Ak = 1

    H k (z ) (170)

    if b (0) is positive and

    H (z ) = K

    k = 1

    H k (z ) = AK K

    k = 1

    H k (z ) (171)

    if b (0) is negative.

    We can illustrate this concept using an FIR lter as an example.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 136 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    137/155

  • 7/27/2019 Ece 513 Chap 1 Slides

    138/155

    Cascade Implementation Example

    Example (1.10)

    Note that the q m have been arranged in decreasing magnitudeorder.

  • 7/27/2019 Ece 513 Chap 1 Slides

    139/155

    order.Using the procedure described above, we can form

    H 1(z ) = ( z q 2)(z q 3) = z 2 2 .0790 z + 11 .8225

    H 2(z ) = ( z q 7)(z q 8) = z 2

    0 .1759 z + 0 .0846H 3(z ) = ( z q 1)(z q 4) = z 2 0 .3321 z 11 .7114H 4(z ) = ( z q 6)(z q 9) = z 2 + 0 .0284 z 0 .0854H 5(z ) = ( z q 5) = z + 1 .0000 (174)

    A = ( 0 .0049 )15 = 0 .3454 (175)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 139 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    140/155

    Stabilization of an Unstable Filter

    The magnitude of a stable lter and the magnitude of an unstablelter can have the same frequency response.A t bl digit l lt ill h it l i id th it i l h

  • 7/27/2019 Ece 513 Chap 1 Slides

    141/155

    A stable digital lter will have its poles inside the unit circle suchthat

    |p k | < 1 .0 1 k L (177)

    for a lter with L poles.We can stabilize an unstable lter with a pole p m outside the unitcircle by replacing it by its reciprocal and then adjusting themagnitude of gain of the lter appropriately.We will illustrate this concept using an example.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 141 / 155

    Stabilization Example I

  • 7/27/2019 Ece 513 Chap 1 Slides

    142/155

    Example (1.11)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 142 / 155

    Stabilization Example II

    The system transfer function for an unstable discretetime systemis given by

    H (z ) =B (z )A(z )

    (178)

    where

  • 7/27/2019 Ece 513 Chap 1 Slides

    143/155

    where

    B (z ) = 0 .4360 + 1 .8677 z 1 + 3 .4742 z 2

    + 3 .4742 z 3 + 1 .8677 z 4

    + 0 .4360 z 5 (179)

    and

    A(z ) = 1 .0000 + 2 .4705 z 1 + 4 .0048 z 2

    + 2 .9435 z 3 + 1 .2649 z 4

    0 .1281 z 5 (180)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 143 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    144/155

  • 7/27/2019 Ece 513 Chap 1 Slides

    145/155

    Stabilization Example

    Example (1.11)

    We can write H (z ) in the form

  • 7/27/2019 Ece 513 Chap 1 Slides

    146/155

    H (z ) =B (z )

    (z p 1 )(z p 1 )(z p 3)(z p 3)(z p 5)(181)

    wherep 1 = 0 .6445 + 1 .1156 j p 3 = 0 .6324 + 0 .7262 j p 5 = 0 .0832 (182)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 146 / 155

    Stabilization Example

    Example (1.11)

    A stable transfer function with the same magnitude response canbe determined as

  • 7/27/2019 Ece 513 Chap 1 Slides

    147/155

    be determined as

    H 1(z ) =z 2 B (z )

    (z 1 p 1)(z 1 p 1 )(z p 3)(z p 3)(z p 5 )(183)

    Simplifying H 1(z ), we obtain

    H 1(z ) =B (z )

    |p 1 |2 (z 1p 1 )(z 1

    p 1)(z p 3 )(z p 3)(z p 5)

    (184)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 147 / 155

    Stabilization Example

    Example (1.11)

    B1(z )

  • 7/27/2019 Ece 513 Chap 1 Slides

    148/155

    H 1(z ) =B 1(z )A1(z )

    B 1(z ) = 0 .2627 + 1 .1252 z 1 + 2 .0931 z 2

    + 2 .0931 z 3

    + 1 .1252 z 4

    + 0 .2627 z 5

    A1(z ) 1 .0 + 1 .9581 z 1 + 2 .3420 z 2

    + 1 .2730 z 3 + 0 .4353 z 4

    0 .0465 z 5

    (185)

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 148 / 155

    Stabilization Example

    Example (1.11)

    We can use the Matlab freqz function to compute 200 values ofthe magnitude response of the original system transfer function asgiven in Equation 178.

  • 7/27/2019 Ece 513 Chap 1 Slides

    149/155

    We can compute the magnitude response of the original H (z )using the following Matlab script.b1 = [0.4360 1.8677 3.4742 3.4742 1.8677 0.4360];

    a1 = [1.0000 2.4705 4.0048 2.9435 1.2649 -0.1281];n = 0:199;w = n * pi/199;h1 = freqz(b1, a1, w);h1mag = abs(h1);

    figure(1)plot(w, h1mag);print -dps stab1a.ps

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 149 / 155

    Stabilization Example

    Example (1 11)

  • 7/27/2019 Ece 513 Chap 1 Slides

    150/155

    Example (1.11)

    Figure 28 gives the plot for the magnitude response of H (z ).Note that this magnitude response is not in decibels.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 150 / 155

    Stabilization Example

    Example (1.11)

    1.2

    1.4

  • 7/27/2019 Ece 513 Chap 1 Slides

    151/155

    0 0.5 1 1.5 2 2.5 3 3.50

    0.2

    0.4

    0.6

    0.8

    1

    Figure: Magnitude response plot of H(z) for Example 1.11.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 151 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    152/155

    Stabilization Example

    Example (1 11)

  • 7/27/2019 Ece 513 Chap 1 Slides

    153/155

    Example (1.11)

    Figure 29 gives the plot for the magnitude response of H 1(z ).Note that this magnitude response is not in decibels.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 153 / 155

    Stabilization Example

    Example (1.11)

    1.2

    1.4

  • 7/27/2019 Ece 513 Chap 1 Slides

    154/155

    0 0.5 1 1.5 2 2.5 3 3.50

    0.2

    0.4

    0.6

    0.8

    1

    Figure: Magnitude response plot of H 1 (z ) for Example 1.11.

    C. Williams & W. Alexander (NCSU) FUNDAMENTAL DSP CONCEPTS ECE 513, Fall 2013 154 / 155

  • 7/27/2019 Ece 513 Chap 1 Slides

    155/155