Eb9bG Moment Area Example

29
 Moment Area Examples For the cantilever shown below calculate vertical deflection at the tip of the cantilever. E = 200 kN/mm 2 I = 200 000 cm 4 EI 8 m EI 2 m A B C 100 kN

description

...

Transcript of Eb9bG Moment Area Example

  • Moment Area Examples

    For the cantilever shown below calculate

    vertical deflection at the tip of the cantilever.

    E = 200 kN/mm2

    I = 200 000 cm4

    EI

    8 m

    EI

    2 m

    A B C

    100 kN

  • Taking Moment of the area about C

    DC = [(800x8/2) x 22/3] / EI = 70400/3EI

    E =200 kN/mm2 = 200 x 106 kN/m2

    I = 20000 cm4 = 200000x10-8 = 2000x10-6 m4

    DC = [70400/(3x200x106x2000x10-6)] x 1000

    DC = 58.66 mm

    Solution

    8 m, EIA BC

    DC

    2 m, EI100 kN

    800

    8/3 m 2 + 2x8/3 = 22/3 m

  • =+

    10m, E, I

    2

    100 kN

    1

    D1

    10m, E, I

    2

    V1

    1

    D1

    10V1

    20/3

    500

    5 +10/3 = 25/3

    10m, E, I

    2

    100 kN

    1 5m

    D1 = [(500 x 5/2) x 25/3] / EI

    D1 = 31250/3EI

    D1 = [(10V1 x 10/2) x 20/3] / EI

    D1 = 1000V1/3EI(Equate deflections)

    1000 V1 = 31250

    V1 = 31.25 kN V2 = 100 31.2 = 68.8 kN

  • M2 = 500 10V1 = 500 312.5 = 187.5 kN-m

    MUnder the Load = 31.25 x 5 = 156.25 kN-m

    Or 312.5/2 = 156.25 kN-m

    187.5 kN-m

    156.25 kN-m

    Bending Moment Dia.

    10V1=

    312.5

    20/3 500

    5 +10/3 = 25/3

  • For the structure shown below:

    Calculate support reactions

    Sketch BMD showing values at critical locations

    Calculate vertical deflection at C.

    =

    L, E, IA B

    DB

    qB

    100 kN/m

    VB

    +

    EI = 80000 kN-m2

    VB

    DB

    There are 4 D.o.F and

    only 3 Equations of

    Equilibrium:

    Remove reaction at B

    to change the structure

    to a determinate

    structure

    Apply VB such that the

    net deflection at B is

    Zero

    8m, E, I B

    100 kN/m C2m, E, I

    VA

    0

    MA

    A

  • Draw two tangents at A and B

    DB = (1/3x3200x8) x 6/EI = 51200/EI

    Draw two tangents at A and B

    DB = (8VBx8/2) x 16/3EI = 512VB/3EI

    8VB

    16/3 m

    VB

    DB

    L, E, IA

    B

    DB

    qB

    100 kN/m3200

    +CG

    2m 6m 2m

  • 51200/EI = 512VB/3EI (No deflection at B)

    VB = 300 kN

    VA = 800 300 = 500 kN

    MA = 3200 8 VB = 3200 2400 = 800 kN-m

    Bending Moment Diagram

    5 mB C

    800

    450

    A3

    20

    0

    +CG

    2m 6m

    8V

    B=

    24

    00

    16/3 m

    Sagging Moment = 300*3/2 = 450kN-m

    500

    300

    Shear Force Diagram

    5m3m

  • Deflection calculations

    DC1 = (1/3x3200x8) x 8/EI = 68267/EI

    DC2 = (2400x8/2)x(16/3 + 2)/EI = 70400/EI

    DC = DC1 DC2 = -2133/EI

    DC =(-2133.33/80000) * 1000

    DC = 26.7 mm Upward

    32

    00

    +CG

    2m 6m

    8m

    24

    00

    16/3 m

    8m

    2m

  • Alternative solution

    Introduce a hinge at A to get red of a D.o.F

    8m, E, IA B

    100 kN/m C2m, E, I

    VA

    0

    MA

    =

    8m, E, IA B

    100 kN/m C2m, E, I

    VA

    0

    MA

    +

    8m, E, IA BC2m, E, I

    VA

    0

    MA

  • qA = 2/3 x 800 x 4 /EI =6400/3EI

    MA = 3EI/8 qA = 3EI/8 x 6400/3EI = 800kN-m

    VA = 400 + 800/8 = 500 kN

    VB = 400 800/8 = 300 kN

    8m, E, IA B

    100 kN/m C2m, E, I

    VA

    0

    MA

    400

    0

    B

    C

    800

    qA

    100 kN/m

    400

    qA

    MA/8

    MA

    A BC

    MA/8

    0MA

  • Now student try the following question

    For the structure shown below:

    Calculate support reactions

    Sketch BMD showing values at critical

    locations

    Calculate vertical deflection at c

    8m, E, I BC2m, E, I

    VA

    0

    MA 100 kN

    A

    EI = 80000 kN-m2

    4m

  • VB

    DB

    There are 4 D.o.F

    Take reaction at B out

    Apply VB such that the net

    deflection at B is Zero

    8m, E, I BC2m, E, I

    VA

    0

    MA

    A

    100 kN

    4m

    400

    A B

    8/3 +4 = 20/3A B

    DB

    qB

    100 kN4m

    Draw two tangents at A and B

    DB = (8VB*8/2) x 16/3EI = 512VB/3EI8V

    B

    16/3

    8m

    512VB/3EI = 16000/3EI VB = 31.25kN & VA= 68.75kN

    Draw two tangents at A and B

    DB = (400*4/2) x 20/3EI = 16000/3EI

  • 4m

    400

    A B

    8/3 +4 = 20/3

    250

    16/3

    8m

    31.25 *4 = 125 kN-m

    Bending Moment Dia.

    400-250 =150kNm68.7

    5kN

    31.2

    5kN4m4m

    Shear Force Dia.

  • Remove the support at 2V1

    100 kN

    5m, EI 5m, EI 5m, EI

    1 32

    V3V2

    100 kN

    5m, EI

    100

    100 kN

    5m, EI 10m, EI1 32

    100

    100 kN

    5m, EI

    D2 D2

    Bending Moment Diagram

    Moment of area at 3D2 =[(500x5/2) x (2/3)x5 + (500x5) x (5+2.5)]/EI

    D2 = 12500/3EI + 18750/EI = 68750/3EI

    500500

  • Now apply V2 back to push the beam to

    its original position

    V3 = V2/210m, EI 10m, EI1 32

    V1 = V2/2 V2

    D2 D2

    (V2/2) x 10 = 5V2

    D2 = (5V2x10/2) x 20/3EI =500V2/3EI

    500V2/3EI = 68750/3EI V2 = 68750/500 = 137.5 kN

    Moment of area at 3

  • V1 = 100 V2/2 = 31.25 kN

    V3 = V1 = 31.25 kN

    M2 = 5V2 500 = 5*137.5 -500 =187.5 kN-m

    31.25x5

    =156.25

    187.5

    156.25

  • Thinking outside the box

    Students to work in groups of 2 or 3 and

    discuss if they can use the conditions of

    symmetry to simplify the structure to work

    out the unknown parameters.

    Hint: Draw deformed shape of the structure

    & think about simplifying it.

    V1

    100 kN

    5m, EI 5m, EI 5m, EI

    1 32

    V3V2

    100 kN

    5m, EI

  • Thinking outside the box

    Due to symmetrical geometry and loading,

    the structure can be simplified to:

    At the central support the structure can not

    move vertically or horizontally

    Due to symmetry there is no rotation either.

    This could be replaced to a fixed support.

    10m, E, I10m, E, I

    2

    100 kN 100 kN

    21 3

  • 10m, E, I

    2

    100 kN

    1

    =

    +10m, E, I

    2

    100 kN

    1

    D1

    10m, E, I

    2

    V1

    1

    D1

    10V1

    20/3

    500

    5+10/3 = 25/3

  • From the first Structure:

    D1 = [(500 x 5/2) x 25/3] / EI

    D1 = 31250/3EI

    From the Second Structure:

    D1 = [(10V1 x 10/2) x 20/3] / EI

    D1 = 1000V1/3EI

    1000 V1 = 3125 (Equate deflections)

    V1 = 31.25 kN

    (which is the same as before)

  • Challenging Question

    For the structure shown:

    Calculate support reactions.

    Sketch BMD and calculate values at critical location.

    The structure is indeterminate as there are 4 variables and 3 equations of equilibrium.

    120 kN

    2m, EI 4m, EI 6m, EI

    1 32

  • Solution

    0

    120 kN

    2m, EI 4m, EI 6m, EI

    1 32

    V1 V3V2

    =

    +

    120 kN2m, EI 4m, EI 6m, EI

    1 32

    100 20D2

    D1 d2

    V3 = V2/22m, EI 4m, EI 6m, EI1

    32

    V1 = V2/2 V2 = 2V1

    D2D2

  • Draw three tangents at 1, 2 and 3.

    D1 = [(200x2/2x4/3) + (200x10/2)(2+10/3)]/EI

    D1 = [800/3+16000/3] / EI = 16800/3EI = 5600/EI

    d2 + D2 = D1 / 2 = 2800/EI

    d2= (120x6/2) x 6/3EI = 720/EI D2 = (2800-720)/EI

    D2 = 2080/EI

    120 kN

    2m, EI 4m, EI 6m, EI1 32

    100 20D2

    D1 d2

    200120

    D12

  • D2 = (3V2x6/2) x 4/EI =36V3/EI 36V2/EI = 2080/EI V2 = 2080/36 = 57.78kN V1 = 100 57.78/2 = 71.11 kN V3 = 20 - 57.78/2 = -8.89 kN

    V3 = V2/22m, EI 4m, EI 6m, EI1

    32

    V1 = V2/2 V2

    D2D2

    (V2/2) x 6 = 3V2

    53.34

    142.22

    BMD

    8.892m, EI 4m, EI 6m, EI

    1 32

    71.11 57.78

  • 0120 kN

    2m, EI 4m, EI 6m, EI

    1 32

    V1 V3V2

    120 kN

    2m, EI 4m, EI 6m, EI

    1 32

    V1 V2

    D3

    V3

    2m, EI 4m, EI 6m, EI

    1 32

    V1 V2 D3

    =

    +

    Alternative SolutionRemove V3

  • V32m, EI 4m, EI 6m, EI

    1 32

    V1D3A

    V3

    2m, EI 4m, EI

    6m, EI1 32

    V1

    D3Bq2

    M2 =6V3

    V3

    2m, EI 4m, EI 6m, EI

    1 32

    V3 2V3 D3

    =

    +

  • Draw two tangents at 1 and 2 take moment

    of the area at 1

    D3 =[(160x2/2) x (2x2/3) + (160x4/2) x (2+4/3)]/EI

    D3 =(640/3 +320x10/3)/EI = 3840/3EI

    120 kN

    2m, EI 4m, EI 6m, EI

    1 32

    V1 V2

    D3

    6m, EI

    1 32

    80 40

    2m 4m

    160 kN-m BMD

    D3

  • D3A =(6V3x6/2) x 4/EI = 72V3 / EI

    M2 = (3EI/6) q2 = EI q2 /2

    q2 = 2M2/EI = 2x(6V3)/EI = 12V3/EI

    D3B =6x q2 = 6 x (12xV3/EI) = 72V3 / EI

    D3 = D3A + D3B = 144V3 / EI

    144V3 / EI = 3840/3EI V3 = 8.89 kN

    6m, EI2 3

    D3A

    V3

    BMD+

    4m

    6V3

    6m, EI

    1 32

    V1

    D3Bq2

    M2 =6V36m, EI

  • V1 = 80 8.89 = 71.11 kN

    V2 = 40 + 2x8.89 = 57.78 kN

    53.34

    142.22

    Bending Moment Diagram

    71.11

    48.89

    8.89

    Shear Force Diagram