E. Kuhnle , P. Dyke, M. Mark, S. Hoinka , Chris Vale , P. Hannaford

37
E. Kuhnle, P. Dyke, M. Mark, S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu, X-J. Liu, Properties of a strongly interacting Fermi gas

description

Universal Properties of a strongly interacting Fermi gas. P. Drummond, H. Hu, X-J. Liu,. E. Kuhnle , P. Dyke, M. Mark, S. Hoinka , Chris Vale , P. Hannaford. Swinburne University of Technology, Melbourne, Australia. What is the coldest measured temperature?. - PowerPoint PPT Presentation

Transcript of E. Kuhnle , P. Dyke, M. Mark, S. Hoinka , Chris Vale , P. Hannaford

Page 1: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

E. Kuhnle, P. Dyke, M. Mark, S. Hoinka, Chris Vale, P. Hannaford

Swinburne University

of Technology,Melbourne, Australia

P. Drummond, H. Hu, X-J. Liu,

Universal Properties of a

strongly interacting Fermi gas

Page 2: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

What is the coldest measured temperature?

Why does this matter to us?

How is it changing modern physics?

What kind of theory is needed?

Page 3: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Vostock Station, Antarctica (180K)?

Page 4: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Outer Space (2.7K CMB)?

Page 5: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Helium Dilution Refrigerator (1mK)?

Page 6: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Ultra-cold Atomic BEC (1nK)?

Page 7: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Atomic spin-lattice (50pK)!

Page 8: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Pairing and superfluidity depend on the interactions & temperature

Universality in the BEC-BCS Crossover

(Ketterle & Zwierlein, Enrico Fermi School, Varenna, 2009)

Tc

T*

Bosonic

Unitary BCS

• We use Bragg spectroscopy to probe the region where universal behaviour occurs

Page 9: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Experimental MethodOptical Trap Loading Forced Evaporation

Imaging

Page 10: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• We cool a 50/50 mixture of 6Li atoms in an optical trap near the 834 G

Feshbach resonance

Ultracold Fermi Gases

Glass Vacuum Cell

Feshbach Coils

Trap beam 1

Trap beam 2

Li atoms

BEC Unitary BCS

650 G 991 G834 G

Page 11: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• We can prepare degenerate Fermi gases or BECs of molecules depending on the magnetic field

Ultracold Fermi Gases

BEC Unitary BCS

B = 650 G B = 991 GB = 834 G

Page 12: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Feshbach Resonance

Page 13: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Unitarity Limit

L

Page 14: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Cross-sections saturate!

L

For strong interactions, thescattering length a is infinite.

The scattering cross-sectionreaches a finite limit, called the unitarity limit.

The value of a is irrelevant.

Only the spacing L remains!

Page 15: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Universality Conjecture: One length scale: L = n-1/3

Thermodynamics independent of structure

Page 16: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Single-Channel Theory

Page 17: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Low temperatureT-matrix Theories

Page 18: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Three Possibilities

a) GG – self-consistent theoryb) G0G0 – non self-consistent theoryc) NSR – Gaussian pair-fluctuation theory

Page 19: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Unitarity Ground StateH. Hu, X.-J. Liu and P. D. D, Europhys. Lett. 74, 574 (2006).

Page 20: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Evidence For Universality

Hui Hu, Peter D. Drummond, Xia-Ji Liu,, Nature Physics 3, 469 - 472 (2007)

Page 21: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Virial Expansion Method

Liu et al., PRL 102, 160401 (2009)

Calculate coefficients from trapped bound states Homogeneous coefficients from trapped results

Page 22: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Three-body energy

Page 23: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Predicted b3 at unitarity

•Previous field theory result: +1.11

•Experiment - ENS, 2011: -0.29(2)

Page 24: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Illuminate a cloud with a “moving” standing wave

Bragg Scattering

Atom cloudn + w n Unscattered

Bragg scatteredBragg condition

• Can scatter molecules (pairs) / atoms by selecting w

Page 25: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Previously measured spectra in the BEC-BCS crossover

Bragg Spectroscopy

Veeravalli et al., PRL 101, 250403 (2008)

BEC

BCS

DXCO

M (m

m)

w/2p (kHz)

Page 26: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• This greatly improves the measurement accuracy of S(k) through the BEC-BCS crossover

Static Structure Factor

Kuhnle et al., Phys. Rev. Lett. 105, 070402 (2010)., Hu et al., Europhysics Letters 91, 20005 (2010).

• S(k) decays from 2 – 1 through the BEC-BCS crossover due to the decay of g↑↓

(2)(r), in good agreement with theory

Page 27: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• In 2005 Shina Tan derived several exact relations linking macroscopic properties to a single microscopic parameter, the contact –

Tan’s Universal Relations

Tan, Ann Phys 323, 2952; 2971; 2987 (2008).

Partridge et al., PRL 95, 020404 (2005)Werner, Tarruell and Castin, EPJ B 68, 401 (2009)

Punk and Zwerger, PRL 99, 170404 (2007)Braaten and Platter, PRL 100, 205301 (2008)Zhang and Leggett, PRA 79, 023601 (2009)

• These apply to: - Superfluid / normal phases (0 or finite T)

- Few-body / many-body systems

• Two examples of Tan relations are:

now verified experimentally Stewart et al., PRL 104, 235301 (2010)

Page 28: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Contact is defined as:Tan’s Universal Relations

• depends upon :- and

Braaten, Physics 2, 9 (2009)

BEC Unitary BCS

quantifies the number of closely spaced pairs!

Page 29: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Here, we examine Tan’s universal pairing relation

Universal Pairing

• Tan showed that the spin-up / spin-down density-density correlation function is given by

• Correlation functions are generally hard to measure

- BUT, we can consider the Fourier transform

Page 30: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• The Fourier transform of this expression gives a new universal relation for the static structure factor

Universal Pairing

• S↑↓(k) has a simple analytic dependence on (k/kF)

Stamper-Kurn et al., PRL 83, 2876 (1999)Steinhauer et al., PRL 88, 120407 (2002)

• S(k) can be measured experimentally using inelastic Bragg spectroscopy

Combescot et al. EPL 75, 695 (2006)Veeravalli et al., PRL 101, 250403 (2008)

Page 31: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• We vary k/kF over the range 3.5 – 9.1 and also vary B to achieve the desired value of 1/(kFa) for each point

Universal S(k)

Kuhnle et al., Phys. Rev. Lett. 105, 070402 (2010).

Page 32: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Contact Virial Expansion

Liu et al., PRL 102, 160401 (2009); H. Hu, et al. Phys Rev A 81, 033630 (2010).

Calculate coefficients from trapped bound states Homogeneous coefficients from trapped results

Page 33: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Summary of Experiments

Page 34: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Both methods of measuring S(k) give similar values

• Theory - virial expansion

Finite Temperatures

Liu et al., PRL 102, 160401 (2009)

• Preformed pairs exist far above Tc

Page 35: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Homogeneous case

Page 36: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

Trapped case

Page 37: E.  Kuhnle , P. Dyke, M. Mark,  S.  Hoinka ,  Chris Vale , P.  Hannaford

• Universal Fermi behaviour is accurately verified

• Contact (pair-correlations) at unitarity are seen to persist at temperatures well above Tc

• Virial theory converges well above Tc

• Strong coupling theories give different predictions

• Contact measurements provide a new fingerprint

• Conjecture: contact decreases with temperature

Conclusions and Outlook