Dynamic Simulation Model of a Vapor Compression Domestic Refriger

download Dynamic Simulation Model of a Vapor Compression Domestic Refriger

of 7

Transcript of Dynamic Simulation Model of a Vapor Compression Domestic Refriger

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    1/7

    Purdue University

    Purdue e-Pubs

    International Refrigeration and Air ConditioningConference

    School of Mechanical Engineering

    1996

    Dynamic Simulation Model of a VaporCompression Domestic Refrigerator Running

    With R134aX. XuEcole des Mines de Paris

    D. ClodicEcole des Mines de Paris

    Follow this and additional works at: hp://docs.lib.purdue.edu/iracc

    Tis document has been made available through Purdue e-Pubs, a ser vice of the Purdue University Libraries. Please contact [email protected] for

    additional information.

    Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at hps://engineering.purdue.edu/

    Herrick/Events/orderlit.html

    Xu, X. and Clodic, D., "Dynamic Simulation Model of a Vapor Compression Domestic Refrigerator Running With R134a" (1996).International Reigeration and Air Conditioning Conference. Paper 370.hp://docs.lib.purdue.edu/iracc/370

    http://docs.lib.purdue.edu/?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttps://engineering.purdue.edu/Herrick/Events/orderlit.htmlhttps://engineering.purdue.edu/Herrick/Events/orderlit.htmlhttps://engineering.purdue.edu/Herrick/Events/orderlit.htmlhttps://engineering.purdue.edu/Herrick/Events/orderlit.htmlhttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/?utm_source=docs.lib.purdue.edu%2Firacc%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    2/7

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    3/7

    2 D

    ESCRIP

    TIO N

    OF TH

    E M T

    HE M

    TIC L

    MODE

    L

    T he dom

    estic re

    fr igeratin

    gsystem

    which i

    s studied

    in this p

    aper is i

    llu strated

    in figur

    e

    1.

    It c

    onsists o

    f a com

    pr essor

    a

    conden

    ser a ca

    pi llary tu

    be an ev

    aporator

    a capill

    ar y tube-

    suction l

    in e heat e

    xchange

    r and an

    insulated

    c abinet.

    2.1 Ma

    themati

    cal

    m

    o el

    of the

    he

    at excha

    ngers

    In this w

    ork the

    same ty

    pe math

    ematical

    model

    is develo

    pped for

    the

    thre

    e excha

    ngers of

    the sys

    te m : co

    ndenser

    evapo

    ra tor and

    t he cap

    illary tub

    e- suction

    l ine hea

    t exchan

    ge r. he

    refrigera

    nt flow i

    n the ex

    changers

    is comp

    lex beca

    use of

    the refri

    gerant p

    ha se cha

    nge. Th

    e follow

    ing assu

    m ptions

    are used

    :

    i)

    the

    flow

    in the e

    xchanger

    s is sup

    po sed to

    be

    unidim

    ensionn

    al ; ii v

    iscous d

    issipatio

    n is neg

    lected; iii xi l

    conducti

    on is ne

    glected; iv

    the

    gravitan

    ional te

    rm is

    neglect

    ed . Follo

    wing the

    se assum

    ptions

    the conse

    rvation

    equations

    are as fo

    llows:

    Mass co

    nservatio

    n

    1

    )

    Momen

    tum cons

    ervation

    2)

    W here

    P x is th

    e friction

    force pe

    runit vo

    lume :

    with

    c

    1

    0,

    7

    9 e

    25

    Energv

    conserv

    ation

    J ph)

    a puh

    ) dp

    dp

    --

    =q

    u

    dt

    dX

    dt

    d

    X

    3)

    w

    ith

    For

    the

    tube an

    dfins th

    e energy

    c onserv

    ation eq

    ua tion is:

    4)

    i

    n w bich

    Mb e t M

    z are th

    emass

    of

    the tub

    eand fin

    spe r un

    itary leng

    th.

    T L

    is

    the fins

    ef ficienc

    y.

    T

    he extern

    al heat e

    xchange

    coefficie

    nt betwe

    en the ex

    changer

    nd

    the a

    ir

    a

    e is

    determin

    ed throug

    h empir

    ic al corr

    elations

    by

    ta k

    in g in ac

    count the

    combin

    at ion

    of

    natural c

    onvectio

    n nd ra

    diation. T

    he conv

    ective ex

    change c

    oefficien

    t inside

    the tube

    i

    iscalculated withcorrelations

    of

    theforcedconvection according to the various thermal configura tions.

    For

    th

    e two-ph

    ase flow

    ZIVI s

    void frac

    tion mo

    del is ch

    osen:

    1

    nd

    conse

    quently

    a

    4

    90

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    4/7

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    5/7

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    6/7

    B IB L

    IO GR

    APH

    Y

    L

    CHE

    N Z.J. L

    IN

    W .

    H . D

    ynam

    ic sim

    ulatio

    n n

    dopti

    m al m

    atchi

    ng of

    a sma

    ll-sca

    le ref

    rigera

    tion s

    ystem

    , R ev

    . int.

    Froid

    N

    ovemb

    re 19

    91, V

    ol. 14,

    pp.

    329-3

    35.

    2

    . JAN

    SSE

    N

    MJ

    .P.

    K

    UIJP

    ERS L

    .J.M.

    et a l

    . The

    oretic

    al and

    expe

    riman

    tal in

    vestig

    ation

    of a

    dynam

    ic mo

    del fo

    r sma

    ll

    refr

    igerati

    ng sy

    stems

    , Proc

    eedin

    gs o P

    urdu

    e IIR m

    eetin

    g Pu

    rdue 1

    988/2

    Com

    miss

    ion B

    2, pp

    .245-2

    57.

    3.

    PAT

    ANK

    AR S

    .V.

    Num

    erical

    heat

    transf

    er

    nd

    fluid

    flow

    , Ma

    cGraw

    -Hill

    , Hen

    nisph

    ere P

    ublish

    ing,

    Wash

    ingto

    n,

    198

    0.

    4.

    TA K

    AISID

    Y. an

    d O

    G UC

    HI

    K

    .

    Sol

    ubili ty

    of t

    he sol

    u tions

    o f H

    FC-1

    34a and

    po

    lyoles

    ter ba

    sed oi

    l , Pro

    ceedi

    ngs o

    Purd

    ue 1/R

    meet

    ing G

    hent

    199

    3/2 C

    om m i

    sion Bl

    /2,

    pp.14

    1-148

    .

    5.

    XU X

    . M

    odelis

    ation

    dynam

    ique

    d'un s

    ystem

    e frig

    orifiq

    ue dom

    estiq

    ue

    compr

    ession

    r

    v

    apeur

    , Ph.D

    . the

    sis

    1996,

    Ecole

    des M

    ines d

    e Par

    is, Fra

    nce.

    Jn

    sula lion

    cabin et

    Evap on n

    or

    Ca

    pillary

    t u b e ~ m c

    t i o n

    line

    he

    aL exch

    anger

    c pi l l ry

    tube

    Condcn

    tcr

    Fi

    gure

    1 : Va

    por co

    mpres

    sion d

    omest

    ic refr

    igera

    tor

    493

  • 8/10/2019 Dynamic Simulation Model of a Vapor Compression Domestic Refriger

    7/7

    mp

    M lin

    t

    )

    Figur

    e 2 :H

    erm e

    ti c com

    press

    or

    /

    ,2.J1)

    p