Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger...

40
Dynamic Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial Workshop June 24, 2011 Leuven, Belgium

Transcript of Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger...

Page 1: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

Dynamic Real-TimeOptimization

Wolfgang Marquardt, Holger ScheuAVT – Process Systems Engineering

RWTH Aachen University

HD-MPC Industrial WorkshopJune 24, 2011Leuven, Belgium

Page 2: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 2

Two „Optimisation Strategies“

Feed B

“Exact” solution (Srinivasan et al., 2003)

What is the best feed rate B?

Feed B

Strategy 1:

• Determine optimal and feasiblefeed rate by trial and error

• Study various trajectories bydynamic simulation scenarios

• Unsystematic approach, high human effort

Simulation

Strategy 2:

• Determine optimal and feasiblefeed rate by means of dynamicoptimisation

• Dynamic optimiser systematicallysearches for the best trajectory

• Systematic and efficient approach

Optimisation

Page 3: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 3

Two „Optimisation Strategies“

Feed B

“Exact” solution (Srinivasan et al., 2003)

What is the best feed rate B?

Feed B

Strategy 1:

• Determine optimal and feasiblefeed rate by trial and error

• Study various trajectories bydynamic simulation scenarios

• Unsystematic approach, high human effort

Simulation

Strategy 2:

• Determine optimal and feasiblefeed rate by means of dynamicoptimisation

• Dynamic optimiser systematicallysearches for the best trajectory

• Systematic and efficient approach

Optimisation

Replace human effort by numerical algorithms!

Solve the inverse problem directly !

Page 4: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 4

Outline

Problem formulation for economically optimal control problemsEfficient solution methods for optimal control problems• adaptive grid refinement• structure detection• software realization

Optimal control online – Dynamic Real-Time Optimization (DRTO)• hierarchical MPC – time-scale decomposition• suboptimal NMPC – Neighboring Extremal Updates• software realization

Distributed MPC – a new approach for DRTO

Page 5: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 5

Outline

Problem formulation for economically optimal control problemsEfficient solution methods for optimal control problems• adaptive grid refinement• structure detection• software realization

Optimal control online – Dynamic Real-Time Optimization (DRTO)• hierarchical MPC – time-scale decomposition• suboptimal NMPC – Neighboring Extremal Updates• software realization

Distributed MPC – a new approach for DRTO

Page 6: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 6

Large-scale industrial process (Shell):• How fast can an intermediate chemicals plant be moved from operating point A to B ?

Some Sample Problems

Olefine polymerization process (Novolen):• Can we decide on a production schedule and optimize grade transitions simultaneously ?

Membrane bioreactor for waste water treatment (Koch Membrane Systems):• Can we minimize energy demand and reduce membrane stress in real time?

Styrene-butylacrylate co-polymerization (BASF):• Is real-time optimization ready for use in thechemical industries to increase productivity andimprove process operability?

Page 7: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 7

decision variables: u(t) time-variant control variables

p time-invariant parameters

tf final time

Mathematical Problem Formulation

))((min,),( ftptu

txf

Φ objective function (e.g. economics)

endpoint constraints (e.g. specs.)))((0

,],[),,,,(0,)(0

,],[),,,,(

0

00

0

f

f

f

txE

ttttpuxPxtx

ttttpuxFxM

∈≥−=

∈=&DAE system (process model)

path constraints (e.g. temp. bound)

Page 8: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 8

Sequential Solution Strategy

Control vector parameterization

∑Λ∈

≈ik

kikii tctu )()( ,, φ

)(, tkiφ parameterizationfunctions

kic , parameterst

ui(t)

φi,k(t)ci,k

Reformulation as nonlinear programming problem (NLP)

)),,((min,, ftpc

tpcxf

Φ

))((0,),,,,(0

f

ii

txEttpcxP

≥Τ∈∀≥s.t.

DAE system solved byunderlying numericalintegration

Gradients for NLP solver typically obtained by integration of sensitivity systems

How to keep number of sensitivity integrations low?

Page 9: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 9

Outline

Problem formulation for economically optimal control problemsEfficient solution methods for optimal control problems• adaptive grid refinement• structure detection• software realization

Optimal control online – Dynamic Real-Time Optimization (DRTO)• hierarchical MPC – time-scale decomposition• suboptimal NMPC – Neighboring Extremal Updates• software realization

Distributed MPC – a new approach for DRTO

Page 10: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 11

Adaptive Refinement of Control Parameterization

refine

• Concepts from signal analysis

• Grid point elimination

• Grid point insertion

Mesh analysis

coarse initial mesh

eliminate refinewavelet

analysis

re-solve optimization

until stopping criterion met.

re-solve optimization

(Schlegel and Marquardt, 2005)

Page 11: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 12

A typical input trajectory …

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1 x 10-3

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1 x 10-3

piecewiseconstant sol.

piecewiselinear sol.

analytical sol. (Srinivasan et al.,

2003) Is there a way to detect switching structure from numerical solution?

Obvious open issues•how to capture switching points?• how to avoid over-parameterization?

Page 12: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 13

Switching Structure Detection

1. Solve coarsely discretized single-stage problem (SSP)

2. Determine the switching structure from NCO of NLP

3. Reformulate as a multi-stage problem (MSP) according to switching structure

(Schlegel and Marquardt, 2006)

usens

umin

umax

umax

umin

usens

MSP (black): 6 parameters!Conventional SSP (blue): 25 parameters!

8 parameters

Page 13: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 14

• complex reaction mechanism• large-scale model (~ 2000 equations)• 3 input variables, 6 path constraints

process operation tasks:• optimal load change• optimal grade change

Does it Work? – Let’s Try …

separation

cooling water

TC

Polymer

CV 2: viscosityCV 1: conversion [%]

MV 3: recycle monomer [kg/h]

LC

buffertank

monomercatalyst

MV 2: catalyst [kg/h]

MV 1: fresh monomer [kg/h]

post processing

reactor

QQ

Continuous Polymerization Process (Bayer AG, Dünnebier et al., 2004)

Page 14: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 15

Illustration of Adaptation Strategy

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

MV 1: monomer feed MV 2: catalyst feed MV 3: recycle flowrate

Iteration 1

Page 15: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 16

Illustration of Adaptation Strategy

0 0.5 1-11 3 5 7 9

0 0.5 1 0

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 1 0

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 1 0

0.5

1

t/tref

MV 1: monomer feed MV 2: catalyst feed MV 3: recycle flowrate

Iteration 3

Page 16: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 17

Illustration of Adaptation Strategy

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

0 0.5 1-11 3 5 7 9

0 0.5 10

0.5

1

t/tref

MV 1: monomer feed MV 2: catalyst feed MV 3: recycle flowrate

Iteration 6

Page 17: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 18

0 0 .25 0.5 0 .75 1 0

0 .5

1

t/tre f

y 1

0 0 .25 0.5 0 .75 1 0

0 .5

1

t/tre f

u 3

0 0 .25 0.5 0 .75 1 0

0 .5

1

t/tre f

u 1

0 0 .25 0.5 0 .75 1

0 .75

1

t/tre f

y 2

Non-adaptive Algorithm

MV 1:fresh monomer

constraint 1:reactor outlet

constraint 2: buffer tank volume

MV 3: recycle flowrate

Page 18: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 19

0 0 .25 0.5 0 .75 1 0

0 .5

1

t/tre f

y 1

0 0 .25 0.5 0 .75 1 0

0 .5

1

um in

upath

upathupathum ax

t/tre f

u 1

0 0 .25 0.5 0 .75 1 0

0 .5

1

upath

upath

upathum in upath

t/tre f

u 30 0 .25 0.5 0 .75 1

0 .75

1

t/tre f

y 2

Adaptive Algorithm with Structure Detection

MV 1:fresh monomer

constraint 1:reactor outlet

constraint 2: buffer tank volume

MV 3: recycle flowrate

Page 19: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 20

DyOS – Dynamic Optimization System

DyOS yes

no

optimal trajectory

gridrefinement

DAEintegrator

stopping criterion

ESO

u(t)

u(t)

u(t)

u(t)

NLPsolver

initial trajectory

DyOS

SetVariables

ESO

model server(e.g. gPROMS)

processmodel

ESO

CAPE-OPEN compliantsoftwareinterface

CORBA Object Bus

GetResiduals

gPROMS(PSE Ltd.)

AC-SAMMM (joint work with Uwe Naumann, RWTH Aachen):Structured Automatic Manipulation of Mathematical Models (Poster Session)

Modelica: Open sourceobject-oriented modeling language

Modelica-model

Transl.

Modelica-modelModelica

Modelica-modelModelica-modelC-+

DCC

Modelica-modelModelica-modelDLL

ESO

http://wiki.stce.rwth-aachen.de/bin/view/Projects/ERS/WebHome

Page 20: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 25

Outline

Problem formulation for economically optimal control problemsEfficient solution methods for optimal control problems• adaptive grid refinement• structure detection• software realization

Optimal control online – Dynamic Real-Time Optimization (DRTO)• hierarchical MPC – time-scale decomposition• suboptimal NMPC – Neighboring Extremal Updates• software realization

Distributed MPC – a new approach for DRTO

Page 21: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 26

Dynamic Real-Time Optimization

dynamicdata recon-

ciliation

decisionmaker

optimal control

processincluding

base control

cδ)(tuc

)(td

)(tdr

)( cr tx

)(tη

h,Φoptimizing feedbackcontrol system

process includingbase layer control

• economical objectives & constraints

• optimal output feedback

• solution of optimization problemsat sampling frequency

• computationally demanding, limitedby model complexity

timecontrol

predictionreconciliation

manipulated variables

statesmeasurements

Page 22: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 27

decisionmaker

trackingcontroller

processincluding

base control

h,Φ

cδ)()()( tututu cc Δ+=

)(td

)(0 td)(0 ctx

optimal trajectory

design

long time scaledynamic datareconciliation

short time scaledynamic datareconciliation

time scaleseparator

)(tdΔ)(0 ctx

)(),(),( tutytx ccc

)(0 tη

)(tηΔ

0δ0δ Ψ

Time-Scale Decomposition

optimizing feedback control system

fast time-scale• measurement andprocess noise …

• trajectory trackingsatisfying controlbounds and qualityconstraints!

slow time-scale• changing environment,process variations …

• most economicaltrajectory satisfyingsafety or equipmentconstraints!

How can we achieve economic optimality on the fastertime-scale? Fast Updates

Page 23: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 29

Fast Neighboring Extremal Updates

θ

parameterize uncertainty exploit sensitivity information of previously solved optimization problem to generate an approximation of the optimal update

⎥⎦

⎤⎢⎣

⋅−=⎥

⎤⎢⎣

⎥⎥⎦

⎤⋅−

⎢⎢⎣

)(

)(

0

)(

)(

)( ,

θ

θ

θ

λ g

Lpgg

L pTa

pTa

p

pp

0)(:

)()(:

)()(:

0

00

00

=−=Δ

Δ=−=Δ

Δ=−=Δ

inainaina

aaaa

pppp

λθλλ

θθλλθλλ

θθθ

θ

θ

Sensitivity system (Fiacco, 1983), invariant active set L: Lagrange functionf: objective functiong: constraintsp: discretized controls: uncertain param.

refrefrefp

refTp

refp

Trefpp

T

z

ggpg

pfpLpLp

+Δ−≥Δ

Δ+ΔΔ+ΔΔΔ

θ

θ

θ

θ

s.t.

5.0min ,

Changing active set (Ganesh & Biegler, 1987)

• compute first- and second-order derivatives

• solve QP for fast update• re-iterate if necessary

(Kadam & Marquardt, 2004;Würth et al., 2009)

θθ ggfLL ppppp ,,,,

Page 24: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 30

Efficient Computation of 2nd order Sensitivities

Superposition principlefor the linear adjoint system: only one 2nd order adjoint system

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 100 200 300 400 500

Number of parameters np

Cpu

(s)

JacobianHessian

Hessianevaluationscales !

Williams-Otto benchmark problem

finite differences and 2nd order forward sensitivities (Vassiliadis et al., 1999) scale O(np

2) adjoint sensitivity analysisfor problems without path constraints (Cao et al., 2003, Özyurt et al., 2005)

2nd order adjoint sensitivityanalysis for path-constrainedproblems (Hannemann & M.,2007, 2010) NIXE

Page 25: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 31

Software Realization – DRTO Toolbox (1)

standalone OPC Server

State Estimator

DRTO Module

MPC module

plant simulation

Use plant simulator for development of advanced MPC control methodsTest communication, data exchange and alert management offline

Develop algorithms in Matlab, gPROMS, C++, ... OPC Clients

OPC data access

...

Page 26: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 32

Software Realization – DRTO Toolbox (2)

(Data structure in plant simulation should be the same as in PCS)

standalone OPC Server

PlantProcess control system

Connect the control methods to the real control process through the plant’s control system

integrated OPC Server

State Estimator

DRTO Module

MPC module

plant simulation

OPC Clients

OPC data access

...

Page 27: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

Name der Präsentation, 20.03.2008 33HD-MPC Industrial Workshop, Leuven 2011 33

Software Realization – DRTO Toolbox (3)

Page 28: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 34

Case Study – Continuous Polymerization Process (1)

Large-scale industrial process (Bayer AG, Dünnebier et al., 2004)• ~ 200 (dynamic) state variables• ~ 2000 algebraic variables• 3 manipulated variables• Task: Set point change from polymer A to B

• Disturbance: Ratio of monomer 1 and monomer 2

d

Page 29: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 35

Case Study – Continuous Polymerization Process (2)

Reference control strategy• Objective value: 0.59• Constraint violations: 1.6

Delayed Single-Layer DRTO• Objective value: 1.18• Constraint violations: 16.2

Single Layer: NeigboringExtremal Updates (NEU)

• Objective value: 0.74• Constraint violations: 2.0

Two-Layer (DRTO and NEU)• Objective value: 0.61• Constraint violations: 2.1

(Würth et al., 2011)

Page 30: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 39

On-Site and Software Implementation

Inca OPC-Server(IPCOS)

Process control system/Process

Dynamic optimization(DyOS, Matlab)

Sampling rate 120 s

MPC-Controller(Matlab)

Sampling rate 10 s

(Matlab)Sampling rate 10 s

State estimation

Measurements

States,

Controls

Controls

States,Measurements

Controls,States

How can we overcome limitations in the size of the process considered?

Distributed MPC

Page 31: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 40

Outline

Problem formulation for economically optimal control problemsEfficient solution methods for optimal control problems• adaptive grid refinement• structure detection• software realization

Optimal control online – Dynamic Real-Time Optimization (DRTO)• hierarchical MPC – time-scale decomposition• suboptimal NMPC – Neighboring Extremal Updates• software realization

Distributed MPC – a new approach for DRTO

Page 32: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 41

Parellization via Problem Decomposition

Applications can usually naturally be decomposed into subsystems• connected via interconnecting

variables• local inputs• local outputs P1

P2

P3 P4 P5

P1 P2 P3 P4 P5

Pu1 u2 u3 u4 u5

y1 y2 y3 y4 y5

Page 33: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 42

Decomposition of Optimization Problem

separable objective function∑=

Φ=ΦN

ifiifptu

txtx1),(

))(())((min

separable endpoint constraints

separable DAE system

separable path constraints

),(0

],,[),,,,(0,)(0

],,[),,,,(

0

0,0

0

fi

fiiii

ii

fiiiiii

tE

ttttpuxPxtx

ttttpuxFxM

∈≥

−=

∈=&

additional nonseparableinteractions (here eq. constr.)

TTTii uxHm ],[0 −=

},...,2,1{ Ni∈

Page 34: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 43

Solution Strategies for Decomposed Problems (1)

Reformulation as set of NLPs

s.t.DAE system solved byunderlying independentnumerical integration

)),,((min, iiiiipc

pmcxii

Φ},...,2,1{ Ni∈

,,),,,(0

)),((0,),,,,(0

1

Tttmcxh

txETttpcxP

k

N

ikiiii

fii

kkiiii

∈∀=

≥∈∀≥

∑=

nonseparableinteractions

Primal decomposition (Silverman 1972)

s.t.,),,,,( Tttmcxh kkiiiii ∈∀=γ

M

)),,((min, iiiiipc

pmcxii

Φ

resource allocation s.t. ∑=

=N

ii

10 γ

Dual decomposition (Lasdon 1970)

s.t.

)),,,((min,,

λiiiiimpcpmcxL

iii

(...)(...))),,,(( iT

iiiiii hpmcxL λλ +Φ=

M

price coordination s.t. ∑=

=N

iih

1

0

Page 35: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 44

Solution Strategies for Decomposed Problems (2)

Sensitivity-Driven Distributed Model-Predictive Control (S-DMPC) (Scheu, Marquardt, 2011)

Application of the linearized partial goal-interaction operator (Mesarovic et al.1970)

linearized information of nonlocal objective functionscopy of the local objective function

Cost function of the distributed controllers

Page 36: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 45

Alkylation of Benzene Process

(J. Liu et al. 2010)

SubsystemsInputs

Page 37: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 46

Mathematical model

For each subsystem:Mass balances for each species and energy balance

For CSTRs:reaction kinetics

For flash separator:phase equilibrium descriptions

Medium scale DAE system:- 25 differential equations- ~100 algebraic equations

Page 38: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 48

Results

S-DMPC provides the same controller performance as a centralized MPC

Solve 5 small QP in parallel instead of 1 large QP

faster computation possible

(Scheu and Marquardt, 2011)

Page 39: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 49

Algorithms for dynamic optimization are continuously maturing• basis for DRTO, reduce computing time• still many challenges ahead, e.g. discontinuous and mixed integer

problems

Hierarchical and distributed MPC are enabling technologies for real-time applications

Hierarchical MPC Methods already successfully applied to large-scale industrial processes (simulation and experiments)

Distributed MPC is a key technology to apply DRTO to even larger plants• methods are maturing• have to be integrated into DRTO toolbox

Conclusions & Future Perspectives

Page 40: Dynamic Real-Time Optimization - HD-MPC - HD-MPC Real-Time Optimization Wolfgang Marquardt, Holger Scheu AVT – Process Systems Engineering RWTH Aachen University HD-MPC Industrial

HD-MPC Industrial Workshop, Leuven 2011 50

Acknowledgements

PhD students• Jan Busch, Bayer Technology Services• Ralf Hannemann, AVT.PT• Arndt Hartwich, Bayer Technology Services• Jitendra Kadam, Exxon Chemicals• Jan Oldenburg, BASF• Adrian Prata, Bayer Technology Services• Martin Schlegel, BASF• Lynn Würth, Bayer Technology Services

Funding• BASF• Shell Global Solutions• German Research Foundation• European Union