DYNAMIC MODELLING AND SIMULATION FROM...

34
1 DYNAMIC MODELLING AND SIMULATION FROM FIRST PRINCIPLES FOR COAL PROCESSING JONATHAN MEYER

Transcript of DYNAMIC MODELLING AND SIMULATION FROM...

Page 1: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

1

DYNAMIC MODELLING AND SIMULATION FROM FIRST PRINCIPLES FOR COAL PROCESSINGJONATHAN MEYER

Page 2: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

AGENDA

• INTRODUCTION

• COAL PROCESSING

• DYNAMIC MODELS

• SYSTEM IDENTIFICATION PROCESS

• SIMULATION RESULTS

• SUMMARY

Page 3: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

INTRODUCTION3

Page 4: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

COAL BENEFICIATION

INTRODUCTION

COAL VALUE CHAIN:

• Selectively upgrade run-of-mine (ROM) coal to

produce:

• Power station coal

• Metallurgical coal

• Coking coal

4

Mining Beneficiation

Coal product stockpile

Discard

Page 5: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

COAL BENEFICIATION

INTRODUCTION

COAL ORE:

• Formation from plants that grew in marshes and swamps some 200 million years ago in South Africa.

Different materials form coal, shale and sand stone.

• Mixing of clay causes ash impurities in the coal.

5

Page 6: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

COAL BENEFICIATION

INTRODUCTION

TYPICAL COAL UNIT PROCESSES:

• Primary and secondary crushing and screening:

• Liberation:

6

• Screening:

Page 7: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

COAL BENEFICIATION

INTRODUCTION

TYPICAL COAL UNIT PROCESSES:

• Dense medium separation

• Dense medium drums (+50mm)

• Dense medium cyclones (-50mm)

7

“98% of the 53 coal‐preparation plants in South Africa are making use of the DMC”

Page 8: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

COAL BENEFICIATION

INTRODUCTION

TYPICAL COAL UNIT PROCESSES:

• Jigging

8

Page 9: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

GENERAL CONTROL PROBLEM

INTRODUCTION9

Page 10: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS10

Page 11: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

STEADY-STATE VS DYNAMIC MODELS:

• Steady-state models typically have no time evolution of variables

• Example of steady-state models are metallurgical mathematical models

• Partition curves

• Each relative density (RD) fraction must settle (i.e. reach steady state)

• Sinks are dried and weighed

11

Separation Cutpoint (

Écart Probable Moyen (EPM)

Page 12: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

STEADY-STATE VS DYNAMIC MODELS:

• Steady-state models typically have no time evolution of variables

• Example of steady-state models are metallurgical mathematical models

• Coal washability curves

12

Page 13: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

STEADY-STATE VS DYNAMIC MODELS:

• Dynamic models incorporate the time evolution of variables

• Typically represented as state-space models

• First principles makes use of conservation of mass and mass of components

13

, ,

, ,

Page 14: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

STEADY-STATE VS DYNAMIC MODELS:

• Motivation for dynamic models

14

0%

5%

10%

15%

20%

25%

30%

35%

10%

11%

12%

13%

14%

15%

16%

17%

18%

19%

20%

21%

22%

23%

24%

25%

Freq

uency

% Ash

Peas Ash Results Distribution

May June July Fitted Normal Target Ash Current Mean

Page 15: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

COAL UNIT PROCESS MODELS DEVELOPED:

• Primary and secondary crushing and screening:

• Liberation:

15

, , ,

ρ , , , ,

cr

cricr

cr mWdt

dm

,

cr

crocr

mW

,

,

,Inputs:

, = Feed mass flow rate

Outputs:, = Product mass flow rate

= Crusher time constantParameters:

Inputs:

, = Feed mass flow rate

Outputs:, = Oversize mass flow rate, = Undersize mass flow rate

= Material velocity

, , = Screen dimensions

, = Material density

Parameters:

,

,

,

,

,

States:

= Crusher massStates:

= Screen mass

• Screening:

Page 16: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

COAL UNIT PROCESS MODELS DEVELOPED:

• Dense medium drum

16

,

,

, , ,  , ,

, ,

, ,

, ,

, ,

, , ,

,

, ,

, ,

, ,

, ,

, , ,

,

, ,

, ,

, ,

, ,

,,

, = Product mass flow rate, , = Product medium density, , = Product ash percentage, = Discard mass flow rate, , = Discard  ash content, , = Discard medium density

, = Feed mass flow rate, , = Feed medium density, , = Feed ash content, , = Feed fixed carbon content

, , = Feed medium content, = Product density, , = Product medium content, = Discard density, , = Discard medium content

, = Feed flow rate, , = Feed ash density, , = Feed medium flow rate, = Product volume, = Product flow rate, , = Product medium flow rate, = Discard volume, = Discard flow rate, , = Discard medium flow rate

Inputs:

Outputs:

Parameters:

States:

Page 17: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

COAL UNIT PROCESS MODELS DEVELOPED:

• Dense medium drum

17

Page 18: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

COAL UNIT PROCESS MODELS DEVELOPED:

• Dense medium separation

• Dense medium cyclones

18

,

,

, , ,  , ,

, ,

, ,

, ,

, ,

, , ,

,

, ,

, ,

, ,

, ,,

,

, , ,

,

, ,

, ,

, ,

, ,

, = Overflow mass flow rate, , = Overflow medium 

density, , = Overflow ash percentage, = Underflow mass flow rate, , = Underflow ash content, , = Underflow medium 

density

, = Feed mass flow rate, , = Feed medium density, , = Feed ash content, , = Feed fixed carbon 

content

Inputs:

Outputs:

, = Feed flow rate, , = Feed ash density, , = Feed medium flow 

rate, = Overflow volume, = Overflow flow 

rate, , = Overflow medium 

flow rate, = Underflow volume, = Underflow flow 

rate, , = Underflow 

medium flow rate

Parameters:

, , = Feed medium content, = Overflow density, , = Overflow medium content, = Underflow density, , = Underflow medium content

States:

Page 19: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

COAL UNIT PROCESS MODELS DEVELOPED:

• Dense medium separation

• Dense medium cyclones

19

Page 20: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DYNAMIC MODELS

PUBLISHED LITERATURE FOR FURTHER DETAILS:

• E. J. Meyer and I. K. Craig. The development of dynamic models for a dense medium separation circuit in

coal beneficiation. Minerals Engineering, 23(10):791-805, 2010.

• E. J. Meyer and I. K. Craig. Development of a steady-state partition curve from a dense medium cyclone

dynamic model in coal beneficiation. In Proceedings of the 18th IFAC World Congress, Milano, Italy, volume

18, pages 10523-10528. IFAC, IFAC, 2011. doi: 10.3182/20110828-6-IT-1002.02846.

• E. J. Meyer and I. K. Craig. Coal dense medium separation dynamic and steady-state modelling for process

control. Minerals Engineering, 65:98-108, 2014.

20

Page 21: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

SYSTEM IDENTIFICATION PROCESS21

Page 22: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

SYSTEM IDENTIFICATION PROCESS

SOLVE PARAMETERS FOR DYNAMIC SYSTEM:

• State-space representation

• Input/output data

• Compute norm

• Minimise norm solving for parameters

22

, ,

, ,

Page 23: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

23

SIMULATION RESULTS

Page 24: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

BENEFICIATION PROCESS

SIMULATION RESULTS24

Drum screen model

Cyclone screen model

Drum model

Cyclone model

Page 25: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DENSE MEDIUM SEPARATION PLANT MODEL INPUT DATA

SIMULATION RESULTS25

Plant feed mass flow rate

Drum medium density

Cyclone medium density

Page 26: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

PLANT MODEL INPUT DATA - ASH

SIMULATION RESULTS26

RECONSTITUTE FEED ASH USING COAL WASHABILITY AND PARTITION CURVE:

• M-Curve fit (product ash vs yield) from coal washability

• Obtain partition curve by reducing dynamic model to steady-state model

• Calculate feed ash

, ,

, ,

Page 27: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DRUM SCREEN MODEL

SIMULATION RESULTS27

Fit (%) 98.9

Corr. 1.00

Page 28: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DRUM MODEL

SIMULATION RESULTS28

Fit product(%)

69.2

Corr. product 0.95

Fit discard(%)

39.3

Corr. discard 0.81

Page 29: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

DRUM MODEL ASH

SIMULATION RESULTS29

Fit product ash (%)

41.2

Corr. Product ash

0.87

Fit discard ash (%)

13.3

Corr. Discard ash

0.60

Page 30: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

CYCLONE SCREEN MODEL

SIMULATION RESULTS30

Fit (%) 96.2

Corr. 1.00

Page 31: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

CYCLONE MODEL

SIMULATION RESULTS31

Fit product(%)

44.8

Corr. product 0.86

Fit discard(%)

25.0

Corr. discard 0.82

Page 32: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

CYCLONE MODEL ASH

SIMULATION RESULTS32

Fit product ash (%)

25.0

Corr. Product ash

0.72

Fit discard ash (%)

1.5

Corr. Discard ash

0.46

Page 33: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

SUMMARY33

Page 34: DYNAMIC MODELLING AND SIMULATION FROM …sacac.org.za/wp-content/uploads/2016/04/5_dynamic_modelling_j_meyer...1 dynamic modelling and simulation from first principles for coal processing

SUMMARY34

MODEL FIT RESULTS SUMMARY:

Model measure Fit (%) Correlation

Drum screen 98.9 1.00

Drum product 69.2 0.95

Drum discard 39.3 0.81

Drum product ash 41.2 0.87

Drum discard ash 13.3 0.60

Cyclone screen 96.2 1.00

Cyclone product 44.8 0.86

Cyclone discard 25.0 0.82

Cyclone product ash 25.0 0.72

Cyclone discard ash 1.5 0.46