DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON...

30
DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ONGEOMETRIC STRUCTURE OF ELECTROENCEPHALOGRAPHIC SIGNALS VINOD A/L A.R.RAMACHANDRAN UNIVERSITI TEKNOLOGI MALAYSIA

Transcript of DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON...

Page 1: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON GEOMETRIC

STRUCTURE OF ELECTROENCEPHALOGRAPHIC SIGNALS

VINOD A/L A.R.RAMACHANDRAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON GEOMETRIC

STRUCTURE OF ELECTROENCEPHALOGRAPHIC SIGNALS

VINOD A/L A.R.RAMACHANDRAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Mathematics)

Faculty of Science

Universiti Teknologi Malaysia

NOVEMBER 2015

Page 3: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

iii

for Tata

Page 4: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

iv

ACKNOWLEDGEMENT

First and foremost, I would like to give thanks to God, for without His blessing,

this undertaking would not have been possible.

My deepest gratitude to my supervisor, Prof. Dr. Tahir b. Ahmad for being

my guiding hand through the last few years. Your insight, coupled with your spirited

pursuit of knowledge has made me realize the beauty in research. I will treasure our

bond for the rest of my life. To Dr. Siti Rahmah bt. Awang, thank you for taking the

time to sit with me and work out some of the more difficult problems I encountered

during the early stages of this research. I would also like to thank Assoc. Prof. Dr. Ali

b. Abd. Rahman for being a strong critic of my work during the evaluation stages, and

Assoc. Prof. Dr. Nor Haniza bt. Sarmin for introducing me to the art of publishing.

To the many other fine educators in UTM who I’ve not mentioned here, rest assured

that you will always be in heart and mind. The person I am today is the result of your

cumulative effort, and for that, I thank you.

My thanks also go out to the Ministry of Science, Technology and Innovation

(MOSTI) for funding my research. Their support has been invaluable to the completion

of this degree.

To my family, thank you for being there for me when I needed you most, but

was too proud to ask. Your support kept me going during the toughest of times. Thank

you for believing in me, I could not have done this without you.

Last but not least, I would like to thank my friends for making my stay in

Skudai a memorable one. Special thanks to Ady, Diren and Vishnu for keeping me

company on this amazing journey. I would also like to extend my gratitude to my

brothers-and-sisters-in-arms, Amidora, Faisal, Raja, and Siaw Yee for taking me under

their wings. Thank you.

Vinod

Page 5: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

v

ABSTRACT

Epilepsy is a chronic brain disorder that affects people all over the world. It

is characterized by recurring seizures which are caused by sudden and brief excessive

electrical discharges in the brain. Epileptic seizures are notoriously difficult to model

due to their erratic behavior and limited availability of clean data to work with. In

this research, an emulated probability measure called the Delia measure is developed

to normalize raw EEG data before being mapped to the surface of a unit hypersphere

and modeled using a von-Mises Fisher distribution. By computing the parameters

for the distribution using genetic algorithms, it is determined that seizures can be

sorted in order of their spread, which is an indicator of seizure violence. The Delia

measure values are also used in conjunction with information theory to yield the self-

information and entropy of seizures. Based on the information content obtained,

a Type-2 fuzzy graph and a crisp graph are generated to describe the information

flow and electrode interconnectivity respectively. These graphs show that there is a

distinct difference between focal and generalized seizures, and that seizure data can be

segregated into multiple communities. Godel’s incompleteness theorem is also used in

conjunction with non-Euclidean geometry to prove that no two seizures are the same.

Together, these results verify that there exists a governing pattern for epileptic seizures.

Page 6: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

vi

ABSTRAK

Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai orang

di serata dunia. Ia dicirikan dengan serangan secara tiba-tiba dan berulang. Ini

disebabkan oleh pelepasan cas elektrik yang berlebihan di dalam otak. Dalam

penyelidikan ini, ukuran kebarangkalian yang dipanggil ukuran Delia dibangunkan

untuk menormalkan data EEG sebelum dipetakan kepada permukaan hipersfera

menggunakan ukuran taburan von-Mises Fisher. Dengan mengira parameter

ukuran taburan tersebut menggunakan algoritma genetik, serangan sawan dapat

disusun mengikut sebaran data yang merupakan petunjuk kepada tahap serangan

sawan. Nilai ukuran Delia tersebut juga digunakan bersama dengan teori informasi

untuk menghasilkan entropi dan maklumat tentang serangan sawan. Berdasarkan

kandungan maklumat yang dicerap, graf kabur Jenis-2 dan graf klasik dijanakan

untuk menerangkan aliran maklumat dan sambungan antara elektrod. Graf-graf ini

menunjukkan bahawa terdapat perbezaan ketara antara serangan sawan fokal dan

umum. Data serangan sawan dapat diasingkan kepada beberapa kelompok. Teorem

ketaklengkapan Godel juga digunakan bersama geometri bukan-Euklidean untuk

membuktikan bahawa tidak ada dua serangan sawan yang sama. Hasil penyelidikan

ini mengesahkan bahawa wujud corak tertentu dalam sesuatu serangan sawan.

Page 7: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

LIST OF SYMBOLS xv

LIST OF APPENDICES xvi

1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Research Hypothesis 2

1.3 Research Objectives 3

1.4 Limitations 3

1.5 Research Significance 3

1.6 Dissertation Organization 4

2 LITERATURE REVIEW 6

2.1 The Human Brain 6

2.1.1 Brain Components & Function 6

2.1.2 Electrochemical Reactions in the Brain 8

2.2 The Nature & Detection of Epilepsy 9

2.2.1 Classification of Epileptic Seizures 9

2.2.2 Electroencephalography 10

2.2.2.1 Electrode Placement 12

2.2.2.2 Recording Technique 14

Page 8: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

viii

2.3 Modeling of EEG Signals for Seizure Analysis 15

2.3.1 The FTTM Model 17

2.3.1.1 Flat EEG 18

2.3.1.2 Non-polar CEEG 19

2.3.1.3 Criticism of FTTM 20

2.4 Information Geometry 20

3 RESEARCH METHODOLOGY 22

3.1 Research Design & Procedure 22

3.2 Operational Framework 23

3.3 Data Sources 23

3.4 Instrumentation 24

3.5 Assumptions & Limitations 25

3.6 Preliminary Material 25

3.6.1 Probability & Measure 26

3.6.2 Topology & Manifolds 28

3.6.2.1 Topology 28

3.6.2.2 Manifolds 29

3.6.3 Graphs 30

3.6.4 Information 32

4 MEASURING EEG SIGNALS OF EPILEPTIC

SEIZURES 33

4.1 Explorative Statistics 33

4.2 Delia Measure Development 39

4.3 Delia Measure Application 46

5 MANIFOLD CONSTRUCTION 51

5.1 Mapping Measure Data to a Manifold 51

5.2 Working on the Surface of a Unit Hypersphere 57

5.2.1 Geodesics on a Unit Hypersphere 57

5.2.2 Application of the Derived Geodesic 60

5.3 Non-viability of Dimensionality Reduction 60

6 THE VMF DISTRIBUTION OF EPILEPTIC SEIZURES 62

6.1 Parameter Estimation 62

6.2 Application to Existing Data Sets 64

Page 9: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

ix

7 VISUALIZATION OF EPILEPTIC SEIZURES VIA

GRAPHS 70

7.1 Graphs of Epileptic Seizures 70

7.2 Application to Existing Dataset 72

7.2.1 Fuzzy Graphs 72

7.2.2 Electrode Connectivity Graphs 75

7.3 Other Related Work 77

7.3.1 Non-Euclidean Analysis 78

7.3.2 Application of Genetic Algorithms to Ap-

proximating the Concentration Parameter

of vMF Distributions 79

8 CONCLUSION & DISCUSSION 81

8.1 Conclusion 81

8.2 Suggestions For Further Research 83

REFERENCES 84

Appendices A – I 93 – 129

Page 10: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Brain structures and their functions. 8

2.2 Classification of epileptic seizures. 11

2.3 EEG components. 14

4.1 K-S testing of seizure data. 36

4.2 Emulated baseline and jitter values. 46

5.1 Geodesic distance values. 60

6.1 vMF parameters. 66

6.2 Average entropic content of patient data. 67

7.1 κ estimates obtained using GA. 80

8.1 Summary of computational results. 82

8.2 Summary of graphical observations. 83

Page 11: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Chapter dependency flowchart. 5

2.1 Structure of the human brain. 7

2.2 Neural synapses. 9

2.3 EEG sensors attached to a patient. 10

2.4 International 10-20 system. 13

2.5 EEG amplifier. 14

2.6 EEG montages. 15

2.7 FTTM1. 17

2.8 The Flat EEG method. 18

2.9 Sphere-cube homeomorphism. 19

2.10 Clustering on a cube. 19

3.1 Research operational framework. 24

4.1 The NicoletOneTM

EEG system. 34

4.2 Comparison between electrode and time dependency. 35

4.3 Normal tendency of epileptic seizures. 36

4.4 Loss of normal tendency for an epileptic seizure. 37

4.5 Pathway to mapping EEG signals to a manifold. 38

4.6 Delia measure of Patient A’s seizure. 46

4.7 Delia measure of Patient B’s seizure. 47

4.8 Delia measure of Patient C’s seizure. 48

4.9 Delia measure of Patient D’s seizure. 49

4.10 Delia measure of Patient E’s seizure. 50

4.11 Delia measure of Patient F’s seizure. 50

5.1 A unit hypersphere as a manifold. 54

5.2 Geodesic distance on a sphere. 58

6.1 Applying the vMF model. 65

6.2 Relation between κ and χ. 69

7.1 Entropy change in Patient A’s seizure. 72

7.2 Entropy change in Patient B’s seizure. 73

7.3 Entropy change in Patient C’s seizure. 73

Page 12: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xii

7.4 Entropy change in Patient D’s seizure. 74

7.5 Entropy change in Patient E’s seizure. 74

7.6 Entropy change in Patient F’s seizure. 75

7.7 Gt of Patient A at t = 1 75

7.8 Gt of Patient B at t = 2 76

7.9 Gt of Patient C at t = 3 76

7.10 Gt of Patient D at t = 4 76

7.11 Gt of Patient E at t = 5 77

7.12 Gt of Patient F at t = 6 77

A.1 Gt of Patient A at t = 1 93

A.2 Gt of Patient A at t = 2 93

A.3 Gt of Patient A at t = 3 94

A.4 Gt of Patient A at t = 4 94

A.5 Gt of Patient A at t = 5 94

A.6 Gt of Patient A at t = 6 95

A.7 Gt of Patient A at t = 7 95

A.8 Gt of Patient A at t = 8 95

A.9 Gt of Patient A at t = 9 96

A.10 Gt of Patient A at t = 10 96

B.1 Gt of Patient B at t = 1 97

B.2 Gt of Patient B at t = 2 97

B.3 Gt of Patient B at t = 3 98

B.4 Gt of Patient B at t = 4 98

B.5 Gt of Patient B at t = 5 98

B.6 Gt of Patient B at t = 6 99

B.7 Gt of Patient B at t = 7 99

B.8 Gt of Patient B at t = 8 99

B.9 Gt of Patient B at t = 9 100

B.10 Gt of Patient B at t = 10 100

C.1 Gt of Patient C at t = 1 101

C.2 Gt of Patient C at t = 2 101

C.3 Gt of Patient C at t = 3 102

C.4 Gt of Patient C at t = 4 102

C.5 Gt of Patient C at t = 5 102

C.6 Gt of Patient C at t = 6 103

C.7 Gt of Patient C at t = 7 103

C.8 Gt of Patient C at t = 8 103

C.9 Gt of Patient C at t = 9 104

C.10 Gt of Patient C at t = 10 104

Page 13: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xiii

D.1 Gt of Patient D at t = 1 105

D.2 Gt of Patient D at t = 2 105

D.3 Gt of Patient D at t = 3 106

D.4 Gt of Patient D at t = 4 106

D.5 Gt of Patient D at t = 5 106

D.6 Gt of Patient D at t = 6 107

D.7 Gt of Patient D at t = 7 107

D.8 Gt of Patient D at t = 8 107

D.9 Gt of Patient D at t = 9 108

D.10 Gt of Patient D at t = 10 108

E.1 Gt of Patient E at t = 1 109

E.2 Gt of Patient E at t = 2 109

E.3 Gt of Patient E at t = 3 110

E.4 Gt of Patient E at t = 4 110

E.5 Gt of Patient E at t = 5 110

E.6 Gt of Patient E at t = 6 111

E.7 Gt of Patient E at t = 7 111

E.8 Gt of Patient E at t = 8 111

E.9 Gt of Patient E at t = 9 112

E.10 Gt of Patient E at t = 10 112

F.1 Gt of Patient F at t = 1 113

F.2 Gt of Patient F at t = 2 113

F.3 Gt of Patient F at t = 3 114

F.4 Gt of Patient F at t = 4 114

F.5 Gt of Patient F at t = 5 114

F.6 Gt of Patient F at t = 6 115

F.7 Gt of Patient F at t = 7 115

F.8 Gt of Patient F at t = 8 115

F.9 Gt of Patient F at t = 9 116

F.10 Gt of Patient F at t = 10 116

Page 14: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xiv

LIST OF ABBREVIATIONS

BM – Base Magnetic Plane

dEEG – Digital Electroencephalography

EEG – Electroencephalography

FACS – Fuzzy Autocatalytic Set

FM – Fuzzy Magnetic Field

FTTM – Fuzzy Topographic Topological Mapping

GNU – GNU’s Not Unix!

HUSM – Universiti Sains Malaysia Teaching Hospital

KS – Kolmogorov-Smirnov

MC – Magnetic Contour Plane

MEG – Magnetoencephalography

MLE – Maximum Likelihood Estimate

PDF – Probability Density Function

PMF – Probability Mass Function

SI – Self-information

SPS – School of Postgraduate Studies

SPSS – Statistical Package for the Social Sciences

TM – Topographic Magnetic Field

USM – Universiti Sains Malaysia

UTM – Universiti Teknologi Malaysia

vMF – von Mises-Fisher

Page 15: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xv

LIST OF SYMBOLS

CEEG – Cerebral EEG.

µ – Delia EEG measure.

β – Emulated baseline.

δ – Jitter.

κ – Concentration parameter.

I – Self-information

H – Shannon entropy.

Page 16: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Electrode Connectivity Graphs of Patient A 93

B Electrode Connectivity Graphs of Patient B 97

C Electrode Connectivity Graphs of Patient C 101

D Electrode Connectivity Graphs of Patient D 105

E Electrode Connectivity Graphs of Patient E 109

F Electrode Connectivity Graphs of Patient F 113

G Source Code 117

H C Program Output 123

I Publications 129

Page 17: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

CHAPTER 1

INTRODUCTION

In 1968, an electrical engineer named Shun’ichi Amari postulated the use

of geometric tools to supplement existing methods in statistical analysis of real-

world models [1]. Forty years down the road, Amari’s method has bloomed into a

mathematical field of it’s own, now widely known as information geometry. Utilizing

tools that were previously exclusive to differential geometry, it provides new insight

to the extraction and analysis of statistical data, particularly those relating to the

behavior of statistical distributions itself. This research, titled Dynamic Epileptic

Activity Analysis Based On Geometric Structure Of Electroencephalographic Signals

represents an initial foray into the application of said tools to modeling the behavior of

epileptic seizures as viewed from their electroencephalographic signals.

This first chapter aims to acquaint readers with the background knowledge as

to why this project was undertaken. Discussions will cover the related literature that

motivates this project, followed by a formal statement of the issue being tackled. This,

together with a set of well-defined research objectives and their respective limitations

underline the structure of this thesis, right down to the organization of the chapters.

Kicking things off is a short introduction to epilepsy and some prior work that has

been done to address the issue.

1.1 Problem Background

Epilepsy is a chronic disorder of the brain that affects people in every country

of the world. It is characterized by recurrent seizures, which are physical reactions to

sudden, usually brief, excessive electrical discharges in a group of brain cells [2].

Part of understanding the way in which epilepsy affects the brain is the

Page 18: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

2

analysis of the aforementioned electrical discharges. These discharges are commonly

monitored using electroencephalography (EEG) or magnetoencephalography (MEG)

apparatus. These machines however, only provide neurologists with simple details

about the seizure, such as the time and duration of the seizure, as well as its magnitude

at the point of detection. Details such as the origin of the electrical discharge and

pattern of propagation through the brain are not obtainable from simply viewing the

EEG or MEG printouts. Consequently, mathematics was introduced as a research

tool to identify, categorize, and predict the pattern in which these electrical discharges

occur.

Years of research have not resulted in marked advancements in interpretation

of EEG/MEG output. Despite being the most cost-efficient method of viewing the

brain’s activity, neurologists are still expected to spend years of training learning to

decipher the brainwave patterns that are shown on said output. Many researchers

chose to embark on the more ambitious project of predicting the occurrence of epileptic

seizures, with varying amounts of success (more on this in Chapter 2).

In 1999, Tahir et. al. developed the Fuzzy Topographic Topological Mapping

(FTTM) technique, which transports EEG/MEG signals to a fuzzified space with

the aim of identifying the location of the epileptic foci, i.e. the points at which a

seizure emanates from [3]. Ten years of research under the FTTM banner has yielded

promising results which further suggest the existence of a pattern to the electrical

discharge propagation of epileptic seizures [4]. This study, although it does not

specifically employ the FTTM algorithm, is part of the FTTM project, and represents

the next stage of the group’s research into epileptic seizures.

1.2 Research Hypothesis

The problem addressed by this research is the construction and analysis of a

geometric model for the electrical potential data of EEG signals obtained during an

epileptic seizure. Simply put, the research seeks to answer the following question:

”Can the electrical potential data of EEG signals obtained during an

epileptic seizure be embedded in some geometrical space?”

Page 19: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

3

1.3 Research Objectives

The objectives of this research are as follows:

1. Construct a manifold to model the electrical potential data sampled from EEG

data of an epileptic seizure

2. Employ elements of information geometry to identify the existence of a

governing pattern for epileptic seizures

3. Validate the progression of an epileptic seizure as a mathematical graph

1.4 Limitations

The limitations of this research is as follows:

1. To construct a generalized manifold that can be used to compare the EEG signals

of three epileptic seizures of varying length and category

2. To analyse the distribution of data points of the EEG signals on the manifold,

resulting in a statistical distribution that describes the progression of epileptic

seizures

3. To provide physical interpretation of the results obtained

1.5 Research Significance

The results of this research are crucial to further understanding the dynamics

of epileptic seizures. As opposed to the FTTM algorithm, the data structure developed

in this research does away with fuzzification of the raw data, resulting in a more

natural model. This research also bridges the gap between the FTTM and Fuzzy Auto-

Catalytic Set (FACS) projects.

Essentially, this research has one main focus: to try and provide a geometric

view of EEG signals of epileptic seizures. It is hoped that this geometric view will

reveal some visible pattern to the distribution of EEG signals during epileptic seizures,

further corroborating existing proof of seizures being deterministic.

Page 20: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

4

1.6 Dissertation Organization

The organization of this thesis is somewhat different compared to the general

”template” that UTM adheres to as it has been tailored to best represent the work done

in this research. Rest assured, it still conforms to the guidelines set by the School of

Postgraduate Studies (SPS). In total, there are eight chapters to this thesis, namely:

1. Chapter 1: Introduction

2. Chapter 2: Literature Review

3. Chapter 3: Research Methodology

4. Chapter 4: Measuring EEG Signals of Epileptic Seizures

5. Chapter 5: Manifold Construction

6. Chapter 6: The vMF Distribution of Epileptic Seizures

7. Chapter 7: Visualization of Epileptic Seizures via Graph Theory

8. Chapter 8: Conclusion & Discussion

The organization of the chapters are such that they remain concise, with

minimal overlap. Some additional chapters were included as part of the research being

extended from a period of three years to five. Figure 1.1 illustrates the dependencies

of one chapter on another.

Now that the project has been formally introduced, the next chapter will

proceed to acquaint readers with the pre-requisite literary background of the project.

Page 21: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

5

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Research Methodology

Chapter 4

Measuring EEG Signals of Epileptic

Seizures

Chapter 5

Manifold Construction

Chapter 7

Visualization of Epileptic Seizures via

Graphs

Chapter 6

The vMF Distribution of Epileptic

Seizures

Chapter 8

Conclusion & Discussion

Figure 1.1: Chapter dependencies for this thesis.

Page 22: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

REFERENCES

1. Amari, S. Theory of Information Spaces - A Geometrical Foundation of the

Analysis of Communication Sytems. RAAG Memoirs. 1968, vol. 4. 373–418.

2. WHO. Epilepsy Factsheet, 2009. URL http://www.who.int/

mediacentre/factsheets/fs999/en/index.html.

3. Ahmad, T., Ahmad, R., F., Z. and Yun, L. Development of Detection Model

for Neuromagnetic Fields. Proc. BIOMED 2000. Univ. Malaya. 2000. 119 –

121.

4. Ahmad, T., Ahmad, R. S., Rahman, W. E. Z. W. A., Yun, L. L. and Zakaria,

F. Fuzzy topographic topological mapping for localisation simulated multiple

current sources of MEG. J. Interdiscip. Math., 2008. 11: 381–393.

5. Philips, H. Introduction: The Human Brain. Online,

2006. URL http://www.newscientist.com/article/

dn9969-introduction-the-human-brain.html?full=true.

6. Parent, A. and Carpenter, M. Carpenter’s Human Neuroanatomy. Williams &

Wilkins. 1996. ISBN 9780683067521.

7. Sanei, S. and Chambers, J. EEG Signal Processing. John Wiley & Sons. 2007.

ISBN 9780470025819.

8. Kandel, E., Schwartz, J. and Jessell, T. Principles of Neural Science. McGraw-

Hill, Health Professions Division. 2000. ISBN 9780838577011.

9. Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. and Lounasmaa,

O. V. Magnetoencephalography: Theory, Instrumentation, and Applications

to Noninvasive Studies of the Working Human Brain. Rev. Mod. Phys., 1993.

65: 413–497. doi:10.1103/RevModPhys.65.413.

10. Zakaria, F. Dynamic Profiling Of EEG Data During Seizure Using Fuzzy

Information Space. Ph.D. Thesis. Universiti Teknologi Malaysia. 2008.

11. URL https://www.prismbrainmapping.com/science.aspx.

12. Upledger, J. A Brain Is Born: Exploring the Birth and Development of the

Central Nervous System. North Atlantic Books. 1996. ISBN 9781556432361.

Page 23: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

85

13. URL http://www.nia.nih.gov/Alzheimers/Publications/

UnravelingtheMystery/.

14. Silverthorn, D. Human Physiology: An Integrated Approach. Pearson

Education. 2012. ISBN 9780321750075.

15. Scambler, G. Epilepsy. Experience of illness. Tavistock/Routledge. 1989.

ISBN 9780415017572.

16. Gastaut, H. Clinical and Electroencephalographical Classification of Epileptic

Seizures. Epilepsia, 1970: 102–113.

17. Ahmad, T., Fairuz, R., Zakaria, F. and Isa, H. Selection of a Subset of

EEG Channels of Epileptic Patient During Seizure Using PCA. Proceedings

of the 7th WSEAS International Conference on Signal Processing, Robotics

and Automation. Stevens Point, Wisconsin, USA: World Scientific and

Engineering Academy and Society (WSEAS). 2008. ISBN 978-960-6766-

44-2. 270–273.

18. Proposal for Revised Clinical and Electroencephalographic Classification of

Epileptic Seizures. Epilepsia, 1981. 22(4): 489–501. ISSN 1528-1167. doi:

10.1111/j.1528-1157.1981.tb06159.x.

19. Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H.,

Van Emde Boas, W., Engel, J., French, J., Glauser, T. A., Mathern,

G. W., Mosh, S. L., Nordli, D., Plouin, P. and Scheffer, I. E. Revised

terminology and concepts for organization of seizures and epilepsies: Report

of the ILAE Commission on Classification and Terminology, 20052009.

Epilepsia, 2010. 51(4): 676–685. ISSN 1528-1167. doi:10.1111/j.1528-1167.

2010.02522.x. URL http://dx.doi.org/10.1111/j.1528-1167.

2010.02522.x.

20. Niedermeyer, E. and Silva, F. Electroencephalography: Basic Principles,

Clinical Applications, and Related Fields. M - Medicine Series. Lippincott

Williams & Wilkins. 2005. ISBN 9780781751261.

21. URL http://en.wikipedia.org/wiki/

Electroencephalography.

22. Berger, H. ber das Elektrenkephalogramm des Menschen. European Archives

of Psychiatry and Clinical Neuroscience, 1933. 99: 555–574. ISSN 0940-

1334. 10.1007/BF01814320.

23. Koles, Z. J. Trends in EEG source localization. Electroencephalography and

Clinical Neurophysiology, 1998. 106(2): 127 – 137. ISSN 0013-4694. doi:

10.1016/S0013-4694(97)00115-6.

Page 24: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

86

24. Jasper, H. The Ten-Twenty Electrode System of the International Federation.

Electroencephalography and Clinical Neurophysiology, 1958. 10(2): 371–

375.

25. Malmivuo, J. and Plonsey, R. Bioelectromagnetism: Principles and

Applications of Bioelectric and Biomagnetic Fields. Oxford University Press.

1995. ISBN 9780195058239.

26. Sharbrough, F., Chatrian, G. E., Lesser, R. P., Lders, H., Nuwer, M. and Picton,

T. W. American Electroencephalographic Society Guidelines for Standard

Electrode Position Nomenclature. Journal of Clinical Neurophysiology, 1991.

8(2): 200–202.

27. Sharbrough, F., Chatrian, G., Lesser, R. P., Lders, H., Nuwer, M. and Picton,

T. W. Guideline 5: Guidelines for standard electrode position nomenclature.

Journal of Clinical Neurophysiology, 2006. 46(3): 222–225.

28. Lehnertz, W. G. A. R. A. J. E. C., K. Is it possible to anticipate seizure onset by

non-linear analysis of intracerebral EEG in human partial epilepsies? Revue

Neurologique, 1999. 155(6-7): 454–456. Cited By (since 1996) 21.

29. Ahmad, T., Zakaria, F., Abdullah, J. and Mustapha, F. Dynamical system of an

epileptic seizure. Sensors and the International Conference on new Techniques

in Pharmaceutical and Biomedical Research, 2005 Asian Conference on.

2005. 78–80. doi:10.1109/ASENSE.2005.1564510.

30. Babloyantz, A. and Destexhe, A. Low-Dimensional Chaos in an Instance of

Epilepsy. Proceedings of the National Academy of Sciences, 1986. 83(10):

3513–3517. doi:10.1073/pnas.83.10.3513.

31. Stam, C. Nonlinear Dynamical Analysis of EEG and MEG: Review of an

Emerging Field. Clinical Neurophysiology, 2005. 116(10): 2266 – 2301. ISSN

1388-2457. doi:10.1016/j.clinph.2005.06.011.

32. Iasemidis, L., S.J., C., Zaveri, H. and Williams, W. Phase Space Topography

and the Lyapunov Exponent of Electrocorticograms in Partial Seizures. Brain

Topography, 1990. 2: 187–201. ISSN 0896-0267. 10.1007/BF01140588.

33. Frank, G., Lookman, T., Nerenberg, M., Essex, C., Lemieux, J. and Blume,

W. Chaotic Time Series Analyses of Epileptic Seizures. Physica D:

Nonlinear Phenomena, 1990. 46(3): 427 – 438. ISSN 0167-2789. doi:

10.1016/0167-2789(90)90103-V.

34. Theiler, J. On the Evidence for Low-Dimensional Chaos in an Epileptic

Electroencephalogram. Physics Letters A, 1995. 196(5-6): 335 – 341. ISSN

0375-9601. doi:10.1016/0375-9601(94)00856-K.

Page 25: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

87

35. Schiff, N., Victor, J., Canel, A. and Labar, D. Characteristic Nonlinearities

of the 3/s Ictal Electroencephalogram Identified by Nonlinear Autoregressive

Analysis. Biological Cybernetics, 1995. 72: 519–526. ISSN 0340-1200.

10.1007/BF00199894.

36. Friedrich, R. and Uhl, C. Spatio-Temporal Analysis of Human

Electroencephalograms: Petit-Mal Epilepsy. Phys. D, 1996. 98: 171–182.

ISSN 0167-2789. doi:10.1016/0167-2789(96)00059-0.

37. Hernndez, J., Valds, P. and Vila, P. EEG Spike and Wave Modelled by a

Stochastic Limit Cycle. NeuroReport, 1996. 7(13): 2246–2250.

38. Le Van Quyen, M., Martinerie, J., Adam, C. and Varela, F. J. Unstable Periodic

Orbits in Human Epileptic Activity. Phys. Rev. E, 1997. 56: 3401–3411. doi:

10.1103/PhysRevE.56.3401.

39. Feucht, M., Mller, U., Witte, H., Schmidt, K., Arnold, M., Benninger, F.,

Steinberger, K. and Friedrich, M. Nonlinear Dynamics of 3 Hz Spike-and-

Wave Discharges Recorded During Typical Absence Seizures in Children.

Cerebral Cortex, 1998. 8(6): 524–533. doi:10.1093/cercor/8.6.524.

40. Peters, T., Bhavaraju, N., Frei, M. and Osorio, I. Network System for

Automated Seizure Detection and Contingent Delivery of Therapy. Journal

of Clinical Neurophysiology, 2001. 18(6): 545–549.

41. Elger, C. E. and Lehnertz, K. Seizure Prediction by Non-linear Time Series

Analysis of Brain Electrical Activity. European Journal of Neuroscience,

1998. 10(2): 786–789. ISSN 1460-9568. doi:10.1046/j.1460-9568.1998.

00090.x.

42. Martinerie, J., Adam, C., Le van Quyen, M., Baulac, M., Clemenceau, S.,

Renault, B. and Varela, F. Epileptic Seizures Can Be Anticipated by Nonlinear

Analysis. Nat Med, 1998. 4: 11731176.

43. Moser, H., Weber, B., Wieser, H. and Meier, P. Electroencephalograms in

Epilepsy: Analysis and Seizure Prediction Within the Framework of Lyapunov

Theory. Physica D: Nonlinear Phenomena, 1999. 130(3-4): 291 – 305. ISSN

0167-2789. doi:10.1016/S0167-2789(99)00043-3.

44. Osorio, I., Harrison, M. A., Lai, Y. C. and Frei, M. G. Observations on

the Application of the Correlation Dimension and Correlation Integral to the

Prediction of Seizures. Journal of Clinical Neurophysiology, 2001. 18(3):

269–274.

45. Kalitzin, S., Parra, J., Velis, D. and Lopes da Silva, F. Enhancement of Phase

Clustering in the EEG/MEG Gamma Frequency Band Anticipates Transitions

Page 26: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

88

to Paroxysmal Epileptiform Activity in Epileptic Patients with Known Visual

Sensitivity. Biomedical Engineering, IEEE Transactions on, 2002. 49(11):

1279 –1286. ISSN 0018-9294. doi:10.1109/TBME.2002.804593.

46. van Drongelen, W., Nayak, S., Frim, D. M., Kohrman, M. H., Towle, V. L.,

Lee, H. C., McGee, A. B., Chico, M. S. and Hecox, K. E. Seizure Anticipation

in Pediatric Epilepsy: Use of Kolmogorov Entropy. Pediatric Neurology, 2003.

29(3): 207 – 213. ISSN 0887-8994. doi:10.1016/S0887-8994(03)00145-0.

47. McSharry, P., He, T., Smith, L. and Tarassenko, L. Linear and Non-linear

Methods for Automatic Seizure Detection in Scalp Electro-encephalogram

Recordings. Medical and Biological Engineering and Computing, 2002. 40:

447–461. ISSN 0140-0118. 10.1007/BF02345078.

48. Kugiumtzis, D. and Larsson, P. G. Prediction Of Epileptic Seizures With

Linear And Nonlinear Analysis Of EEG. Lehnertz, K. and C.E., E., eds. Chaos

In Brain?: Proceedings of the Workshop. World Scientific. 1999. 329–332.

49. Jerger, K. K., Netoff, T. I., Francis, J. T., Sauer, T., Pecora, L., Weinstein, S. L.

and Schiff, S. J. Early Seizure Detection. Journal of Clinical Neurophysiology,

2001. 18: 259–268.

50. Baillet, S. and Garnero, L. A Bayesian Approach to Introducing Anatomo-

Functional Priors in the EEG/MEG Inverse Problem. Biomedical Engineering,

IEEE Transactions on, 1997. 44(5): 374 –385. ISSN 0018-9294. doi:10.1109/

10.568913.

51. Stevens, J. Electroencephalographic Studies of Conditional Cerebral Response

in Epileptic Subjects. Electroencephalography and Clinical Neurophysiology,

1960. 12(2): 431 – 444. ISSN 0013-4694. doi:10.1016/0013-4694(60)

90019-5.

52. Faust, O., Acharya, R., Allen, A. and Lin, C. Analysis of EEG Signals During

Epileptic and Alcoholic States Using AR Modeling Techniques. IRBM, 2008.

29(1): 44 – 52. ISSN 1959-0318. doi:10.1016/j.rbmret.2007.11.003.

53. Sivasankari, N. and Thanushkodi, K. Automated Epileptic Seizure Detection

in EEG Signals Using Fast ICA and Neural Networks. Int. J. Advance. Soft

Comput. Appl., 2009. 1, Issue 2.

54. Zakaria, F. Algoritma Penyelesaian Masalah Songsang Arus Tunggal Tak

Terbatas MEG. Master’s Thesis. Universiti Teknologi Malaysia. 2002.

55. Ahmad, N. Theoretical Foundation for Digital Space of Flat Electroen-

cephalogram. Ph.D. Thesis. Universiti Teknologi Malaysia. 2009.

Page 27: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

89

56. Idris, A., Ahmad, T. and Maan, N. A Novel Technique for Visualization

Electrical Activities in the Brain During Epileptic Seizure. International

Conference on Applied Mathematics and Informatics - Proceedings. 2010.

94–99.

57. Idris, A. Construction of Homeomorphism between Generalized Sphere and

Cube. Simposium Kebangsaan Sains Matematik ke-16. PERSAMA. 2008,

vol. 2.

58. Amari, S., Nagaoka, H. and Harada, D. Methods of Information Geometry.

Translations of Mathematical Monographs. American Mathematical Society.

2007. ISBN 9780821843024.

59. Jeffreys, H. An Invariant Form for the Prior Probability in Estimation

Problems. Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 1946. 186(1007): pp. 453–461. ISSN 00804630. URL

http://www.jstor.org/stable/97883.

60. James, A. The Variance Information Manifold and Functions on It.

Multivariate Analysis, 1973: 157–169.

61. Atkinson, C. and Mitchell, A. F. S. Rao’s Distance Measure. Sankhya: The

Indian Journal of Statistics, Series A (1961-2002), 1981. 43(3): pp. 345–365.

ISSN 0581572X.

62. Kass, R. The Riemannian structure of model spaces: A geometrical approach

to inference. Ph.D. Thesis. University of Chicago. 1980.

63. Skovgaard, L. T. A Riemannian Geometry of the Multivariate Normal

Model. Scandinavian Journal of Statistics, 1984. 11(4): pp. 211–223. ISSN

03036898.

64. Chentsov, N. Statistical Decision Rules and Optimal Inference. Translations

of Mathematical Monographs. American Mathematical Society. 1982. ISBN

9780821813478.

65. Efron, B. Defining the Curvature of a Statistical Problem (with Applications

to Second Order Efficiency). The Annals of Statistics, 1975. 3(6): pp. 1189–

1242. ISSN 00905364.

66. Dawid, A. Discussion to Efron’s Paper. Ann. Statist,, 1975. 3: 1231–1234.

67. Carter, K. M. Dimensionality Reduction on Statistical Manifolds. Ph.D.

Thesis. University of Michigan. 2009. URL http://web.eecs.umich.

edu/˜hero/Preprints/carter_thesis08.pdf.

68. Franks, J. Terse Introduction to Lebesgue Integration. Student mathematical

Page 28: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

90

library. American Mathematical Society. 2009. ISBN 9780821848623.

69. Berberian, S. Measure and Integration. AMS Chelsea Publishing Series. Amer

Mathematical Society. 2011. ISBN 9780821853283.

70. Roussas, G. An Introduction to Measure-Theoretic Probability. Elsevier

Academic Press. 2005. ISBN 9780125990226.

71. Ewens, W. and Grant, G. Statistical methods in bioinformatics: an

introduction. No. v. 10 in Statistics for biology and health. Springer. 2005.

ISBN 9780387400822.

72. Stewart, W. Probability, Markov Chains, Queues, and Simulation: The

Mathematical Basis of Performance Modeling. Princeton University Press.

2009. ISBN 9781400832811. URL https://books.google.com.my/

books?id=ZfRyBS1WbAQC.

73. Taghizadegan, S. Essentials of Lean Six Sigma. Elsevier Science. 2010. ISBN

9780080462325. URL https://books.google.com.my/books?

id=9VvWkLgiH0kC.

74. Spanos, A. Probability Theory and Statistical Inference: Econometric

Modeling with Observational Data. Cambridge University Press. 1999. ISBN

9780521424080. URL https://books.google.com.my/books?

id=G0\_HxBubGAwC.

75. Altiok, T. and Melamed, B. Simulation Modeling and Analysis with ARENA.

Elsevier Science. 2010. ISBN 9780080548951. URL https://books.

google.com.my/books?id=5SezxR5q4mYC.

76. Banerjee, A., Dhillon, I., Ghosh, J. and Sra, S. Clustering on the Unit

Hypersphere Using von Mises-Fisher Distributions. J. Mach. Learn. Res.,

2005. 6: 1345–1382. ISSN 1532-4435.

77. Lipschutz, S. Schaum’s Outline of General Topology. Serie Schaum. McGraw-

Hill. 1988. ISBN 9780070379886.

78. Lee, J. Introduction to Topological Manifolds. Graduate texts in mathematics.

Springer. 2011. ISBN 9781441979391.

79. Eidelman, Y., Milman, V. and Tsolomitis, A. Functional Analysis: An

Introduction. Graduate studies in mathematics. American Mathematical

Society. 2004. ISBN 9780821836460.

80. Zakon, E., Lucier, B. and Zakon, T. Mathematical Analysis. The Zakon Series

on Mathematical Analysis. Trillia Group, The. 2004. ISBN 9781931705028.

81. Dold, A. Lectures on algebraic topology. Classics in mathematics. Springer.

Page 29: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

91

1995. ISBN 9783540586609.

82. Dasgupta, S. and Gupta, A. An elementary proof of a theorem of Johnson

and Lindenstrauss. Random Structures & Algorithms, 2003. 22(1): 60–65.

ISSN 1098-2418. doi:10.1002/rsa.10073. URL http://dx.doi.org/

10.1002/rsa.10073.

83. Balakrishnan, R. and Ranganathan, K. A Textbook of Graph Theory.

Universitext (Berlin. Print). Springer New York. 2012. ISBN

9781461445289. URL https://books.google.com.my/books?

id=HS9iDhAuFuUC.

84. Deo, N. Graph Theory with Applications to Engineering and Computer

Science. Prentice-Hall series in automatic computation. Prentice-Hall of India.

2004. ISBN 9788120301450. URL https://books.google.com.my/

books?id=Yr2pJA950iAC.

85. Biswal, P. Discrete Mathematics and Graph Theory. Eastern economy

edition. Prentice-Hall of India. 2006. ISBN 9788120327214. URL https:

//books.google.com.my/books?id=hLX6OG1U5W8C.

86. Gossett, E. Discrete Mathematics with Proof. Wiley. 2009. ISBN

9780470457931. URL https://books.google.com.my/books?

id=NuFeW8N2hlkC.

87. Cormen, T., Leiserson, C., Rivest, R. and Stein, C. Introduction To Algorithms.

MIT Press. 2001. ISBN 9780262032933. URL https://books.

google.com.my/books?id=NLngYyWFl\_YC.

88. Zhong, N., Li, K., Lu, S. and Chen, L. Brain Informatics: International

Conference, BI 2009, Beijing, China, October 22-24, Proceedings.

LNCS sublibrary: Artificial intelligence. Springer. 2009. ISBN

9783642049538. URL https://books.google.com.my/books?

id=lJNFQS4Q\_k4C.

89. Blue, M., Bush, B. and Puckett, J. Unified Approach to Fuzzy Graph

Problems. Fuzzy Sets Syst., 2002. 125(3): 355–368. ISSN 0165-0114.

doi:10.1016/S0165-0114(01)00011-2. URL http://dx.doi.org/10.

1016/S0165-0114(01)00011-2.

90. Douglas, J. W. B. A Neuropsychiatric Study In Childhood By Michael

Rutter, Philip Graham and William Yule, Clinics in Developmental Medicine,

Volume 35/36. (Pp. 272; illustrated; 375.) Heinemann Medical Books:

London. 1970. Psychological Medicine, 1971. 1(05): 437–439. doi:10.1017/

S0033291700044834.

Page 30: DYNAMIC EPILEPTIC ACTIVITY ANALYSIS BASED ON …eprints.utm.my/id/eprint/54924/1/VinodARRamachandranPFS2015.pdf · Epilepsi merupakan gangguan otak yang kronik yang melibatkan ramai

92

91. McDermott, S., Mani, S. and Krishnawami, S. A population-based analysis

of specific behavior problems associated with childhood seizures. Journal

of Epilepsy, 1995. 8(2): 110 – 118. ISSN 0896-6974. doi:10.1016/

0896-6974(95)00019-A.

92. Surhone, L., Tennoe, M. and Henssonow, S. Premotor Cortex. VDM Verlag

Dr. Mueller AG & Co. Kg. 2010. ISBN 9786133066731.

93. Bahlmann, C. Directional Features in Online Handwriting Recognition.

Pattern Recogn., 2006. 39: 115–125. ISSN 0031-3203. doi:10.1016/j.patcog.

2005.05.012.

94. Smith, P. An Introduction to Godel’s Theorems. Cambridge Introductions to

Philosophy. Cambridge University Press. 2013. ISBN 9781107022843. URL

https://books.google.com.my/books?id=-SBpYKebkJMC.

95. Baluja, S. and Caruana, R. Removing the Genetics from the Standard Genetic

Algorithm. Technical report. Pittsburgh, PA, USA. 1995.