Dynamic Analysis of Switching Converters (2)

download Dynamic Analysis of Switching Converters (2)

of 134

Transcript of Dynamic Analysis of Switching Converters (2)

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    1/134

    Chapter 6

    Dynamic analysis

    of switching converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    2/134

    Power switchin Dynamic analysis of s 2

    Overview

    Continuous-Time Linear Models Switching converter analysis using classical control

    techniques

    Averaged switching converter models Review of negative feedback using classical-control

    techniques

    eedback compensation

    State-space representation of switching converters !nput "#! filters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    3/134

    Power switchin Dynamic analysis of s 3

    Overview

    Discrete-time models Continuous-time and discrete-time domains

    Continuous-time state-space model

    $iscrete-time model of the switchingconverter 

    $esign of a discrete control system withcomplete state feedback 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    4/134

    Power switchin Dynamic analysis of s 4

    $ynamic analysis

    Dynamic or small-signal analysis of the switching

    converter enables designers to predict the dynamic

    performance of the switching converter to reduce

    prototyping cost and design cycle time

    Dynamic analysis can be either numerical or

    analytical

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    5/134

    Power switchin Dynamic analysis of s 5

    $ynamic analysis

    Switching converters are non-linear time-variant circuits

    Nevertheless, it is possible to derive a continuous time-invariant linear model to represent a switching converter

    Continuous-time models are easier to handle, but notvery accurate

    Since a switching converter is a sampled system, adiscrete model gives a higher level of accuracy

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    6/134

    Power switchin Dynamic analysis of s 6

    %inear model of a switching

    converter

     Lo ref  

    o L

     Z V kV 

     Z Z =

    +

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    7/134

    Power switchin Dynamic analysis of s 7

    &'# modulator model

    Sensitivity of the duty cycle with respect to vref  

    Voltagemode control

    ref 

     p

    V  D

    V =

    $   !ref ref  

    ref p

     Dd v v

    V V = =$ $

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    8/134

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    9/134

    Power switchin Dynamic analysis of s (

    &'# modulator model

    Variation of the duty cycle due to a pertur#ation in the output voltage

    $urrent mode control

    !   % &d cr V V L= −

    '

    ) * % &+cd cr V V v L= − +

    !r I DT  = ∆

    '

    ) % &r I D d T  = ∆ +

    !

    ' '

    % &

    ) % & * % &+

    d c

    cd c

    V V Lr I DT  

    r   I D d T V V v L

    −∆= =

    ∆ + − +'

    '

    '

    c

    cd c

    vd D

    V V v

    = − −

    ' '

    c

    d c

     Dd v

    V V 

    =   −

    $

    d c

    d D

    V V v

    ∂= −∂   $

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    10/134

    Power switchin Dynamic analysis of s !,

    &'# modulator model

    Variation of the duty cycle due to a pertur#ation on the pea- current

    $urrent mode control

    ''

     p I d T  r =

    d cV V 

    r  L

    −=

    ''

     p

    d c

     I L

    d  T V V = −

    '

    '

    !

    d c p

    d L

    T V V  I 

    ∂=

    −∂

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    11/134

    Power switchin Dynamic analysis of s !!

    Averaged switching converter

    models

    .hreeterminal averagedswitch model

    /veragedswitch model for voltagemode control

    $!

    apV v d 

     D=

    $! ci I d =

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    12/134

    Power switchin Dynamic analysis of s !2

    Averaged switching converter

    models

    01amples of switching converters with an averaged switch

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    13/134

    Power switchin Dynamic analysis of s !3

    Averaged switching converter

    models

    Smallsignal averagedswitch model for the discontinuous mode

    $

    $

    ! 2

    2 2

    3 2

    ai

    ac

    a

     pac

    ac

     p

     p

    o

    cp

     I  g 

     I  I d 

     D

     I  I v

     I  I d  D

     I  g 

    =

    =

    =

    =

    =

    $

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    14/134

    Power switchin Dynamic analysis of s !4

    Averaged switching converter

    models

    Smallsignal model for currentmode control

    2

    2% & !

    e

    n z n

     s s H s

    Qω ω = + +

    2 z Q

    π −=

    n

     sT 

    π ω   =

    2

    ! 2

    %! &

    2

    !

    % &

     s i f 

     s ir 

    m

    n c s

     DT R  Dk 

     L

     D T Rk 

     L

    and 

     F S S T 

    −    = − ÷  

    −=

    =+

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    15/134

    Power switchin Dynamic analysis of s !5

    Output filter model

    utput filter of a switching converter

    o

    o so

    oo

    o

    1  R

     s! V "s# $ "s# %V 1

     &  sL R s! 

      ÷  

    o oo

    ' s

    o oo o

    1

    "s#V  !  L $ %

     s 1"s#V   & & s! !  R L

    'o

    ' 'o o

     H"s# $ ( & ' s & s

    ω 

    ζ ω ω  o

    o

    1 $

    ! 'R

     L

    ζ  oo o

    1 $ %

    !  Lω 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    16/134

    Power switchin Dynamic analysis of s !6

    Output filter model

    agnitude response of the output filter for several values of the

    output resistance  o 

    22 2

    2, log % & !, log ! 4o o

    )  ω ω 

    ω ζ ω ω 

          ÷ ÷= − − + ÷ ÷ ÷ ÷ ÷      

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    17/134

    Power switchin Dynamic analysis of s !7

    Output filter model

    Phase response of the output filter for several values of the output

    resistance  o 

    !

    2

    2

    % & tan

    !

    o

    o

    ω ζ 

    ω ω 

    ω 

    ω 

      ÷ ÷Φ = − ÷

      ÷− ÷ ÷    

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    18/134

    Power switchin Dynamic analysis of s !"

    Output filter model

    utput filter with a capacitor esr

    o esr   esr o

    o o esr oo'o o esr  

    o o esr o o esr  o o

    1 s&

     R R !  R H"s# $ %&!  L R R R" & # L R R

    & s& s " & # " & #! !  L R R L R R

    e

    !

    2 6  *SR

     sr o

     f ! π 

    =

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    19/134

    Power switchin Dynamic analysis of s !(

    Output filter model

    agnitude response of

    an output filter with a

    capacitor having a Resr  

    for several values of

    the output resistance Ro 

    22 2

    2 22, log % & !, log%! & !, log ! 4o o

    )  ω ω 

    ω ω τ ζ  ω ω 

          ÷ ÷= + − − + ÷ ÷ ÷ ÷ ÷      

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    20/134

    Power switchin Dynamic analysis of s 2,

    Output filter model

    Phase response of an output filter with a capacitor having a Resr  

    for several values of the output resistance Ro 

    !2

    2

    tan   tan

    !

    +1o L! 

    esr 

    o

     f 

     f f  $ + % f  f 

     f 

    ζ 

    θ    −

      ÷

      ÷ ÷ ÷       ÷− ÷ ÷    

    e% &

    oo

    o o o sr  

     R

     L ! Rω   =

    +

    2

    o oo sr 

    o

     L! 

     R

    ω ζ 

       = + ÷  

    o sr ! τ  =

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    21/134

    Power switchin Dynamic analysis of s 2!

    "(ample 6)*

    The boost converter shown in igure !"#$ has the

    following parameters% &in ' #$ &, &o ' !$ &, f s ' #

    ()*, L ' #$ m), C ' #$$ + and L ' !$ " The

    reference voltage is . &" The converter operates inthe continuous-conduction mode under the voltage-

    mode" /sing 0a1 the averaged-switch model,

    calculate the output-to-control transfer function, and

    0b1 Matlab to draw the 2ode plot of the transferfunction found in 0a1 "

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    22/134

    Power switchin Dynamic analysis of s 22

    "(ample 6)*

    Smallsignal model of the #oost converter

    0a1

    The nominal duty cycle can be calculated as,

    d

    ,

    d

    d

    ,

    V

    V!D

    V

    VD!

    D!

    !

    V

    V−=⇒=−⇒

    −=

    for the given input and output voltages, we have D'$"."

    ,ap

    ,

    ,

    ,$

    VV

    VD&%!D&%!

    −=

    −−=−−=

    ( )

    ( )( ) ( )

     

    +

    −+

    −−

    +

    =∧

    !D! 

    8s

    D!

    8$sD!

    s8!DV

    d

    v

    22

    22

    $ap,

    ( )

    8$

    D!9

    −=⇒

    ( )D!2 !

    $

    8:

    −=⇒

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    23/134

    Power switchin Dynamic analysis of s 23

    "(ample 6)*

    Pc

    d !

    Vv

    =

    D

    V

    !

    V $P =   ref PV

    V !,D

    V ⇒ = =

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    24/134

    Power switchin Dynamic analysis of s 24

    "(ample 6)*

    ;ode plot of the smallsignal transfer function of the #oost converter

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    25/134

    Power switchin Dynamic analysis of s 25

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    26/134

    Power switchin Dynamic analysis of s 26

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    27/134

    Power switchin Dynamic analysis of s 27

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    28/134

    Power switchin Dynamic analysis of s 2"

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    29/134

    Power switchin Dynamic analysis of s 2(

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    30/134

    Power switchin Dynamic analysis of s 3,

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    31/134

    Power switchin Dynamic analysis of s 3!

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    32/134

    Power switchin Dynamic analysis of s 32

    Small-signal models of switching

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    33/134

    Power switchin Dynamic analysis of s 33

    Review of negative feedback

    ;loc- diagram representation for a closedloop system

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    34/134

    Power switchin Dynamic analysis of s 34

    Review of negative feedback

    Closed-loop gain

    Loop gain

    or TL33#

    Stability analysis

    !

    o

    ref 

    V   ,

    V ,β =

    +

     LT ,β =

    !o

    ref 

    V    β =

    !!

    % & % & !",

     , , or 

     p-ase p-ase ,

    β β β 

      == −   + =

      o

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    35/134

    Power switchin Dynamic analysis of s 35

    Relative stability

    Definitions of gain and phase margins

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    36/134

    Power switchin Dynamic analysis of s 36

    Relative stability

    8oop gain of a system with three poles

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    37/134

    Power switchin Dynamic analysis of s 37

    Closed-loop switching

    converter 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    38/134

    Power switchin Dynamic analysis of s 3"

    eedbac( networ(

    2

    ! 2

    )a o R

    V V  R R

    =+

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    39/134

    Power switchin Dynamic analysis of s 3(

    "rror amplifier compensation

    networks

    P $ompensation networ- 

    '

    ' 1

    1 '

    1 '

    1 1  & R

     s! s!  H"s# $ %

    1 1 & & R R

     s! s! 

      ÷ ÷  

      ÷  

    ' 1

    1 1 ' ' 1 '

    1 & sR !  H"s# $ %

    " & & # sR ! ! sR ! ! 

     p

    ' '

    1 $ f 

    ' !  Rπ   z ' 1

    1 $ f 

    ' !  Rπ 

    tan+1 1

    .ead 

     z 

     f  $

     f θ 

      ÷  

    !tan

    +1.ag 

     p

     f  $ %

     f θ 

      ÷ ÷  

    .he total phase lag!

    tan tano +1 +11

     z p

     f f  $ + & %'/0

     f f θ 

        ÷ ÷ ÷      

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    40/134

    Power switchin Dynamic analysis of s 4,

    "rror amplifier compensation

    networks

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    41/134

    Power switchin Dynamic analysis of s 4!

    "rror amplifier compensation

    networks

    Phase response of the P compensation networ- 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    42/134

    Power switchin Dynamic analysis of s 42

    "rror amplifier compensation

    networks

    PD $ompensation networ- 

    ' 1 1

    '' 1 1 1 ' 1 '

    "1& 2 # "1& 2 " & # #! !  R R R H"2 # $ %

    + & 2 " & # & 2! ! ! ! !   R R R R

    ω ω ω 

    ω ω ω 

    ! p

    1 $ f 

    ' !  Rπ 2

    1 '

     p

    ' 1 '

    " & #! !  $ f 

    ' ! !  Rπ 

    ! z 

    ' 1

    1 $ f 

    ' !  Rπ   2 z 

    1

    1 $ f 

    ' " & #!  R Rπ 

    '1

    1

     R $ 3 

     R

    ' 1 '

    1

    " & # R R R $ 3 

     R R

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    43/134

    Power switchin Dynamic analysis of s 43

    "rror amplifier compensation

    networks

    agnitude response of the PD compensation networ- 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    44/134

    Power switchin Dynamic analysis of s 44

    "rror amplifier compensation

    networks

    agnitude response of the PD compensation networ- 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    45/134

    Power switchin Dynamic analysis of s 45

    "rror amplifier compensation

    networks

    Phase response of the PD compensation networ- 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    46/134

    Power switchin Dynamic analysis of s 46

    "rror amplifier compensation

    networks

    /symptotic appro1imated magnitude response of the PD

    compensation networ- 

    ' 1 1

    1 1 $

    ' ' " & #! !  R R R

    π π 

    ' 1 1 $ " & # %! !  R R Rtan+1 1

     zd 

     zd 

     f  $ '

     f θ 

      ÷  

    1 '

    ' 1 '

    1 " & #! !  $

    ' '! ! !  R Rπ π 

    1 '

    ' 1 '

    ! !  R $ %! 

     &! !  R

    !tan

    +1 pd 

     pd 

     f  $ ' %

     f θ    ÷ ÷

     

    !tan tan

    o +1 +11

     zd pd 

     f f  $ + ' & ' %'/0

     f f θ 

        ÷ ÷ ÷      

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    47/134

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    48/134

    Power switchin Dynamic analysis of s 4"

    Compensation in a buc( converter

    with output capacitor 4S

    f #, is chosen to be one-fifth of the switching

    fre5uency

    4

    4

     R

     & R R

    log10

    '0 5 " '%6 6# 7 $ +8 d9

    log  s p10'0 5 " # 7V V 

    6 6e

    5

    % & %!,, !, &%!,, !, &%5 ,5&!5!7

    2 2

    o

    o o o sr  

    o

     R

     L ! R  : : f kHz 

    π π 

    − −+   += = =

    +8 

    1$ $ %1; kHz 

    ' "0%6#100:10π 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    49/134

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    50/134

    Power switchin Dynamic analysis of s 5,

    Compensation in a buc( converter

    with output capacitor 4S

    !

    2

    2

    tan 7,!tan

    !

    +1o L! 

    esr 

    o

     f 

     f f  $ + %

     f  f  f 

    ζ 

    θ   −

      ÷

      ÷ = ÷ ÷

          ÷− ÷ ÷    

    o

    3!5 7,! 244(ea $ $ %θ    −o o o

    64(tan tan+1 +1

     z p

    6 6

     + $ % f f 

       

    ÷ ÷ ÷      

    o

    64(tan tan+1 +1 1 f< + < $ %

     f 

      ÷  

    o

    7741'  z 

    1 $ $ pF ! 

    '  f  Rπ 

    3"'

    '  p

    1 $ $ pF %

    !  '  f  Rπ 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    51/134

    Power switchin Dynamic analysis of s 5!

    Compensation in a buc( converter

    with no output capacitor 4S 

    !tan tan

    +1 +1 o o o1

     zd pd 

     f f ' + ' $ + $ %'/0 16 16

     f f 

        ÷ ÷ ÷      

    Gtan tan+1 +1 o1' f< + $ %16

     f 

      ÷

     

     pd 

    1 $ $ 0%18 F %! 

    '  f   R µ 

    π 

    1 1

    '

    " & #!  R R $ $ 0%1 F %! 

     R µ 

    1

    ''

    1

    '

     R! !  R $ $ 6%'= nF %!  R

    5 + 7! !  R

    !% & 36,H Hde.a> p-ase de.a> t f = −

    C

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    52/134

    Power switchin Dynamic analysis of s 52

    Compensation in a buck converter

    with no output capacitor "SR

    agnitude response of the #uc- converter 

    openloop /;$

    closedloop FBC8

    error amplifier D0

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    53/134

    Power switchin Dynamic analysis of s 53

    %inear model of a voltage

    regulator including e(ternal

    perturbancesref D! o

    o ref D! oV V iv ) v ) v ) i= + +$ $ $ $

    , ,

    ,,

     D!   D! 

    ref 

    oo

    v v

    oo

    V  ref ref  ii

    v v)

    v v

    =   =

    ==

    ∂= =

    $   $

    $$

    $

    $

    ,,

    , ,

    ref ref 

     D! 

    o o

    vv

    ooV 

     D!  D!  i i

    v v)

    v v

    ==

    =   =

    ∂= =

    $$

    $   $

    $

    $

    audio suscepti#ility

    output impedance,,

    , ,

    ref ref 

    o

     D!   D! 

    vv

    ooi o

    oo v v

    V  v) Z 

     I  i

    ==

    =   =

    ∂= = =

    $$

    $   $

    $

    $

    6 t t i d d t bilit

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    54/134

    Power switchin Dynamic analysis of s 54

    6utput impedance and stability

    utput impedance

    !

    oo

    of 

     Z 

     Z   ,β = +

    ! ! !

    of o L Z Z Z = +

    !

    ! !oof L

     Z  Z Z 

     = − ÷ ÷  

    !

    ! !o

    of L

     Z  Z Z 

    −  

    = − ÷ ÷  

    ! ,β    ?of oo Z Z =

    of L Z Z = of o Z Z ≈

    St t t ti f

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    55/134

    Power switchin Dynamic analysis of s 55

    State-space representation of

    switching converters

    Review of Linear System Analysis/ simple secondorder lowpass circuit

    !! 2? L : :•

    = +

    !1d: : $

    dt 

    ! 2' : : $ ! : &

     R

    • •

    2'd: : $

    dt 

    !' 1 : ? : $ + &

     L L•

    21 '+ : : : $ & %

    ! R! 

    •  : $ , : & 9 ?• 1

    '

     : : $ (

     :

    0 1+ L

     , $ (1 1

    +! R! 

    1? $ 5 7 (?

    1

     9 $ % L

    0

    St t t ti f

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    56/134

    Power switchin Dynamic analysis of s 56

    State-space representation of

    switching converters

    Review of Linear System Analysis

    / simple secondorder lowpass circuit

     s@"s# $ , @"s# & 9 A"s#

    +1 @ "s# $ "s I + , 9 A"s# #

    1

    ''

    1 11 s& +

     R! L  A"s# L

    1 s 0"s# @  ! 

     $ % s 1"s# @   & & s

     R! L! 

     

    1

    '1

    1 1"s & #"s# @   L R!  $

     s 1"s#A  " & & # s R! L! 

    '

    '1

    1

    "s# @   L!  $ % s 1"s#A  " & & # s

     R! L! 

    St t S 7 i

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    57/134

    Power switchin Dynamic analysis of s 57

    State-Space 7veraging

    approximates the switching converter as a

    continuous linear system 

    re5uires that the effective output filter corner

    fre5uency to be much smaller than the

    switching fre5uency

    St t S 7 i

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    58/134

    Power switchin Dynamic analysis of s 5"

    State-Space 7veraging

    Step #% 8dentify switched models over a switching cycle" Drawthe linear switched circuit model for each state of the switchingconverter 0e"g", currents through inductors and voltages acrosscapacitors1"

    Step !% 8dentify state variables of the switching converter" 9ritestate e5uations for each switched circuit model using :irchoff;svoltage and current laws"

    Step

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    59/134

    Power switchin Dynamic analysis of s 5(

    State-Space 7veraging

    Step >% =erturb the averaged state e5uation toyield steady-state 0DC1 and dynamic 07C1terms and eliminate the product of any 7C

    terms"

    Step .% Draw the lineari*ed e5uivalent circuitmodel"

    Step ?% =erform hybrid modeling using a DCtransformer, if desired"

    St t S A d M d l f

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    60/134

    Power switchin Dynamic analysis of s 6,

    State-Space Averaged Model for an

    Ideal Buck Converter 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    61/134

    State Space A eraged Model for an

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    62/134

    Power switchin Dynamic analysis of s 62

    State-Space Averaged Model for an

    Ideal Buck Converter 

    0 1 0 1+ + L L

     , $ d & "1+ d#1 1 1 1

    + +

    ! R! ! R!  

    0 1+ L

     , $ %1 1

    +! R! 

    1 d 0

     9 $ d & "1+ d# $ % L L0

    0 0

    !

    2

    1

    1

    '

    0 1d +

     : :  L $ & 5 7 % L ?

    1 1  : : 0+! R! 

               

    A nonlinear continuous equivalent

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    63/134

    Power switchin Dynamic analysis of s 63

    A nonlinear continuous equivalent

    circuit of the ideal buck converter 

    !'

    1

    d  : : $ + & ?

     L L

    2 ! 2

    1 1

     : $ : + : %! R! 

    !! 2? d $ L : & :•

    2!' : : $ ! : & %

     R

    A linear equivalent circuit of the

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    64/134

    Power switchin Dynamic analysis of s 64

    A linear equivalent circuit of the

    ideal buck converter 

    $!! !, : $ : & : (

      $22 2, : $ : & : (

    $!! !,? $ ? & ? (

      Id $ D & d %

    $ $( )   $( ) ( )! 22, !, !! !d :  : : D d ? ?dt L L

    = − + + + +

    $$( )   $( )2 ! 2!, 2,

    ! !d : : : : :

    dt ! R!  = + − +

    ( )   $ $   $( )! 2 !2, !, !,! ! : : D? : D ? d ? L L• = − + + − + +

    2I

    I'0 '

    10 1

    1 1 : : : $ " + # & " + # % : :

    ! R ! R

    '0 10

    10 $ "+ & # : D?

     L

    '0

    10

     : $ D %

    ?

    $ $   $2 ! !,

    I % &1 1d:  $ : D? d?dt L

    − + +   $2 III 11 10 d: : $ D & d + L %? ? dt 

    '010

    1  :0 $ " + # :

    ! R

    '010

     : $ % :

     R

    A linear equivalent circuit of the

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    65/134

    Power switchin Dynamic analysis of s 65

    A linear equivalent circuit of the

    ideal buck converter 

    $2   I

    I'

    1

    d : 1  : $ " + # :

    dt ! R

    $2   I

    I'

    1

    d :  : $ ! & % :

    dt R

    $ $2 ! !2, !, !,

    I% & : & : $ + L : & D ? &? & d ? %•

    !2I

    1 10 : $ & d + L : D? ?•

    $  $

    22,! 2!,

     : & : : & : $ ! : &

     R

    •2

    2!

     : : $ ! : & %

     R

    A source reflected lineari+ed

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    66/134

    Power switchin Dynamic analysis of s 66

    A source-reflected lineari+ed

    equivalent circuit of the ideal buck

    converter 

    !! !,I '

    '

    d L :? & ? $ & : D D D  D

    ( )2

    22   2!

     : : D D : D ! 

     D D R

    = +

    A li i d i l i i f h

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    67/134

    Power switchin Dynamic analysis of s 67

    A lineari+ed equivalent circuit of the

    ideal buck converter using a $C

    transformer

    State space averaged model for the

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    68/134

    Power switchin Dynamic analysis of s 6"

    State-space averaged model for the

    discontinuous-mode buck converter 

    ( )! 2 3! 2 ! 2! , , d , d , d d = + + − −

    ( )! 2 3! 2 ! 2! 9 9 d 9 d 9 d d = + + − −

    ! : $ 0•

    2' :! : & $ 0 %

     R

    3

    0 0

     , 10 +

     R! 

    =

    0 $ % 9

    0

    State space averaged model for the

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    69/134

    Power switchin Dynamic analysis of s 6(

    State-space averaged model for the

    discontinuous-mode buck converter 

    1 '

    1 '

    0 " & #d d +

     L , $

    & 1d d +

    ! R! 

    1d 

     9 $ % L

    0

    !

    2

    1 '1

    11

    1 ' '

    0 " & #d d + d 

     : :  L $ &  L ? & 1d d   :

     : 0+! R! 

               

    A nonlinear continuous equivalent

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    70/134

    Power switchin Dynamic analysis of s 7,

    A nonlinear continuous equivalent

    circuit for the discontinuous-mode

    buck converter

    !1 ' 1

    ' 1

    " & #d d d  : $ + & : ?

     L L

    ( )! ! ! 2 2? d d d := +

    21 ' '

    1

    " & #d d : : $ + % :

    ! R! 

    ! !%,& % & , : : T = =

    A nonlinear continuous equivalent

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    71/134

    Power switchin Dynamic analysis of s 7!

    A nonlinear continuous equivalent

    circuit for the discontinuous-mode

    buck converter 

    ( )! ! ! 2 2? d d d := +

    21 ' '

    1" & #d d : : $ + % :

    ! R! •

    11 1 '

     s

    d  $ " + # : ? :

    ' Lf 

    I I II I1 1 '10 1 '0 '1 1 '" & #" & # $ " & & & #" & # (? ? : : D D Dd d d 

    $2   I I   II1 ' '0 '1 '

    10 1" & & & #d : " & # D D  : :d d  $ " & # + ( : :

    dt ! R!  

    II I I

    1 110 1 10 1 '0 '

     s

    " & # D d  & $ " & + + # % : : ? ? : :' Lf 

    A lineari+ed equivalent circuit

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    72/134

    Power switchin Dynamic analysis of s 72

    A lineari+ed equivalent circuit

    for the discontinuous-mode

    buck converter 

    State Space Averaged #odel for a

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    73/134

    Power switchin Dynamic analysis of s 73

    State-Space Averaged #odel for a

    ,uck Converter with a Capacitor

    "SR

    Switched models for the buck

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    74/134

    Power switchin Dynamic analysis of s 74

    Switched models for the buck

    converter with a R esr 

    ! 2! 2 e   sr ? $ L : : & ! :• •

    +   222!esr  : & ! : R : $ ! : &

     R

    ••

    !

    2

    esr 

    1esr esr  

    1

    '

    esr esr  

    + R +R R1

     L" & R# L" & R#  : R R : $ & 5 7 % L ?

     R +1 : : 0

    !" & R# !" & R# R R

       

    ! 22 esr 0 $ L : & : & ! : % R• •

    222!

    esr  : & ! : R : $ ! : & R

    ••

    e

    ee!

    2

    e e

    6 6 

    6 6 

     sr 

    1 sr  sr 

    1

    '

     sr sr 

    +R +R

     L" & R# L" & R# 0 : : $ & 5 7 %?

    0 R +1  : :

    !" & R# !" & R#

     

    Switched models for the buck

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    75/134

    Power switchin Dynamic analysis of s 75

    Switched models for the buck

    converter with a R esr 

    ! 2 ! 2%! &

    esr 

    esr esr  

    esr esr  

    + R +R R

     L" & R# L" & R# R R ,$ , d , d , , $ %

     R +1

    !" & R# !" & R# R R

    + − = =

    ! 2 %! &

     9 $ 9 d 9 d $ % L

    0

    + −

    !

    2

    esr 

    1esr esr  

    1

    '

    esr esr  

    + R +R Rd 

     L" & R# L" & R#  : R R : $ & 5 7 L ? R +1  :

     : 0!" & R# !" & R# R R

       

    A nonlinear continuous

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    76/134

    Power switchin Dynamic analysis of s 76

    A nonlinear continuous

    equivalent circuit for the buck

    converter with a R esr 

    !esr 

    1 ' 1

    esr esr  

    + R R d   R : $ + & : : ?

     L" & R# L" & R# L R R

    2'

    1

    esr esr  

     R  : : $ + % :

    !" & R# !" & R# R R

    !esr 

    1 1 '

    esr esr  

     R R Rd $ L : & &? : :

    " & R# " & R# R R

    !1 'd $ L : & >?•

    esr  1 ' 'esr  1'

    esr esr esr  

     R R R : : : R $ & $ " R# & >  : R

    " & R# " & R# " & R# R R R2

    2esr '

    1

    " & ! : # :  R $ ! : & % :

     R

    ••

    A lineari+ed continuous

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    77/134

    Power switchin Dynamic analysis of s 77

    A lineari+ed continuous

    equivalent circuit for the buck

    converter with a R esr $

    !II I Iesr  10 1 '0 ' 10 1

    esr esr  

    d : + R" & # R" & # "D&d#" & # : : : : ? ? R $ + &

    dt L" & R# L" & R# L R R

    $2 I I10 1 '0 '

    esr esr  

    d : R" & # " & # : : : : $ + %dt !" & R# !" & R# R R

    .he D$ terms are

    esr  1010 '0

    esr esr  

    + R R D? R0 $ + & : :

     L" & R# L" & R# L R R

    '010

    esr esr  

     R  :0 $ + % :

    !" & R# !" & R# R R

    .he /$ terms are$

    !II

    I Iesr  1 10

    &1 '

    esr esr  

    d : + R R D d? ? R $ + & : :  

    dt L" & R# L" & R# L L R R

    $2 I

    I'

    1

    esr esr  

    d : R  : $ + % :

    dt !" & R# !" & R# R R

    A lineari+ed equivalent circuit

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    78/134

    Power switchin Dynamic analysis of s 7"

    A lineari+ed equivalent circuit

    using $C transformer with a

    turns-ratio of D

    ! !

    I 'esr 1 10 1 '

    esr 

     R :

     & d $ L : & " R# & $ L : & > D? ? : R " & R# R

    • •

    2 1 '

    esr esr  

     R 1! : $ + % : :

     & R & R R R

    State-Space Averaged #odel for

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    79/134

    Power switchin Dynamic analysis of s 7(

    State-Space Averaged #odel for

    an !deal ,oost Converter

    State-Space Averaged #odel

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    80/134

    Power switchin Dynamic analysis of s ",

    State Space Averaged #odel

    for an !deal ,oost Converter 

    !1 $ L :?•

    2'

    '

     : $ ! : &?

     R

    !

    2

    1 1

    ' '

    1 00 0

     : ? :  L $ & %0 1

    0 1+  : ? :  R! ! 

           

    !1 '$ L : &? :•

    2'

    1 '

     : & $ ! : & : ?

     R

    !

    2

    1 1

    ' '

    0 1 1 o+  : ? :  L L $ & %

    1 1 0 1 : ? : +

    ! R! !  

         

    State-Space Averaged #odel for

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    81/134

    Power switchin Dynamic analysis of s "!

    State Space Averaged #odel for

    an !deal ,oost Converter 

    ! 2 %! &

    0 10 0 +

     L , $ , d , d $ d & "1+ d#0 1

    1 1++ R! 

    ! R! 

    + −  

    0 +"1+ d#

     L , $ %

    "1+ d# 1+

    ! R! 

    ! 2 %! &

    1 0 1 0

     L L 9 $ 9 d 9 d $ d & "1+ d#

    0 1 0 1

    ! ! 

    + −  

    1 0

     L 9 $ %

    0 1

    !

    2

    1 1

    ' '

    0 +"1+ d# 1 0

     : ? :  L L $ &

    "1+ d# 1 0 1 : ? : +! R! !  

         

    !

    2

    ' 1

    1 ' '

    +"1+ d# : ? :  L L

     $ & %"1+d# : : ? : +

    ! R! !  

         

    onlinear continuous

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    82/134

    Power switchin Dynamic analysis of s "2

    onlinear continuous

    equivalent circuit of the ideal

    boost converter 

    !'

    1

    +"1+ d# 1 : : $ & ?

     L L

    !1

    ' L?  $ : & :"1+ d# "1+ d#

    21 ' '"1+d# : : ? : $ + &

    ! R! !  

    2' '1 ! ? : & $ : & % :"1+ d# "1+ d# R"1+ d#

    %ineari+ed equivalent circuit of

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    83/134

    Power switchin Dynamic analysis of s "3

    %ineari+ed equivalent circuit of

    the ideal boost converter 

    $!

      II I'0 ' 10 1

    d : +"1+ D + d# 1 $ " & # & " & # : : ? ?

    dt L L

    $2

      II I I10 1 '0 ' '

    d : "1+ D + d# 1 1 $ " & # + " & # & ( : : : : ?

    dt ! R! !  

    $!

    2, !,

    I !II ' '0

    d : +"1+ D# d 1 D 1 $ & & ? : ? : :

    dt L L L L L

    −− +

    $2

      II I I1 10 ' ' 10 '0

    d : "1+ D# d 1 1 "1+ D# 1 $ + + & & + % : : : ? : :

    dt ! ! R! ! ! R!  

    %ineari+ed equivalent circuit of

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    84/134

    Power switchin Dynamic analysis of s "4

    %ineari+ed equivalent circuit of

    the ideal boost converter 

    D$ solutions

    10'0

    "1+ D# ?0 $ + & :

     L L

    !10 '0

    "1+ D#

    0 $ + % : :! R! 

    '0

    10

    1 : $

    "1+ D#?

    '0

    10

     :

     R $ : "1+ D#

    1010 '

    ? $ ( :

     R"1+ D #

    %ineari+ed equivalent circuit

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    85/134

    Power switchin Dynamic analysis of s "5

    q

    of the ideal boost converter 

    /$ solutions$

    ! II I' '0 1d :

     L $ +"1+ D# & d & : : ?dt 

    $2   III I'1 10 'd :  :! $ "1+ D# + d + & % : : ?

    dt R

    smallsignal averaged statespace e=uation

    $ $   $

      $

    $

    2,

    !

    !, 2

    %! &!,

    ,%! & !

    , !

     : D

    ? L L : : d   L D : ?

     L R!  ! 

    •−   −  

    = + +   −     −   −    

    %ineari+ed equivalent circuit of

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    86/134

    Power switchin Dynamic analysis of s "6

    q

    the ideal boost converter 

    !

    I'0

    ' 1

     L d 1 : : $ + & & : ?

    "1+ D# "1+ D# "1+ D#

    2

    I10

    1 ' '

    ! d 1 1 : : $ + + & % : : ?

    "1+ D# "1+ D# R"1+ D# "1+ D#

    Source-reflected lineari+ed

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    87/134

    Power switchin Dynamic analysis of s "7

    Source-reflected lineari+ed

    equivalent circuit for the ideal

    boost converter

    !   I' '0 1 L : $ + "1+ D# & d & % : : ?

    22

    I10 '

    1' '

     : "1+ D#! d  : ?5 : "1+ D#7 $ + + & ( :

    "1+ D# "1+ D#"1+ D R"1+ D # #

    %oad-reflected lineari+ed

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    88/134

    Power switchin Dynamic analysis of s ""

    %oad reflected lineari+ed

    circuit for the ideal boost

    converter 

    2  I'

    1 10 '

     :! : $ "1+ D# + + d & % : : ?

     R

    !

    I1 '0

    ''

     L d ? : : "1+ D# $ + & & % :

    "1+ D# "1+ D#"1+D #

    $C transformer equivalent

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    89/134

    Power switchin Dynamic analysis of s "(

    $C transformer equivalent

    circuit for the ideal boost

    converter

    Switching Converter .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    90/134

    Power switchin Dynamic analysis of s (,

    g

    unctions

    SourcetoState .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    91/134

    Power switchin Dynamic analysis of s (!

    g

    unctions

    SourcetoState .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    92/134

    Power switchin Dynamic analysis of s (2

    g

    unctions

    ;K$C $V0.0

    !

    2

    I10

    1

    1

    '

    0 1 D+ ?

     : :  L $ & 5 7 & d % L L?

    1 1  : : 0 0+

    ! R! 

               

    0

    0 1+ L

     $ ,1 1

    +! R! 

    0

     D

     $  L 90

    10?

     * $ % L

    0

    'e R

     P P 

    "s# 51 & H"s#7 "s# + H"s# "s#V V   @ d"s# $ $

    V V 

    II '

     P 

     H"s# "s# @ d"s# $ + %V 

     P 

    "s# $ 0 +H"s# F 

    [ ]T "s# $ 0 0 %Q

    Switching Converter .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    93/134

    Power switchin Dynamic analysis of s (3

    g

    unctions

    ;K$C $V0.0

    +1

    10

    1  P 1

    '

     s 1 H"s#? &  D

    "s# @ L  LV  $ 5 "s#7 L A 

    "s# 1 1 @  0+ s&! R! 

    10

     P 1

    1

    10''

     P 

    1 H"s# 1? s& +" & #  D

     R! L LV   5 "s#7 L A 

    1 s 0"s# @  ! 

     $ % s 1 H"s#"s# ? @  & & & s

     R! L!   L!V 

     

    1

    10'1

     P 

     D 15s& 7

    "s# @   L R!  $ s 1 H"s#?"s#

    A   & & &S   R! L!   L!V 

    '

    10'1

     P 

     D

    "s# @   L!  $ % s 1 H"s#?"s#A   & & &S 

     R! L!   L!V 

    Switching Converter .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    94/134

    Power switchin Dynamic analysis of s (4

    g

    unctions

    ;S. $V0.0

    !

    2

    I

    '0

    1 1

    10' '

    0 +"1+ D# 1 0  :

     : ? :  L L L $ & & d %"1+ D# 1 0 1  : : ?

     : + +! R! ! !  

         

    0

    0 +"1+ D#

     L $ , "1+ D# 1

    +! R! 

    0

    1 0

     L $ 9 0 1

    '0

    10

     :

     L * $ % :

    +! 

    +1

    '0

    1 1 P 

    ' 10 '

     P 

     s "1+ D# H"s# : 1 o&"s# "s# L A  @   LV   L

     $ %o 1"s# +"1+ D# 1 H"s# "s# : A  @ 

    "s& #+! ! R!  !V 

           

    +1

    '0

    1 1 P 

    ' 10 '

     P 

     s "1+ D# H"s# : 1 o&"s# "s# L A  @   LV   L

     $ %o 1"s# +"1+ D# 1 H"s# "s# : A  @ 

    "s& #+! ! R!  !V 

           

    Switching Converter .ransfer

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    95/134

    Power switchin Dynamic analysis of s (5

    g

    unctions

    ;S. $V0.0

    10

    1  P 

    101'

    '0'  P 

     P 

    1 1 H"s# :5s& + 7

    "s#  L R!  @  !V $ %

     H"s#R :"s#A   s51+ 7"1+ D H"S#"1+ D# #  :V & & & s

     R! L!   L!V 

    10

    '

    1  P '

    ' 10 10'

    ' '

     P P 

    +"1+ D# H"s#?51& 7

     L! "s# "1+D # @  V $ %

    "s#  s H"s# "1+ D H"s# #A  ? ?& 51+ 7 & 51& 7 s

     R! L! "1+ D "1+ D # #V V 

    '

    '

    1 10 10'' '

     P P 

    1+ D"s# @   L! $ %

    "s#  s H"s# "1+ D H"s# #A  ? ?& 51+ 7 & 51& 7 s R! L! "1+ D "1+ D # #V V 

    '

    '' 10 10'

    ' '

     P P 

     s"s# @  ! 

    $ %"s#  s H"s# "1+ D H"s# #A  ? ?& 51+ 7 & 51& 7 s

     R! L! "1+ D "1+ D # #V V 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    96/134

    Power switchin Dynamic analysis of s (6

    Complete state feedback

    This techni5ue allows us to calculate the

    gains of the feedbac( vector re5uired to place

    the closed-loop poles at a desired location

     7ll the states of the converter are sensed and

    multiplied by a feedbac( gain

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    97/134

    Power switchin Dynamic analysis of s (7

    g y

    complete state feedback

     : , : 9 ?•

    = × + ×

    control strategy ? F := − × ,

    % & : , 9 F :• = − ×

    closedloop poles

    det* + , s I , 9 F × − + =

    .he closedloop poles can #e ar#itrarily placed #y choosing the

    elements of F  

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    98/134

    Power switchin Dynamic analysis of s ("

    g y

    complete state feedback

    Pole selection

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    99/134

    Power switchin Dynamic analysis of s ((

    g y

    complete state feedback

     7 buc( converter designed to operate in the

    continuous conduction mode has the followingparameters% ' > @, L ' #"! &, and &a ' #! &"

    Calculate 0a1 the open-loop poles, 0b1 the feedbac(gains to locate the closed loop poles at = ' #$$$ B -$"

    01ample

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    100/134

    Power switchin Dynamic analysis of s !,,

    complete state feedback

    Solution 

    !,   !! L !

    ! ! ,

     L  L , 9

    ! R! 

    −   = =  −  

    !, ,2 L 2

    ! !   ,

     L , 9

    ! R! 

    − = =  −  

    ! 2 %! &L

    ! 2 %! &

     , , D , D

     9 9 D 9 D

    = × + × −= × + × −

    !,L

    ! ! ,

     D L  L , 9

    ! R! 

    −   = =  −  

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    101/134

    Power switchin Dynamic analysis of s !,!

    complete state feedback

     poles8 ? eig%/&

     poles8 ? !,,, H M !32(" N 24(6!i !32(" 24(6!iO' ' ' '

    ! 2

    ' ' '

    2 ! 2

    !% &

    ! !% &

     : : D? d A  L

     : : :

    ! R

    = − + +

    = −

    '

    ' ' '!

    '

    2

    !,

    ! !, ,

     D A  : L

     : ? d  L L

     :! R! 

    • −   = + + −

       

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    102/134

    Power switchin Dynamic analysis of s !,2

    complete state feedback

    Step response of the lineariJed #uc- converter

    sys8?ss%/;$,&

    step%sys8&

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    103/134

    Power switchin Dynamic analysis of s !,3

    complete state feedback

    design the control strategy

    '

    ,? =' ' '

     : , : * d 

    = + ,

     *   L

    =

    for voltagemode control' '

    d ref ref 

     Dv

    V =

    f we apply complete state feed#ac- 

    ' '

    ref v F := −' ' '

    % &ref 

     D : , : * F :

    = + −  ' '

    % &ref 

     D : , * F :

    = − !Lref 

     D , , * F 

    V = −

    $esign of a control system with

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    104/134

    Power switchin Dynamic analysis of s !,4

    complete state feedback

    we calculate the feed#ac- gains asP?!,,, H*,32(" N ,!,i ,32(" ,!,i+)

    % &ref 

     D F p.ace , * P 

    V =

    .hen < ? M266,, ,32,2O

    !L

    ref 

     D , , * F 

    V = −

    ,2,,, ,,5!! !e4

    !,63" ,266,!L ,

      =  

    chec- the locations of the closed loop poleseig%/$8&L which gives

    ans ? !eN2 H * 32(", N !,,,,i 32(", !,,,,i+

    &Spice schematic

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    105/134

    Power switchin Dynamic analysis of s !,5

    .ransient response of the

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    106/134

    Power switchin Dynamic analysis of s !,6

    open-loop and closed-loop

    converters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    107/134

    f

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    108/134

    Power switchin Dynamic analysis of s !,"

    !nput "#! filters

     7n input 4M8 filter placed between the power sourceand the switching converter is often re5uired topreserve the integrity of the power source

    The maHor purpose of the input 4M8 filter is toprevent the input current waveform of the switchingconverter from interfering with the power source

     7s such, the maHor role of the input 4M8 filter is tooptimi*e the mismatch between the power sourceand switching converter impedances

    ! "#! fil

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    109/134

    Power switchin Dynamic analysis of s !,(

    !nput "#! filters

    $ircuit model of a #uc- converter with an input 0 filter

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    110/134

    Power switchin Dynamic analysis of s !!,

    !nput "#! filters

    The stability of a closed-loop switchingconverter with an input 4M8 filter can befound by comparing the output impedance ofthe input 4M8 filter to the input impedance ofthe switching converter

    The closed-loop switching converter eGhibitsa negative input impedance

    Sta#ility $onsiderations

    !nput "#! filters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    111/134

    Power switchin Dynamic analysis of s !!!

    nput impedance versus fre=uency for a #uc- converter

    utput impedance of the 0 filter s I 

     *BI  ' I s I I 

     & 2 R L $ % Z 

    "1 + # & 2! !  L R

    ω 

    ω ω 

      '

     L L oin e o' ''

     L Lo o

    1 !  R R$ " 5 & 7 & 2 5 + 7 # ( Z R L

    1&" 1&"   # # D ! !  R Rω 

    ω ω 

    /t the resonant fre=uency

    ein '

     R $ + % Z 

     D

    /#ove the resonant fre=uency

    in '

     2 L $ + % Z 

     D

    ω 

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    112/134

    Power switchin Dynamic analysis of s !!2

    !nput "#! filters

    The maGimum output impedance of the input 4M8 filter, I4M8,maG,must be less than the magnitude of the input impedance of the

    switching converter to avoid instability

    The switching converter negative input impedance incombination with the input 4M8 filter can under certain conditionsconstitute a negative resistance oscillator

    To ensure stability, however, the poles ofshould lie in the left-hand plane

    Sta#ility $onsiderations

    AAin *BI   Z Z 

    ma1in *BI(   % Z Z >>

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    113/134

    Power switchin Dynamic analysis of s !!3

    !nput "#! filters

     7 resistance in series with the input 4M8 filter inductor can beadded to improve stability

    )owever, it is undesirable to increase the series resistance of theinput 4M8 filter to improve stability since it increases conductionlosses

    Sta#ility $onsiderations

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    114/134

    Power switchin Dynamic analysis of s !!4

    !nput "#! filters

    nput 0 filter with LR reactive damping

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    115/134

    Power switchin Dynamic analysis of s !!5

    !nput "#! filters

    nput 0 filter with R!  reactive damping

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    116/134

    Power switchin Dynamic analysis of s !!6

    !nput "#! filters

    8t should be noted that high core losses in the input 4M8 filterinductor is desirable to dissipate the energy at the 4M8 fre5uency

    so as to prevent it from being reflected bac( to the power source

    Sta#ility $onsiderations

    ! t "#! filt

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    117/134

    Power switchin Dynamic analysis of s !!7

    !nput "#! filters

    / fourthorder input 0 filter with LR reactive damping

    !nput "#! filters

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    118/134

    Power switchin Dynamic analysis of s !!"

    2 2

    2'

     L L oe o' ''

     L Lo o

    1 !  R R" # $ & & ( Z R L

    1&" 1&"   #  # D ! !  R Rω ω 

    ω ω ∈

     − ÷ ÷

     

    nput impedance Z in"f# of the #uc- converter and output

    impedance Z  *BI "f# of the input 0 filter

    ( ) 2

    '' s I 

     *BI ''

     I s I I 

    &"   # R L" # $ % Z 

    1+ &"    #! !  L R

    ω ω 

    ω ω 

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    119/134

    Power switchin Dynamic analysis of s !!(

    &art 0

    $iscrete-time models

    Continuous-time and discrete-time

    d i

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    120/134

    Power switchin Dynamic analysis of s !2,

    domains

    continuoustime system % & % & : , : t 9 ? t = × + ×&

    .he solution for the differential e=uation % &% & % & % &o

     ,t , t 

    o

     : t e : t e 9 ? d τ  τ τ × −= × + × × ×∫ 2 2 2 ,t e I , t , t  = + × + × !+ ......123

    % & !% &

    o

     , t , t 

    e 9 ? d e I , 9 ?τ  τ τ × − × − × × × = − × × × ∫ 

    [ ]% & !% &o

     , t 

    e 9 ? d I , t I , 9 ?τ  τ τ × − −× × × = + × − × × ×∫ 

    % & % & % & ,t o o

     : t e : t t 9 ? t ≈ × + × ×

    Continuous-time and discrete-time

    d i

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    121/134

    Power switchin Dynamic analysis of s !2!

    domains

    the discretetime e1pression

    % &o st n D T  = + ×

    % ! &  st n D T  = + + ×

    *% ! & + *% & + *% & + s ,T 

     s s s s : n D T e : n D T T 9 ? n D T + + × = × + × + × × + ×

    C ti ti t t d l

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    122/134

    Power switchin Dynamic analysis of s !22

    Continuous-time state-space model

    0=uivalent circuit during ton> /! 

    ! ! : , : 9 ?•

    = +

    C ti ti t t d l

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    123/134

    Power switchin Dynamic analysis of s !23

    Continuous-time state-space model

    0=uivalent circuit during toff > /2 

    2 2 : , : 9 ?•

    = +

    Continuous time state space model

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    124/134

    Power switchin Dynamic analysis of s !24

    Continuous-time state-space model

    switching functions

    ! % &% &

    , % & % !&

     s n s

    n s s

    if nT t n d T  d t 

    if n d T t n T  

    < < +=  + < < +

    )% & ! % &d t d t  = −

    ( ) ( )! 2% & )% & % & ! )% & 2 : d t , d t , : d t 9 d t 9 ?•

    = + + +

    nonlinear model

    Continuous time state space model

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    125/134

    Power switchin Dynamic analysis of s !25

    Continuous-time state-space model

    smallsignal model

    $d d d = +   ) !d d = −

    ! % &% &

    , % & % !&

     s s

     s s

    if nT t n D T  d t 

    if n D T t n T  

    < < +=  + < < +

    $   [ ]sgn% & % & % &% &,

    n s n sd D if t n D T n d T  d t 

    ot-erCise

      − ∈ + += 

     s s? V v= + $   $nnd D d = +   $ : : := +

    Continuous time state space model

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    126/134

    Power switchin Dynamic analysis of s !26

    Continuous-time state-space model

     stead>+state e?ation 

    ( ) ( )! 2 ! 2) )  s : d , d , : d 9 d 9 V •

    = + + +

     pert?rEation in t-e state vector  

    $ (   )   (   )! 2 ! 2 ! 2 ! 2II) )  s  s : d , d , : d 9 d 9 v , , : 9 9 V d 

    •    

    = . + . + . + . + − + − .$

    Discrete-time model of the switching

    converter

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    127/134

    Power switchin Dynamic analysis of s !27

    converter 

    ( ) ( ) ! s sn D T n T  + +

    $ $   $ ( )2 2  s n  s s : , : 9 v 3 d T t n D T δ •

    = + + − + $

    ( ) ( ) ( )! 2 ! 2 s s 3 , , : n D T 9 9 V − + + − B

    $ ( )   $ ( )   $

    ( )

    ( )

    ( )

    2 2 2

    2

    ) ) )

    !

    !

    2

    !  s s s

     s

     s

     s

     , D T , D T , D T  n s s s

    n T 

     , n T  s

    n D T 

     : n T e e : n D T e 3 T d 

    e 9 v d  τ 

    τ 

    + + −

    +

    + = + + +

    + ∫    $

    ( ) ( )! ! s sn T n D T  + + +

    $ $! : , :

    •=

    $ ( )   $ ( )   $! 2 ! 2) )!  s s s s , DT , D T , DT , D T  n s s s : n D T e e : n D T e e 3 T d  + + = + +

    $esign of a discrete control

    t ith l t t t

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    128/134

    Power switchin Dynamic analysis of s !2"

    system with complete state

    feedback% !& % & % & : n , : n 9 ? n+ = × + ×

    % & % &? n F : n= − × ,

    % !& % & % & : n , F 9 : n+ = − × ×

    det* + , z I , F 9× − + × =

    .he closedloop poles can #e ar#itrarily placed #y choosing the

    elements of F  

    $esign of a discrete control

    system with complete state

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    129/134

    Power switchin Dynamic analysis of s !2(

    system with complete state

    feedback

    Pole selection

    ne way of choosing the closedloop poles is to design a low

     pass ;essel filter of the same order 

    .he step response of a ;essel filter has no overshoot thus it is

    suita#le for a voltage regulator

    .he desired filter can then #e selected for a step response that

    meets a specified settling time

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    130/134

    Power switchin Dynamic analysis of s !3,

    system with complete state

    feedbackVoltage mode control

    ( )   [ ]! 2 ! 2' ' '

    ) )!  s s s s

     , DT , D T , DT , D T n s s s : n T e e : nT e e 3 T d  + = +

    $ref 

    ref 

     D

    d vV =  $

    ' ' '

    *% !& + * + n s : n T : nTs d + = Φ + Γ  

    ! 2 )

    ! 2% &

     s s , DT , D T 

     s

     s

    e e

     3 T 

     3 9 9 V 

    Φ =Γ = Φ = −$ ( )   $[ ]! ref  s s

    ref 

     D : n T : nT v

    V + = Φ + Γ

      $

    $[ ]ref   sv F : nT  = −$

    $ ( )   $[ ]!  s sref 

     D : n T F : nT 

    + = Φ − Γ    

    !L

    ref 

     D F 

    Φ = Φ − Γ  

    $ ( )   $[ ]!  s !L s : n T : nT + = Φ

    "(tended-state model for a

    tracking regulator

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    131/134

    Power switchin Dynamic analysis of s !3!

    tracking regulator

    Digital trac-ing system with fullstate feed#ac-

    * +

    * + * +* +

     L

    d c

    a

    i n

     : n v n : n

    =

    ,

    L ,d d 

    a ac

    Φ   Γ   Φ = Γ =   Γ Φ  

     > c :=

    [ ]! 2 L L L=

    2a a > L :=

    Current mode control

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    132/134

    Power switchin Dynamic analysis of s !32

    Sensitivities of the duty cycle

    ! 2

    ' ' ' '

    ! 2

    n

    n n n p

     p

    d d d d : : I  

     : : I 

    ∂ ∂ ∂= + +

    ∂ ∂ ∂

    !

    2

     L

     : i

     : v

    =

    =

    ' ' ' '

    n

    n n n p L c

     L c p

    d d d d i v I  

    i v I 

    ∂ ∂ ∂= + +

    ∂ ∂ ∂

    ' '

    % &n L

    d c s

     Ld i

    V V T = −

    ' '

    n c

    d c

     Dd v

    V V =

    ' '

    % & pn

    d c s

     Ld I 

    V V T =

    ! 2 3 ! 2

    ! 2

    L L L * +n n n

     p

    d d d and 

     : : I ω ω ω ω ω  

    ∂ ∂ ∂= = = Ω =

    ∂ ∂ ∂

    [ ] {'

    '

    '' '

    ! 2 3'

     F 

    !B 

     L

     pn

    c d 

    id I 

    v

    ω ω ω  = + 1 44 2 4 43

    ' ' '

    n !B F  d d d = +

    Current mode control

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    133/134

    Power switchin Dynamic analysis of s !33

    ' ' '

    *% !& + * + n s : n T : nTs d + = Φ + Γ  

    ' ' ' '

    *% !& + * + % & F  s !B 

     : n T : nTs d d 

    + = Φ + Γ +' ' ' '

    3*% !& + * + * +  p s : n T : nTs : nTs I ω + = Φ + Γ Ω + Γ  

    ' ' '

    3*% !& + * +  p s !B  : n T : nTs I ω + = Φ + Γ  

    !B Φ = Φ + Γ Ω

    II s p

     F : nT  I  

    = − ×

    $ ( )   [ ]   $[ ]3!  s !B s : n T F : nT ω + = Φ − Γ

    [ ]3!L !B    F ω Φ = Φ − Γ

    $

    ( )

      $

    [ ]!

     s !L s : n T : nT 

    + = Φ

    Qith complete state feed#ac- 

    4Gtended-state model for a trac(ing

    regulator

  • 8/18/2019 Dynamic Analysis of Switching Converters (2)

    134/134

    regulator 

    Digital trac-ing system with fullstate feed#ac-

    * +

    * + * +

     L

    d c

    i n

     : n v n

    =

    ,

    !B 

    dd Φ   Γ  

    Φ = Γ = [ ]! 2 L L L=