Durable UHPC Columns with High- Strength Steel...2019/07/26  · Durable UHPC Columns with...

45
Durable UHPC Columns with High- Strength Steel Mahmoud Aboukifa Mohamed Moustafa, PhD, PE Ahmad Itani, PhD, SE Department of Civil and Environmental Engineering University of Nevada, Reno ABC-UTC Research Seminar, July 26, 2019

Transcript of Durable UHPC Columns with High- Strength Steel...2019/07/26  · Durable UHPC Columns with...

  • Durable UHPC Columns with High-Strength Steel

    Mahmoud Aboukifa

    Mohamed Moustafa, PhD, PE

    Ahmad Itani, PhD, SE

    Department of Civil and Environmental Engineering

    University of Nevada, Reno

    ABC-UTC Research Seminar, July 26, 2019

  • Outline

    • Introduction

    • Experimental Program

    • Results and Discussion

    • Comparison against NSC Column

    • Conclusions & next steps

    2

  • • Ultra-High Performance Concrete (UHPC) is a new generation of cementitious materials with superior durability and mechanical properties (e.g. low porosity, high ductility, tensile capacity, etc.)

    • UHPC is attracting larger attention in the bridge industry specially for Accelerated Bridge Construction (ABC) and connections

    • UHPC is not widely used at larger scales for full structural elements (e.g. columns or girders)

    • Some of Challenges:

    Higher cost Lack of trained work force for construction Lack of knowledge on structural performance of full members

    Introduction

    3

  • Introduction

    - Higher strength more compact cross-

    sections & efficient structures

    - High durability longer service life and

    minimal maintenance costs

    - Suitable for harsh environments (e.g.

    coastal bridges)

    Mission Bridge Seismic Retrofit, British Columbia, Canada (LAFARGE)

    Why Seismic? e.g. UHPC Column Jackets

    NSC Column UHPC Column

    ??

    Focusing on bridge columns…

    If UHPC to replace normal strength concrete

    4

  • GoalsOverall goal:

    Conduct fundamental research to understand the basic structural and seismic response of UHPC columns with high-strength steel

    How this benefits ABC:

    • Enhanced understanding of structural behavior of columns for future/subsequent use in prefabricated/precast columns

    • Compact cross-sections leads to lighter structures (easier transportation and handling, faster construction time)

    • High durability is crucial for bridges in harsh environments (e.g. marine structures) where precast construction is commonly used

    5

  • 1. Investigate the seismic performance of four large-scale UHPC

    columns under combined axial and lateral loading.

    2. Determine the damage progression and the mode of failure of the

    UHPC columns.

    3. Investigate the effect of longitudinal reinforcement detailing on the

    design capacity of UHPC columns

    4. Conduct a comparison between UHPC and NSC columns.

    Objectives

    6

  • The experimental program consists of four large-scale UHPC columns tested

    under combined axial and cyclic lateral loading at UNR

    Experimental Program

    7

  • • The specimens approx. 1/6 scale of typical California bridge column.

    Elevation View

    Plan View

    1'-2"

    5'

    Loading2'

    4'-10"

    NSC6"

    Side View

    1'-2"

    1'-4"

    6'-8"

    2'

    Loading

    2'

    11"

    Ø 10" UHPC

    5'1'-2"

    6"

    2'

    2'

    4'-2"

    5'

    5'-6"

    2'

    Ø 1.5" holes

    Column

    2'

    2'

    1'-4"

    Direction of

    2'

    Direction of6"1'-4" UHPC

    5'

    6"

    2'

    6'Ø 2.5" holes

    ≈1.5 m

    ≈250 mm

    • Footing is capacity protected and consists of 2 parts (UHPC and NSC).

    Experimental Program

    8

  • Specimen Construction Stages: (a) Casting of NSC Footing; (b) Casting of UHPC Footing; (c) Casting of UHPC Column; (d) Casting of UHPC Column Head.

    (a) (b) (c) (d)

    Stages of Construction

    9

  • Stages of Construction

    10

  • • A commercial proprietary UHPC mix used Ductal® JS1000

    • UHPC cylinders 3X6 tested in compression after surface preparation/grinding

    Material Properties

    Specimen S1 S2 S3 S4

    Column Test day Strength (ksi) 29.64 31.17 33.28 30.95

    11

  • • #5 Grade 60 rebars (ASTM A706) used

    • #4 and #5 MMFX Grade 100 CHX9100 rebars (ASTM A1035) used

    Material Properties

    12

  • Material Properties

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

    Stre

    ss (K

    si)

    Strain (in/in)

    124

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

    Stre

    ss (K

    si)

    Strain (in/in)

    128

    #4 Rebars #5 Rebars

    Diameter bar

    Yield Strength (ksi)

    Ultimate Strength (ksi)

    Ultimate Strain (%)

    #4 124 167 12.6#5 128 162 15.4

    13

  • • Axial load 120 kips equivalent to 5% axial load index

    Elevation View

    Spreader Beam

    4'-10"1'-2"

    Ø 10" UHPC

    2'

    Side View

    4"

    9"

    2'

    5'-6"

    6'-112"

    5'

    1.5" Grout Pad

    5'

    Column1'-4"

    MTS-110 Kips Actuator

    Mid. Stroke Length= 119"

    Max. Stroke Length= 130"

    Hollow Core Jack

    714"Axial Load

    9'-8"

    2'

    Spreader Beam

    Ø 10" UHPC

    Hollow Core Jack

    Axial Load

    1'-4"

    1'-2"

    2'

    Act

    uato

    r Tot

    al L

    engt

    h

    Min. Stroke Length= 108"

    6'-912"

    2' 2'

    1'-4"

    Pre-stressing Rods

    Lab Strong Floor

    Column100 Kips CapacityR

    eact

    ion

    Blo

    cks

    1'-2"

    Test Setup

    14

  • • Cyclic loading groups

    Loading Protocol

    0.01 in/sec 0.05 in/sec

    15

  • DisplacementTransducers

    R(1 to 5)

    SE 5

    4"

    C02NE(1 to 5)

    C04NE 3,NW 3

    String Pots

    NW(1 to 3)

    Direction of

    SE 2,SW 2

    C10

    2"NE 1,NW 1

    C08

    4'-2"

    C06

    NE 4

    11"

    5'-6"

    SE(1 to 5)

    LoadingSE 3,SW 3 C034"

    NE 5

    C01

    1'-2"

    C05

    1'-4"

    SW(1 to 3)

    SE 1,SW 1

    SE 4

    5'

    C074" NE 2,NW 2

    C09

    Strain gages Wire potentiometer dispLVDTs curvature(5 Levels)

    Instrumentation Plan

    16

  • Typical UHPC column test

    Test Progression

    17

  • • Mode of Failure was bar fracture (No cover spalling or bar buckling).

    Results-Damage ProgressionSpecimen S1 (L=2.4%-Gr.60, T=1.1%-Gr.60 )

    Concrete Crushing (2.76%)

    Max Drift (10.83%)18

  • Strain history at 4” above column-footing face

    0 20 40 60 80 100 120 140

    -3

    -2

    -1

    0

    1

    Stra

    in [%

    ]

    NW-1s t

    rupture

    0 20 40 60 80 100 120 140

    -3

    -2

    -1

    0

    1

    Stra

    in [%

    ]

    SE-2n d

    rupture

    0 20 40 60 80 100 120 140

    -3

    -2

    -1

    0

    1

    Stra

    in [%

    ]

    SW-3r d

    rupture

    0 20 40 60 80 100 120 140

    Time [minutes]

    -3

    -2

    -1

    0

    1

    Stra

    in [%

    ]

    NE-4 t h rupture

    Loading direction

    NW1st rupture

    Loading direction

    SE2nd rupture

    SW3rd rupture

    NE4th rupture

    North North

    Drift= 7.72%

    Drift= 10.83%Drift= 10.83%

    Drift= 10.83%

    Results-Damage ProgressionSpecimen S1 (L=2.4%-Gr.60, T=1.1%-Gr.60 )

    19

  • • Mode of Failure was bar fracture (No cover spalling or bar buckling).

    Concrete Crushing (7.72%)

    Max Drift (10.83%)

    Results-Damage ProgressionSpecimen S2 (L=2.4%-Gr.100, T=1.1%-Gr.60 )

    20

  • • Mode of Failure was bar fracture (No cover spalling or bar buckling).

    Concrete Crushing (7.72%)

    Max Drift (7.72%)

    Results-Damage ProgressionSpecimen S3 (L=2.4%-Gr.100, T=0.55%-Gr.60 )

    21

  • • Mode of Failure was bar fracture (No cover spalling or bar buckling).

    Concrete Crushing (2.76%)

    Max Drift (7.72%)

    Results-Damage ProgressionSpecimen S4 (L=1.5%-Gr.100, T=1.1%-Gr.60 )

    22

  • -10 -5 0 5 10

    Drift [%]

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    Forc

    e [k

    ips]

    16.1 kips

    22 kips

    10.8

    3 %

    Pmax = 16.1 kips

    & 22 kips

    Drift yield = 0.92 %

    Drift rupture = 7.72 %

    µΔ = 8.4

    1st rebar yield

    Max drift before 1st rupture

    0.92

    %

    7.72

    %

    • Exceeds AASHTO Seismic Guide Specs displacement

    ductility requirement of 5

    (65 %)

    Hysteretic ResponseSpecimen S1 (L=2.4%-Gr.60, T=1.1%-Gr.60 )

    23

    Loading directionNorth (push) South (pull)

    10"

    112"

  • 22.9 kips

    23.9 kips

    10.8

    3 %

    Pmax = 22.9 kips

    & 23.9 kips

    Drift proof strain = 2.21%

    Drift rupture = 7.72 %

    1st rebar proof strain

    Max drift before 1st rupture

    2.21

    %

    7.72

    %

    Hysteretic ResponseSpecimen S2 (L=2.4%-Gr.100, T=1.1%-Gr.60 )

    24

  • -10 -5 0 5 10

    Drift [%]

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    Forc

    e [k

    ips]

    20.2 kips

    24.7 kips

    7.72

    %

    Pmax = 20.2 kips

    & 24.7 kips

    Drift proof strain = 1.39%

    Drift rupture = 7.20 %

    1st rebar proof strain

    Max drift before 1st rupture

    1.39

    %

    7.20

    %

    Hysteretic ResponseSpecimen S3 (L=2.4%-Gr.100, T=0.55%-Gr.60 )

    25

  • 19.6 kips

    20 kips

    7.72

    %

    Pmax = 19.6 kips

    & 20 kips

    Drift proof strain = 2.1%

    Drift rupture = 7.72 %

    1st rebar proof strainMax drift before 1st rupture

    2.1%

    7.72

    %

    Hysteretic ResponseSpecimen S4 (L=1.5%-Gr.100, T=1.1%-Gr.60 )

    26

  • 0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0 2 4 6 8 10 12

    K/Ko

    Drift [%]

    S 1

    S 2

    S 3

    S 4

    𝐾𝐾𝑜𝑜 =3 ∗ 𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

    𝐿𝐿3

    𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒= 0.7 ∗ 𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔

    𝐸𝐸𝑐𝑐 = 46,200 𝑓𝑓𝑐𝑐′

    𝐾𝐾𝑜𝑜 = 42 ⁄𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑖𝑖.

    Graybeal (2007)

    50%

    Stiffness DegradationFor S1 Spec.

    27

  • Transverse reinforcement strains

    Longitudinal reinforcementstrains

    0 0.02 0.04 0.06 0.08 0.1

    Strain [%]

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Dis

    tanc

    e fro

    m C

    olum

    n Fo

    otin

    g In

    terfa

    ce [i

    n.]

    R-0.97%

    R-1.93%

    R-3.86%

    R-5.52%

    R-7.72%

    R-10.83%

    0 1 2 3 4 5

    Strain [%]

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Dis

    tanc

    e fro

    m C

    olum

    n Fo

    otin

    g In

    terfa

    ce [i

    n.]

    SE-0.97%

    SE-1.93%

    SE-3.86%

    SE-5.52%

    SE-7.72%

    SE-10.83%

    Yiel

    d st

    rain

    StrainsSpecimen S1 (L=2.4%-Gr.60, T=1.1%-Gr.60 )

    28

  • 0 1 2 3 4 5

    Strain [%]

    -5

    0

    5

    10

    Dis

    tanc

    e fro

    m C

    olum

    n Fo

    otin

    g In

    terfa

    ce [i

    n.]

    SW-0.97%

    SW-1.93%

    SW-3.86%

    Transverse reinforcement strains

    Longitudinal reinforcementstrains

    Proo

    f str

    ain

    StrainsSpecimen S2 (L=2.4%-Gr.100, T=1.1%-Gr.60 )

    0 0.02 0.04 0.06 0.08 0.1

    Strain [%]

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Dis

    tanc

    e fro

    m C

    olum

    n Fo

    otin

    g In

    terfa

    ce [i

    n.]

    R-0.97%

    R-1.93%

    R-3.86%

    R-5.52%

    R-7.72%

    R-10.83%

    29

  • 0 2 4 6

    Strain [%]

    -5

    0

    5

    10

    SW-0.97%

    SW-1.93%

    SW-3.86%

    Transverse reinforcement strainsLongitudinal reinforcement

    strains

    Proo

    f str

    ain

    StrainsSpecimen S3 (L=2.4%-Gr.100, T=0.55%-Gr.60 )

    0 0.02 0.04 0.06 0.08 0.1

    Strain [%]

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Dis

    tanc

    e fro

    m C

    olum

    n Fo

    otin

    g In

    terfa

    ce [i

    n.]

    R-0.97%

    R-1.93%

    R-3.86%

    R-5.52%

    R-7.72%

    Damaged strain

    30

  • 0 1 2 3 4 5

    Strain [%]

    -5

    0

    5

    10

    Dis

    tanc

    e fr

    om C

    olum

    n F

    ootin

    g In

    terf

    ace

    [in.]

    NW-0.97%

    NW-1.93%

    NW-3.86%

    0 0.02 0.04 0.06 0.08 0.1

    Strain [%]

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Dist

    ance

    from

    Col

    umn

    Foot

    ing

    Inte

    rface

    [in.

    ]

    R-0.97%

    R-1.93%

    R-3.86%

    R-5.52%

    R-7.72%

    Transverse reinforcement strainsLongitudinal reinforcement

    strains

    Proo

    f str

    ain

    StrainsSpecimen S4 (L=1.5%-Gr.100, T=1.1%-Gr.60 )

    Damaged strain

    31

  • UHPC column curvatures within plastic hinge region

    Curvature Profiles

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Drift=2.76%

    Drift=3.86%

    Drift=5.52%

    Drift=7.72%

    Drift=10.83%

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Drift=2.76%

    Drift=3.86%

    Drift=5.52%

    Drift=7.72%

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Drift=2.76%

    Drift=3.86%

    Drift=5.52%

    Drift=7.72%

    Specimen S1 Specimen S2 Specimen S3 Specimen S4

    32

  • Moment-Curvature relationship

    Mu = 933 k-in

    & 1276 k-in

    𝛷𝛷y = 0.00116 1/in

    𝛷𝛷u = 0.025 1/in

    µ𝛷𝛷= 15.4

    Moment-Curvature ResponseSpecimen S1 (L=2.4%-Gr.60, T=1.1%-Gr.60 )

    33

  • Moment-Curvature relationship

    Mu = 1328 k-in

    & 1386 k-in

    𝛷𝛷proof = 0.0038 1/in

    𝛷𝛷u = 0.020 1/in

    Moment-CurvatureSpecimen S2 (L=2.4%-Gr.100, T=1.1%-Gr.60 )

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    Bend

    ing

    Mom

    ent [

    kips

    .in]

    34

  • Moment-Curvature relationship

    Mu = 1172 k-in

    & 1433 k-in

    𝛷𝛷proof = 0.00276 1/in

    𝛷𝛷u = 0.017 1/in

    Moment-CurvatureSpecimen S3 (L=2.4%-Gr.100, T=0.55%-Gr.60 )

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    Bend

    ing

    Mom

    ent [

    kips

    .in]

    35

  • Moment-Curvature relationship

    Mu = 1137 k-in

    & 1160 k-in

    𝛷𝛷proof = 0.003 1/in

    𝛷𝛷u = 0.017 1/in

    Moment-CurvatureSpecimen S4 (L=1.5%-Gr.100, T=1.1%-Gr.60 )

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Curvature [1/in]

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    Bend

    ing

    Mom

    ent [

    kips

    .in]

    36

  • • Similar column analytically investigated using

    OpenSEES FEA model and Section Analysis (S0)

    • 3-D two node fiber-section model.

    • Nonlinear force-based element, forceBeamColumn,

    with PDelta geometric stiffness matrix.

    • Concrete01 and Steel02 material models.

    NSC Column Model

    37

  • 0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 2 4 6 8 10 12

    Forc

    e (K

    ips)

    Drift (%)

    NSC Column UHPC Column

    • Average backbone curves used for comparison.

    (80 %)

    (11 %)

    NSC UHPC

    10-in, 6#5-Gr.60, 5% axial load ratio

    fc 5 ksi 30 ksi

    Pmax (kips) 10.44 18.8

    Drift yield-ideal 1.20 % 1.29 %

    Drift max 9.62 % 10.84 %

    µΔ 8.0 8.4

    UHPC (S1) vs. NSC (S0) Columns

    38

  • Pmax (kips)Ratio to S1 specimen

    S0 10.44 55.5 %

    S1 18.80 100 %

    S2 23.40 125 %

    S3 22.45 120 %

    S4 19.75 105 %

    Lateral Load Capacity

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12

    Forc

    e (K

    ips)

    Drift (%)

    S0 S1 S2 S3 S4

    S1 vs S2 Gr. 100 vs Gr.60

    S2 vs S3 50% less confinement

    S2 vs S4 35% reduction in long. steel39

  • Drift Capacity• The bilinear elasto-plastic curve method.

    (Valid only for columns reinforced with Gr. 60 rebars).

    • Group II is compared to Group I with respect to their drift capacity.

    • The drift capacity is lesser of ultimate drift and measured drift at 80% of

    maximum lateral load capacity. 40

  • Driftmax(%)

    Ratio to S1 specimen

    S0 9.62 88.75%

    S1 10.84 100%

    S2 8.34 77%

    S3 7.72 71.2%

    S4 7.43 68.5%

    Drift Capacity

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12

    Forc

    e (K

    ips)

    Drift (%)

    S0 S1 S2 S3 S4

    41

    S1 vs S2 Gr. 100 vs Gr.60

    S2 vs S3 50% less confinement

    S2 vs S4 35% reduction in long. steel

  • • The observed mode of failure for UHPC columns is tensile rupture oflongitudinal rebars without concrete spalling or reinforcement exposure.

    • In all of the tested UHPC columns, no cracks were observed until thecolumns reached 1% drift ratio.

    • UHPC column with Gr60 rebars showed adequate ductile behavior withdisplacement & curvature ductilities 8.4 and 15.4, respectively.

    • Initial UHPC columns flexural stiffnesses (measured at 0.17% drift)ranged from 0.6 to 0.7 Eigorss then dropped to almost 50% at 2% drift.

    • In all tested columns, measured strains of transverse reinforcementwithin the plastic hinge region were found to be smaller than 0.1% insignificant activation of confinement in UHPC columns

    Concluding Remarks

    42

  • • Using of UHPC of compressive strength of almost 6 times that of NSCleads to 80% increase in load capacity & 11% increase in drift capacity.

    • Using Gr 100 rebars instead of Gr 60 rebars with same longitudinalreinforcement ratio led to 25% increase in lateral load capacity but 23%decrease in drift capacity.

    • Decreasing transverse reinforcement ratio by half resulted in only 4%decrease in lateral load capacity and 8% decrease in drift capacity.

    • Decreasing Gr 100 longitudinal reinforcement ratio by 35% resulted in15.5% decrease in load capacity and 11% decrease in drift capacity.

    • Using longitudinal rft of 1.53% of Gr 100 rebars result in almost samelateral load capacity as column with 2.37% Gr 60 reinforcement, but30% decrease in maximum drift ratio.

    Concluding Remarks

    43

  • Further research questions need to be answered before implementation:

    Design Philosophy

    Inelastic seismic design what R factors to use for UHPCcolumns and what ductility/drift requirements?

    Low-damage design use linear elastic design spectrum?

    Compact cross-sections

    Are there slenderness, buckling, or stability issues?

    Pre-cast columns

    ABC connections (pocket or grouted ducts connections)?

    Square and rectangular columns?

    What next?

    44

    This research along with future research can lead to future design guidelines

  • Thank You!

    45

    �Durable UHPC Columns with High-Strength Steel Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45