DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve...

53
NEDC-23677 CLASS II SEPTEMBER 1977 EMPLOYEES ONLY DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING - NOTICE THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL. X3~ftI1 4 A~ RECORDS FACILITY BRANCH J. E. CHARNLEY '.4 I '~911.21O ~ -~ GENERAL* ELECTRIC DEADLINE RETURN DATE f7);77 1~ I-

Transcript of DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve...

Page 1: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677 CLASS II

SEPTEMBER 1977

EMPLOYEES ONLY

DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING

- NOTICE THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE

DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN

CHARGED TO YOU FOR A LIMITED TIME PERIOD AND

MUST BE RETURNED TO THE RECORDS FACILITY

BRANCH 016. PLEASE DO NOT SEND DOCUMENTS

CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY

PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST

BE REFERRED TO FILE PERSONNEL.

X3~ftI1

4

A~

RECORDS FACILITY BRANCH

J. E. CHARNLEY

'.4 I

'~911.21O ~ -~

GENERAL* ELECTRIC

DEADLINE RETURN DATE

f7);77

1~ I-

Page 2: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677 Class II

September 1977

EMPLOYEES ONLY

DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING

J. E. Charnley

Approved:N. J. Biglieri, Manager Reactor Assembly and Pressure Vessel Design

BOILING WATER REACTOR PROJECTS DEPARTMENT* GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125

GENERAL* ELECTRIC

Page 3: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

DISCLAIMER OF RESPONSIBILITY

This document was prepared by or for the General Electric Company. Neither the General Electric Company nor any of the contributors to this document:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information disclosed in this document may not infringe privately owned rights; or

B. Assumes any responsibility for liability or damage of any kind which may result from the use of any information disclosed in this document.

L-2

Page 4: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

TABLE OF CONTENTS

Page

ABSTRACT ix

1.0 INTRODUCTION 1-1

2.0 SUMMARY AND CONCLUSIONS 2-1

3.0 DISCUSSION 3-1

3.1 Feedwater Sparger and Nozzle Design 3-1

3.2 Instrumentation Installation 3-1

3.3 Monitoring 3-4

3.4 Data 3-5

3.5 Criteria 3-28

3.6 Analysis 3-31

4.0 REFERENCES 4-1

DISTRIBUTION

iii/iv

Page 5: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

LIST OF ILLUSTRATIONS

Title

Original Geometry

Sensor Locations

Figure

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Cycling

Turbine Trip Recorder 1

Turbine Trip Recorder 2

Turbine Trip Recorder 3

22.4% Power Recorder 1

22.4%

22.4%

50.2%

50.2%

50.2%

73.6%

73.6%

73.6%

84.5%

84.5%

Power

Power

Power

Power

Power

Power

Power

Power

Power

Power

Recorder

Recorder

Recorder

Recorder

Recorder

Recorder

Recorder

Recorder

Recorder

Recorder

2

3

1

2

3

1

2

3

1

2

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Illustration of Ordered Overall Range (OOR) Cycle

Counting Approach

Load Spectra

GE Extrapolation of ASME Fatigue Curve

Fatigue Damage Curve

Page

3-2

3-3

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-33

3-36

3-38

3-39

v/vi

84.5% Power Recorder 3

N4A(450 ) Nozzle

N4B (1350) Nozzle

N4C (2250) Nozzle

ND (3150) Nozzle

Bounding Curve

Page 6: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

LIST OF TABLES

Table Title Page

3-1 Maximum Peak-to-Peak Temperature Range in 3-26

Approximately 4-Minute Interval

3-2 May 1977 Startup Map 3-29

3-3 40-Year Design Life Time/Temperature 3-30

3-4 Envelope Spectrum for Fatigue Damage Calculation 3-35

3-5 Cumulative Fatigue Damage 3-4o

vii/viii

Page 7: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

ABSTRACT

All four Iowa Electric Duane Arnold Nuclear Reactor feedwater nozzles were

instrumented with resistance temperature detectors during the May 1977 outage

and the subsequent startup was monitored. The measured thermal cycling was

significantly less than at reactors which have had significant cracking.

Recommendations for future inspections are presented based on resultant fatigue

damage calculations.

ACKNOWLEDGEMENTS

The author acknowledges the contributions made to this report by the following

individuals:

G. G. Chen

S. A. Delvin

A. B. Fife

J. N. Loofbourrow

K. R. Miller

P. C. Riccardella

C. R. Toye

ix/x -

Page 8: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

1.0 INTRODUCTION

The inner blend radius of the four Duane Arnold Nuclear Reactor feedwater nozzles

were instrumented with resistance temperature detectors during the scheduled

refueling outage which began in April 1977. The purpose of the instrumentation

was to record the temperature cycling experienced by each feedwater nozzle due

to the mixing of feedwater and reactor downcomer water. This cycling has caused

feedwater nozzle cracking at other BWRs.

The Duane Arnold feedwater nozzle/thermal sleeve/sparger design is unique.

It was postulated that the potential for nozzle cracking at Duane Arnold was

less than at other reactors which have experienced cracking.

This report describes the instrumentation installation, summarizes the data,

gives the criteria for evaluating the data, describes the method of analysis

and presents recommendations for further inspections.

1-1/1-2

Page 9: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

2.0 SUMMARY AND CONCLUSIONS

The Duane Arnold feedwater nozzle design was specifically exempted from the

General Electric Feedwater Nozzle Interim Examination Recommendation (FNIER)

contained in Service Information Letter (SIL) Number 207, because the feedwater

nozzle thermal sleeve is welded to the nozzle safe end. Therefore, it was

expected that the feedwater nozzles would experience less thermal cycling and

thus significantly less cracking than other BWRs with a similar period of operation.

The feedwater nozzle temperature cycling recorded during the May 1977 startup

was significantly less than that recorded for other BWRs which have a slip

fit between the thermal sleeve and the safe end. Large thermal cycles do not

occur at Duane Arnold at low feedwater temperatures. The peak-to-peak temperature

cycling is between 590 F and 82oF for all conditions with the feedwater temperature

greater than 2000F. At lower feedwater temperatures the cycling is reduced

except during a turbine trip transient.

Iowa Electric supplied the basis for a time/temperature map for the feedwater

system at Duane Arnold. Based on the time/temperature map and on the measured

temperature cycling, a 40-year cumulative fatigue usage factor due to rapid

thermal cycling of 0.20 was calculated. This value is low enough so that feed

water nozzle cracking due to fatigue is not predicted to occur. Should cracking

due to another mechanism occur, then the cracks will propagate slower than

at other BWRs because of the smaller thermal cycles experienced at Duane Arnold.

It is therefore recommended that Duane Arnold remain exempt from FNIER. Periodic

ultrasonic examination of the feedwater nozzles is recommended to assure that

significant cracking due to another mechanism has not occurred. Liquid pene

trant examination of the feedwater nozzle and safe end is not required, unless

the ultrasonic examination detects cracking. To assess the performance of

the thermal sleeve with time, it is also recommended that periodic visual exami

nation of the feedwater sparger and of the weld between the thermal sleeve

and safe end be performed.

2-1/2-2

Page 10: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

3.0 DISCUSSION

3.1 FEEDWATER SPARGER AND NOZZLE DESIGN

The original Duane Arnold feedwater nozzle/thermal sleeve/sparger design is

unique. The thermal sleeve was field welded to the nozzle safe end. The

sparger was assembled to the thermal sleeve with a maximum diametral clearance

of 0.004 inch. Thus leakage cannot occur between the thermal sleeve and the

nozzle as it can with the original slip fit design at other BWRs. However, leakage can occur between the sparger tee box and the thermal sleeve. Figure

3-1 shows the original design. The original design details are given in

References 1 through 4.

BWR SIL Number 207 "Feedwater Nozzle Interim Examination Recommendation" does

not apply to Duane Arnold due to the thermal sleeve to nozzle weld. Thus,

the type and frequency of feedwater nozzle examinations must be evaluated speci

fically for Duane Arnold. To help establish a basis for this evaluation the

feedwater nozzles were instrumented during the April 1977 refueling outage.

3.2 INSTRUMENTATION INSTALLATION

Ailtech SG725 Resistance Temperature Detector (RTD) (similar to those used

at other reactors) were installed on all four feedwater nozzles. The RTD

platinum-tungsten element is spiral wound and enclosed in a stainless steel

housing, which is filled with MgO insulation. The housing is flanged to facil

itate a spot welding application. The sensor is hermetically sealed, and

includes an integral stainless steel cable. Each RTD was configured into a single active arm, three lead wire, Wheatstone bridge system, and calibrated

at 212 and 5500F. An RTD requires less than 0.4 sec to achieve 90% of its

final value following a step change in temperature from 320 F to 5500F.

The RTD locations are shown on Figure 3-2. The locations were selected based

on the following criteria:

a. General Electric testing of tee-box sparger designs indicated that

maximum cycling on the Duane Arnold feedwater nozzles would occur

on the bottom (6 = 1800) of the nozzle and would occur on the

3-1

Page 11: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

-v SPARGER AND THERMAL SLEEVE

4-1/2 in. -. I:

- 1 i

1-3/4 in. 1 in.-4 W 3/8 in.

10.942 D 1-5/8 in. 0.75 in. 2- i

3 in.---* U.) 9.183 9.062 SLIP FIT 9.064 D 9.5 n. 9.125 0

10THERMAL SLEE\/E 0.5MR 3*

TEE BOX 2tk 1-5I 0.188 in. 011 n

1/4 in.NOZZLE 12295513 0

2-/ i. 1 0.522 450 .. -1/4

in

11 3 in. 1-33 101/2in

1 in.

29-1/8 in.i

Figure 3-1. Original Geometry

Page 12: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

SLIP FIT

TEE BOX

THERMAL SLEEVE

BEST ESTIMATE BLEND 0.50 RADIUS CONTOUR

0.70 0.

TOP 315' 45'

SPARE SENSOR LOCATIONS

ADJACENT SENSOR NOZZLE X 0 PRIME SENSOR

SNA 450 1.45 1800 T1l SNB 1350 0.7 1800 T13 SNC 2250 0.7 1800 T4 2250 BOTTOM 135 SND 3150 0.7 1800 T9

1800 PRIME SENSOR LOCATIONS

NOZZLE SENSOR 1 SENSOR 2 SENSOR 3 SENSOR 4 SENSOR 5 SENSOR 6 X 0 X 0 X 0 X 0 X 0 X 0

(Ti) (T2) (T3) (T4) (T5) (T6 N4C 2250 0.50 0o 0.50 450 0.50 1350 0.50 1800 0.50 2250 0.50 3150

(T7) (T8) (T9) N4D 3150 0.50 00 1.25 00 0.50 1800

(T10) (Tl1) N4A 450 0.50 1800 1.25 1800

(T13) (T12) (T14) N48 1350 0.50 1800 0.50 1350 0.50 2250

RECORDER LOCATION 1 LOCATION 2 LOCATION 3 LOCATION 4 LOCATION 5 LOCATION 6 (Ti) (T2) (T3) (T4) (T5) (T6)

1 N4C1 N4C2 N4C3 N4C4 N4C5 N4C6 (T4) (T9) (T10) (T13) (T12) (T14)

2 N4C4 N4D3 N4A1 N4B1 N4B2 N4B3 (T7) (T8) (T9) (T10) (Tl1)

3 N4D1 N4D2 N4D3 N4A1 N4A2

Figure 3-2. Sensor Locations

3-3

Page 13: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

nozzle blend radius (X ~ 0.5). Temperature cycling on the nozzle

bore and on the safe end should be significantly less than on the

blend radius.

b. One location (6 = 1800 and X = 0.50) was instrumented on all four

nozzles.

c. The N4C nozzle has six RTDs to determine magnitude of cycling as

a function of azimuthal position.

d. The N4A and N4D nozzles have three and four RTDs, respectively, to

determine magnitude of cycling as a function of location on blend

radius (dimension X).

e. The N4B nozzle has three RTDs to confirm azimuthal dependence as

measured on the N4C nozzle.

f. To allow adequate room for installation, the minimum distance between

a sensor and the thermal sleeve was 0.5 inch.

All 18 RTDs (14 prime labeled T1 through T14 and 4 spare labeled SNA through

SND) were installed without loss. All 18 sensors remained operational during

the entire test. The installation details are given in References 5 through 8.

3.3 MONITORING

The RTDs were attached to strip chart recorders. Figure 3-2 shows how the

sensors are wired to the chart recorders. Recorder Number 1 has the six N4C

RTDs. Thus, it shows the azimuthal variation of cycling. Recorder Number 2

has the common RTD (X = 0.5, 0 = 1800) location, as well as the RTDs along

the bottom half of the N4B nozzle. Thus, it will show the nozzle to nozzle

variation of thermal cycling and the N4B azimuthal cycling variation. Recorder

Number 3 has the N4A and N4D RTDs. Thus, it will show the cycling magnitude as

a function of position along the blend radius. The spare sensors were periodi

cally monitored by replacing prime sensors from a recorder.

Page 14: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

The entire startup from May 12, 1977 to May 20, 1977 was monitored. The majority

of time the recorders were set on slow speed (0.5 mm/sec). At selected times

the chart speed was increased to 10 mm/sec.

3.4 DATA

3.4.1 Temperature Fluctuations

The entire startup from 2000 hours on May 12,1977 to 1400 hours on May 20 was

recorded. The startup lasted 187 hours and 167 hours of data were obtained.

The missing 20 hours were distributed throughout the startup, and were caused

by various equipment malfunctions. During the initial startup phase the only

significant temperature cycling occurred during the turbine trip. The turbine

trip cycling is shown on Figures 3-3 through 3-5. The highest cycling was

recorded by sensors T4, T9, T10, and T13, which are at the bottom (X = 0.50,

= 1800) of nozzles N4C, NAD, N4A, and N4B, respectively. The maximum cycling

is 115 0F peak-to-peak. As can be seen in the figures, the number of significant

thermal cycles is small and the time during which the cycling occurs is short

(less than 1 hour).

Figures 3-6 through 3-17 show approximately 1 minute of temperature cycling

for four power levels 22.4%, 50.2%, 73.6% and 84.5%, which was the highest

power level achieved during the test. The maximum and minimum peak-to-peak

cycling for each temperature sensor for each power level for a 4 minute interval

are tabulated on Table 3-1 and plotted in Figures 3-18 through 3-21.

Figure 3-22 is a bounding curve of the maximum peak-to-peak cycling using all

the RTDs.

Inspection of Figures 3-18 through 3-22 and Table 3-1 will reveal that:

a. The highest cycling occurs on nozzle N4A (450).

b. The maximum cycling occurs at or near the bottom of all nozzles.

c. The highest cycling value exclusive of the turbine trip transient

was 820F and was recorded by T11 at 22.4% power. Inspection of the

3-5

Page 15: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

..... ... .... V...

--- ---- Av- :

1111 Im , mmPHIj IS-1 Ii WHIM 11m: 1 11111 Hit

ER IT 40 49 4fi juffl 4mm N Iff ffi ff;-MIR .... ... .... .... i i Lj z 11F Ili iHi f It V-'- It I Mt ifi 11R,-M 1H." I-,-, tt tfft t1t t,

E-71 tit Mt .... ... " 11 444 4114-4

-41

" I w - ig

it t iffm ti kq Fall 0 M V 4:- t tm 4w ll Mf 19 Iff 1111 r.-. I t K- WIT i,54 41 ml lit .1-1 Ili: it TM

11093M, i 41 MIN "I'mim mm ... W=f His

-i-10 11V m ILI Ell MEN a 0 T I I sm

Al= V T I I PA mmw Ito I ttt 4t44t;p;fl4T;p r" t ............ Mir 4H i-

*ttlft;::

IN Iff Vi tm tamm rmm Ill N Ulm

7mm Ift" 1-tt: fftt f H, 44 'PTit; til' H F!i i:T -z-:- nu=l M fff ft Ima fit 44fffffiffffff lf ffiffifiiR F!i

OEM

t77 MM mma M HUMMatmu I I 14401mi -i7:ii I I N -1 pfff I I I 1: ,i lttoMl. 111 Li 44191 ==t

to mAm m, m AW"'i 111MR[II

Ilwm OHM Ommmamig Zma M III Iff mquat 1141 = un Ill IIfi IIII i 11til I JJ MOM Iti-mm- 11, 9 1111t; twimm v WN, 49 4 R11mm .... ... . .... .... ... ffffflH Uri to" Iniffm M®RM911 It N 4 4-- 4# #-4#4W11fM1i

TIMM 111 -41111111114 f9m 9 mumqgm Ift I

-2t 44

MOM

Ems i. elar

! I ........... i4i

... .... .. --- --ft St I fttMf4jtwm iiffi, EH HI r Tmn

fit

0 Will I olf UP pol

I i

: 47 -3-:71A V:

MIT n SHE

lfi mm

mHi NAR M IM T 4--U

DIN

EF !lit -fT

zi I 1::: 10 T, Fli 71 R im TT lilt tiq im mj; H4 1 :: j Jill, Wit ttt= 1wit, L. LZ f- lit ,- I I "I In t 4t# llft it: 44"Q 4 IIHIA14, 11; -a-1

IrF, Oil fit tf ::: H_ liff --qt 11 -: Mm 11 T:v it HIT m Ifffim IW- 4

HiFf,

AE-i

i t ! I I I

Figure 3-3. Temperature Cycling Turbine Trip Recorder 1

3-6 AI

.I

Page 16: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-236

....... ......... ..... .. ......... .. ... ............ .. ........ .......... .. .... .... ...... ........ ....... ....... ....... ......... ...... .. ......... .. ... ........ ...... ............... ....... .. ... ... ..... ...... ...... .... ... j7 7 W

II FUFF oil -. 11 LL 111 - -I HUHN IL wi l 22 it I

Itrs - ii. It .I 1 I I I I illViII li IM MI MI r- ITIW EHIIW 77 IT Rr.l III MININF-1111114,f Mf IN fill 11. i T1, I, Ifil

.. - ''I. T - -1 -1- - I-- --- -- -1 -- 1- - - :,I 111 .7 ;: I'll lflrliilfrr fill 111filifif "F Milli I I _:f!;III:qVI1h rt : I TJ IM , I -M

- wil r, _51 it l I T-_ 1 * fit = - i - -, llf-f III_]I tri- I I - = - -..... I"

TiMMIMFITIM 7 11 If= till 1: 111N 111i:111110 111 11116 -11i lilt 1141dil IIr*,_Tlw ,

:0 1 . .... .. . p I- I if ii 1., 3111111 11 11141f,:5- I fl illllllli 4111= in; - If:: Ili f;,A ti 4kt I ILTIll Irl IIJIJ L 1FT:ffjjjlj I Mir 'UMr.11 11-.-Illit !I!!-, -WIF:IN-111 U 11111 if 1; -ill i; 1111 -1111h

A-M __Iilfm IK3 iiii,11141-4 rV IVt I; Mli M IUM111111111 M E14TIIII: MWIIIh* 111 :11 =i: T 11 HIM fli III I111111- 111411 OR

_Ltv ff If IT- -1 , _2f,

171111 1:- M 41 10 ii M I V-11111k M t 4f Iwl ;i.lll

III --it I;! It= Pit It, 7 7 77T :Fit i-i UJI 4,. ft IBM IL if I " 'FH =I'gffi -:t '111ii

3 _:iIIF*:1I z4W TV- QW Ilflij!t T .. . . .WIT

;-,I V;-i+ It a-ii III 11111411111 -41-Hilf = I I 1 , lt:M tIIr1 It ff ii! it: TOV4W -liv 41: 1 Ji- fT 1-111ii, 111140114-- !it ;:tIIItITIIl:4 10 ii- I 115 IV N-Tfllw 117 it It _iITr#_11f=f I-, 11=14 tj

rM III: UNIT U IMH t fiElIfIll- MM-11111I III q if L, ; 11f1:11111 Vt If-= -ul: I: M i:-. 111[-. 11,11-1 11:!i U, Lilt -1111 :111 1 If it 11 till F-11111-1411m, Itilh: I Ad III: I IN W. I ki I M.,

Mi I; T: -it- :if- V3111 I III, fill Fi III III III; iHIF-= FIT "IfIli 1 IM 111141 It IIM I MIN 4 r -if 11 E_ w I

7 7. 1.,

BRUSH ACCUCHART Gould Inc., Instrument System Division Cleveland. Ohio Printed in U.S.A.

t;q

4 ilt

it it I:::A -H --:i 11M 04"VIIINM I1, rffl ilii It INT :"I i-lili H 11 11T W T. TI, 41 tAMIN 11114-t lif="i it 111 Fill lip- it 1 H17 111- 14 IREfii I III., T-,-- I - ' - ilifflii- flkilHilii filr I if M M 41fl ff tiT4

.1 li llItl!+!

... .... .. - RK;7 I _4 M f IMNIP Wit fi-11mil Nillih- I j If -. If ll

w; iq ,4# t,44tjtIIjtjj ji rj fit il lilt 11 11 ±If M HU41V-14111 11 14 :::I 4 :t: ali It, IfT if E I tL_ 'If if R MIM LE INY 9 1! 1,111IF HIT-itE ENITE114-:1111 MUM-, INN

.............. t:i

T: I Fi-= fit ll I p!. TT - _. i: If I Lit F =111111 H If . _111ji M OS IM III, if 1j= !I!,, itil -- lil; it V 44W! It t__

Uj 7 I= -ii flip Tid If- ;11144 4111140HV4 Fi=Tll if MMA IIIIIIIII11fit if i=r I I t' fill M ili-11111i ':11 IR fflfq '4 If iH IT III

lIP-, I-: lilt If-+; :It It- 11 VITS I IIW11Vtq 1111 1 If= If V.+:Illll 11 it

!r tj H11H IRF_ III TMIF-T, i-H P 4 f It

in, I Mw _711TUMVIIMUi 11111,111 M-1 littrIIIIII, 17!1 i I I i t I i t

--I; iF_ iff 11 1 iiiIr _l IT it 12--ril E;Hfw t 4414-Illit- if 10, 111trill fl-vil T

If fill -lit' III ITq R E4 if ill -::,, ;=: :::!,I if If I flit I f 1 11 !10 i'll lf 1 h: 14 1 _ I'llit1IM: illffi tiff 11 Iii't - !!ill: N 11 111i :it III IT ; I

6 T J:; :11; 111.: [ tI:: .:if Ii Hil III -it fit t; tltl lilt tt Hit luti fill it lit 1:-t W N'Itl 1;:404 =4 llt4 = 01-ttlll 1: 1' 111-, Ili it:- till t ;fit Ti I: - iIIII: H I If if if flIRIVilit"T'lill ji _: 111i

Hit '111 L =! I TH! '11 1

fl't I j L

TT At IWIH lirl Tj_ all

Figure 3-4. Temperature Cycling Turbine Trip Recorder 2

3-7

Page 17: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

MA i h j 3 0 78 6 go

In

f l fig igi lg flig igi igi tj R i W1. I lw I tollilliw 'attliff I' go 11111 1 lot igil: Nil oi if !4i7: i mr i oil i, At If: .1, wailf 1011 Hg ' 4 r4 3 M Vf trfi fill il M gw ..at Ifi

Al 1;

in 9 1111 MM :_tl iTF M i vtI L ;Mfi,'MM WM aw-, Eiii fir. IM P 11 ;!4- 111 41 i ::

RAW 91;w V I IfIl to g V I li HII I I i gl i fill 'dilk !111 j ::!I Ilk it I NJ-- f4i I' * 2 1 q

.. ... ... .... ... ... ... ;w

I r

114t I OR .... ... ... afifFAfig rim HT a T-01

ff-_ J-1 g' got olufl2w_ TIWMPNIF: . -9 T fr' fl III

=1 -4M 0 1111 q1; tam 9 4

1; I FIT" I -THI ili If if Aggi fill i: 1 0 I if IT : yuq t it.-- git to 4L__ a rIF 'Ifl L.- a t tm Iff 'A W W, I ILI 4 gg rfi- MON. Ff WIMM V -!III: * 1111 i ! _-H IL* illf roll hiErnIMM If,-fff T:

If

Will fm fm i 4

;AlU11[E- -1111.1r, i T Il;

T;

T111 w 9f; I tm ik:1 __T AV, +- -:: I q -. !:it

I:,IM H g - fill go

.... .... gf igg, Egg ff T ' tI4 9 1& rr_ M w ffft W F4Tf::M- I, I I I;: 1"M P__ TOM oti: M Iffift it i WMM 41a

* I of -R

71PMl

---- ---- --- ig- N =:: fl- - o - III: 13t tft fu -T I

... A::j:::: Mmgl H _H :;EEMP1.1 MU, U w- fig

BRUSH ACCUCHART Gould Inc., Instrument Systems Divisi Clevelar SA MR-111 2E

r! W. III 1114fl1l Milk Z W-M mill 113IMT-1

. .... . "M A If to. TM till - = Idl M fail r; M too gi-;Ill V-1111" 14- ff1]gTJg:_-:fl fit It; HFj ' 11 i "AffifAtifill HM. VON Rill ki 4,1131 TIM TFf1 : - = 1174 j iMvfTTrtI1jtjr 4* U11 T raffi fil V #Wm1it fili 4TITTH ;IUUMI fit lot

j:: i. - I at =41 F E.Il M U 11111 r-,+ 1110" a I

-F I I 41ftig flt-- fill-! ME 11 r-t lit L4 -- o 1:::l 11fil" lh..

: _,_ .M.- IRV M

Iffl-, I -HI

1. :1 p !-- i o 0:4$ 4W.-Tiol fill! OUR g4 FIT - T t -if_, 411flialig A fliflit; _WI 11-1-111 lwggL !fit IIII IMUMVIll VAINI 41, M r-IIIII 1r, 114 lw_ TN) W, A MO, UM"flo"IN

'A

if U tit #:1 -1 oil M

41 lo

I rr- Elf TIE= - I I fi

- +41. .4 T1, ... t

4 4".. .... iW THU W J - Jill; M oog PH -11 ilEr F__ go A!: 11 71 14 i ii ill! ii:: : - I

_T All

It I -If - All

it

.:,I It I;:: it 1! if if:

HIT w

. .... .. .... fit Ma 'r I M ul 11

Figure 3-5. Temperature Cycling Turbine Trip Recorder 3

3-8

n ^ I n I I

Page 18: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

- . ;;:: : ! I -: - "'W t 1 : :1 11 '! .. - - - = . I 'ff _!III ;17 jjjj j: [411IT4 1111- 1111;-1144,11 t1flfl- MI"T 1111i W40 IT -41111-III!I111 4 "M= 1111111 III1411MI, 111111111111111144 =IiMI-* ii JiL111- fill 1: !:1 1!1: I:M*T r t I I:-: 1 11-1 ITI

..... .... .... fl 1 41 it' li:'Tfillli f 11h I i UT-1-' IM i:::IIfIi f M; I I ii I fi t; T I III ;=40

ii-E LE q AN11W 3 111 fl f; 1i'll

Ll ig rl n HIT I NO -4'Dri

HRI t IL BRUSH CFU HART Gould Inc., Instrument Systems Division Cie,

-77 t E: HOW- 111k:10 4 it HIT I M -4-' MT M '- 1114 1 F 1117111111A IMM = --.qt Mi INIII tiff '14 " 1111 ij R fqf!1I 11:: VOW - in! 1 M ill ;-If Ill Il 11MAW -H 1 1r, W -If FIf-: 0 TI-11111A R t

F:t I; r tFAI IT

=t6

7 7 .... .... .... .... MW i: 47-H 44

T-4 p

Tq Miff

.... .... ... M IT ff Uff Tffl l *'-A] IIH riif III I 14i4 ft4W--" 1 I I 4 47T;1177TII If INT :I

is.

11f f I Or qfffi __ffff 11 it K__ #1 AM 1 :4 1' _11111,1111FAM W INN; IM j t i f-- t I I I I V t 4 1114 tH 1: f . . . . EMLIHII-7 FIR I I F I I im--Ralt VIT-4: Ilk 11 i _tt Via Wii : ::11 ME Mwi 91

..... .... ... HE i

F-i

41

_7

iLL I 11r, affn It I;: fi 1-44

+

.... .... W H IM I I 4 :1flil: Ii! tilt 111111::: 1 M 1 M311111m r-W IPUP! 14-H" 1.TMI_,,jTHT14 W I iT-- 111: i 11

ROW 111M _414 iJ ff

7 r W" i:U Tilt ME

it E U : i i i; Jill- !!If I jill!J11: Jill

TM Hill ill Ii 1 'flllll i an -1 i I I au, ti,

Figure 3-6'. Temperature Cycling 22.4% Power RecordE

3.

7,,T

"M IU : 'Til 1-::-; til F ffi If

-. 4 1 it tl! HIM! Wit Mil-tfullij L -11 il ! ti

1 WHI 4E 1 1- ii4

MON I I VRF WE III ill INi4PRy=__ Ill a lR Ull 1: Al

I I II t"M LIEli it-: Hit E. it

Mflfl! Wit

Ef 11 -1001, 1 f If'If: 44-,if: r;I! t i if 1 l I =zauii! PF . Jill,

V-S ONE

.... .... .. -- :;I:! E IM -T IT -- T -tjj7': !tIt = 1 :J! I fl-Ei _11itt lit!: lit iE!TFTTifIIF: Hill-M fE -if it:-: I II fIR

if lit

-I- I if T - it: _- 4: ---u ll tf -, r-- I w5mmNlitF it it IT 11, T T TTTT;,PPl;_ _;f i d IlMii_+14l -1- Hl- -1 Ei, E i FF:

i:V toll I IIT-fiffll It 'ELI JIT fill il]- !11 R _T1 117 111

;if :: fr1i I Ii I if- 11' 1 HUF fill I

if IL 1111'iii lf 1111 T 1I;::I1[ tit All IIE I i Hk 0 1

lE fill

411" "11 lit

I I

Page 19: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

t w

4 4 ;!, tlll ITT

4! -"' --4 1 , - 1 4 W, -I' T. I I

III: :It !::T Jut III 1E 11r; Till 1-1: 1 ,1 t 1:1 U 1 111011 -:11111: Itir 11111 it F 7 RIF -7 T., 7 1-, 1! liki !T ii: k; Iiii tll 1:* 1

ff-:. 1 1; - it91 F lift It IN I- till L1W q Ali: ti;i

IN -ill fl :: IT Ii IL-E li =1T 11,

i W IF 11101il U11M.-HIM 11111i: fi 111T

IM 1111 Ii- 4

:F tT:': !il 1 III, 2!L- L- WTHI;

jH' 71 fF i4l" I I. HI

W "I I I H11

.;I:! T4 -Iii4glip T W HII-Allll - it I 7 ![ Iffi -51 MI NTi IT= IlfU MV --tq t=-- 1Ij1Jlr-T[1jff !Tf VIIIIII0 M 1 1 Ili; MWMM IIII: it! IIII:t

it H i T! t lilt 11[i 11=; 41- tit 4 Mfflt t0f 4 F Mtlf- 111 TfliRfll F- fff:ifll I fill- 111111VA44" M11 frFtE -:Ill! it .... .... .... ..

T-H :111l:lill W-T ill il Ili;_Air T7T Il't -ti4L -tit U-'T . -4 it= I

TI -7-- tt W 1441 t T ff; 7 WVW HH i 4 .4 M Rif, -WNR Nw ,T lw:4111; HE- -TT : fI 4V TTI44;-'i I T ;-IM 11 0 .t I f ;J14

ITH

Mik

Iff .,IT !Itt

.- !if 1 f14T77

qM..1 w: lilt:

W -*=W-VM i WIV,11 it-Ili II ;III!: - ---- -- 14W H lilt T1 -i't qII UP9 it I'! IS

--- ---- ---- -- :i H- M ! lf 01 44 TIE

4 1l- MCI iA it +4 17 i.9 lift UETT V NMI

T: A-f= F;M"" TIM =T Mll M''MN -jig

1L-A L E Gould Inc., Instrument Systems Division Cleveland, Ohio Printed in USA

E 4 A'ItV -Ifidli MIA IM Mwk w- - i 4A 41 p I'll-, lilt illdititlil=

vHli:: 0 U 1-; 141 rF; It it ;:,I I I 1 III

';1:1 H IT 1 q

1-7 :T-K E . IT

lilt - - -- --------- - lilt 0 A t

::j - T tlti M V "ITTIM

i i i i i t i t i t i i t i i ! i t i t ! i i i i t TF 4 - ; tl - . ... -r.. . I IMM w :ill ;:44 111;14s tmm a 11141114 l4111 110MMMM r. tit

V :a i T ff il" iF.11 Ill H l" i'l lilt Ili; ill"llilliTIll Lll HIT iliii a i ri f filT

',fit -",4 It= n 114 it w -- w: 33--ill -4 r, III; - W t it IT!, UUM"l 1 4 t#41=t E TAMM 31W [ it .. .... .... .... .... .... .... . N-44 1 $ H4 tit

tt I 14 4"H

w,

I MR,

IT w ::-:: .... .. - +44it liqll'- I I If It 4RVWM 1; 1 tilt

F 14 " .11, Ull f ffl IN: TMT III" tf U I, tit' M T It Ti 1 4 f iff-I 9 I I ll*:l IULH A-H! 111: 11 Ill 4 M, 11111 i1fllUL-Tl'q N 5 f 7- 71 T W ---- ---- --

11111mi MITI.

I I I I I 4-

Figure 3-7. Temperature Cycling 22.4% Power Recorder 2

3-10

Page 20: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Ii

3-11

I il I i I!; ILHilljtij j I I I I i I I I j!ff zFmgj-ii I I I I I IN Id I I I: It I I *1144--111#1=111 I I i I:! it I I-.-; tt I I I iA l114l'-'t[tll-Mll I: J I I I I 11411 MAMILt I I I I I :14Mtt=tft:t I: l1=1ltl1l:!':11l ::;t;:

T- l !if I-.! H IT Ii- HI 77 t::; Hit I:! ir W4 f ttl'- It I It I I I -'Jl T 1, tfl:*4

it It'I Mi lit iiH lHi 1 'l IM t I-it ::It i- it I

fIT'-H i::7 IN 11 If 111 1- it -4

PTIMI!Mlll 1W ;4-. Till

t: I!:- fill ''I i if: it :I: If 11 : --tit If fq M 'HU 17: i =4 I!

Il H' Ill I IIIJI IN i I ill NI

lit 1 f T;= 41 T-p i ": i; it Hill lirl

l 'IT tii t

" MR, :it it T-L

-1 J- .... .... I Tr

... ... iiii I L I! lit: Ii 'Illllil-4 I

Tilt Vil 1 7 ... .... .1. ki Tl:- 11 44 1--Ii; fill !I:: fill HIT

fill' tUVE kA- - + Viff- 'I ILT 4 i-T

El MT Mument Systems Division -tedn U.S.A

T :: - I- T111if IfE IIjH frF-' 1i li

Sell-r - t;; :Z-IifM llli ll 1411flifnFifi- .-Hili Ir 11111=1 fl-VIII 1i; ilW llilljll Ill, it; l4W,=lt4l T;*11110,

jq i:- IIII: I fill: IT- it

EH illi H'fi- 'It a9l lIft 1111 H 11i 41JM I[ i Ti

I! W" -44 Mf IfM 111 :M -:tj HE

4m

ff;j fit t

: l till 1; .... .... .... -i4j ItIlli U l It 41

... I

it lit a

If I T; I -- Ili 4

E-I

7F - -;t-. -4 lilt -!1 1114 1 IN IM 11 ff W MIN if; 111 ll it I W fill ff W ! liltf -- Wl 119LO f Hill-- M 111111111111-M MI. Ill it!: It:,

JQ I 4 it I MT lit 1 Ih' t7!1 Ill: 11IT! I If 1 T 1 Ili: 'i ililtmf -M R IF!. fit; 4# #-- illt -!T41 Ili y1f -11 1114M T:::

r - fill, It H t If I il H .... ....

-ii TI PT If

::;if ii: lit -TT M ililiF " I ' .1 1 t I 1:1.l : L-t it

fill fqjffF

hi IffIF I --: Iff I I iTa lftfl-:1 llfi W in it, ttt

11- 1111; 111, i I I I q I 11: ff liffl: 11 fm ... ... . it i 11111h;!i Ill, -4 If :'Iffil1q. -1111 I fwllil

-Ili[ -H ir till" A t- HN: I'll 4i lit- -ttl t:i lit 1W WT =it

IT TT= H 1;. it lit -'!% ' fi

-!-4 --1", W[ till 4

Ilk 1193:1g, HIT - it:. L LI HIN -Lf 41 LI

Figure 3-8. Temperature Cycling 22.4% Power Recorder

tt tl It I, I It= 0 11 :111k:1 III:.Ii ;It; ::It I. fit ;r ::11IIIIi Il t I:

Ti

::.I

1:; 1 p. i;

-- NWRI L ft RH

-. - M ir It i " vt 1:1., 1!

1 71: F:

HIP. -ii 1 4 .... ... ... A!l

Ef 11 _A f Pil hT ... ... ... E ll M i1-1 'Hit III!-!!! 4

Page 21: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-236

IM r___ I U imm I I Ll it I! IMI i L IfF

-Of till qf it f L14 -M I 7 !11 11111, 1 Ili: IN N Ill lilt ll;1:1; illil all --ftitili 1,11 Fm U '!! Ott E 444=-Hq It: till :;t 111H till ..... . 77 77 - Md, WIWI[ 44

Tit

4 ;till W i i:T iii 1-111IMN11 R E 21:

IT::

4 M-01 I I M' I I liMIMME"MU

I IT till ifIT ITT: it'04t, V till =.,IV

... ... ... ... . = L = It,- it IF 1111 I'M fil ff 01. [HRM MTI

T !tit :.T V.

p q .. .... ....

it it

4 lit- H l

=qfMfil 4 Mufflll ; _ HW lilp t M -1 ill If *14ffUHfffftFf fit ! T If 1;

fii if ff"illi -jifff Iff: it ifji 44 f I tiL

Mlill 'lilt; i 111 1 ti ifl b it

1; 11; 14 4 = 4 4111, [11 MT lilt 1:2t4gi fill lU tt, .. .... . IT. .... ..

IW

If it 4 ME W HIR it TIT: Kohl IM

it 13RUSH ACCUCHART G, In Sion Q-1-d. Oho

it:

it tH I--, - If, 11- 1 If --- ---- ---- R.. I _11tili- __-: ; 11: - I! _1111- THIPH-Ftlifl: I IM IM Ulf NIIIIi I ill kitfif:ffl 4L IIN d itil !o n 11 1111 i=-_11W W PIT! k4 -it " T + 111V KH; VIINU 14 4 v W, 9ti W; j M '4 M1 r till I- flW IU fi

rlwt 01 1r, IM filq 11 t I I L P, 111 1 EM ffil M tffffdd M i i7AM 1417 T: I givri t Ti 1114 11F tit IM till flli im 111 111 t LH_ ='_r It,

L 1 1 4

L IT

it _=___1I iiITHIL-1- L., It-_-- !it - Il fili 1111114 It M_ lilt 41 gilifflill-4 f1i =Tt IN M ri- lilt.. U tit V - IF NO-1111-11101154 '14M Ir III- H-MT Ut IF Ft ; f j 41 M R

it tit It'vit m;=-_q ---- --- Hit, .... .... ... ... 1 1111 1411

flu 1111 714444 lk ' IM ft ' i 'Vi OIN M it Eli it

IT: "I Mt"M

_M iliil It

-7 _T_

711 Hi: tit !111

lilt 11i W= Ulf i-fil Ill; T .4 111119- 1- i ill H fifIR _41f ip- 111 -tit I:li lllfll I It lilli ON tit it! HH till i:L: j itl till

4 it Hui! T I: Tl M fit WHITTRR III* T it 11; -:1 Nil i!iii H iltT- N itl :III I;:- tit, it a-. _ f

illp! Li L J:: I

lilt

L

Figure 3-9. Temperature Cycling 50.2% Power RecordE

3-1

Page 22: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-236

tit- t fi- _1111W ItH

W. W-11

7t I] " L _Illiflli tl 41 !it I 1111il *11 L !P ll M 0: :!1[ 11 IW4W it LIT wl 11p ; 1- 1 1 tit; -HIIHI J* en IT Ilk I i I If 1111 !flift

7 A- R 1-44t* 1 - i 1 -11

IlM 1111 it -4 , IF LE 4::_ wp IIW 41 f 111111 if: Lill -1-1111 I V IN, l I I I M T T :J It fill 4111ffitfl 11" NONE, 111:11t NM I I T%1

if t lit 4" -

f :

7777T7 1111 W 111:4

-fl4jjf-l 11-1-4-1 - ---- 1:1111; FT-_ L I fil M 711 if ir-Ifflillifti III tilt,- ti li-Tilli --

IT H; i if flll!:1fHW--7 fit I- it M Ir LL V-1:.11! I 03111101 It fi _i RK III-* IfMW ::t: Ord: IT. FitM I lim, i:i! fill iffR;HlfiliflH0ltf

Alh -) liff lit 11 111''; iAlf-: fit MPH PAT VINT :fl I M, A- It i 1. 11 It 11 "-,l It Y I I _ _4 ArN N + lill

.... .. f_ IF-jiflil" jut tm- NT

5-5 -!1IMPHIR I W11111111411 Iff 1HUN "IMM! [Eg IrTI111111i: r, ill t IR

HUI -P1, 11H

it It , W ,

4EF T-4=ttT J mofim If M Fl l IFItum;

_0 I It" _7 l I' - fit Htt ill - _1 V111K li

!IW= If M V 11:1 Ir t1UIlU1IJIIf _: U-1 H1110r=MW 1 1 11:11111 L Ir

Wit E if =pill V M, M M E MIT Fi-..-; 141 MVIIH-111fidt1h 117L tilt zfff

"IT ffifH- q, sit Vt: 1;: 1-1 irT+ "Rffif ff-F I; tilt fill &V: 14, ztt Mf IIIIII: 440WHIL- w! H-;::: ll _111111 114 -- i:- I=: = - RIT I Q T 7 IM Ill TifiA HIIIIIIIII-I T it tilill: I- till VIVIIIIII V IV I uwv Ill -.11 : :I fill V_ I'Vit -I till; 0.9 1117 Ila

Tilt I if

V I 4W I- IN- 2

T_ IFT W t I ll IF: It I if k t it 1-11 W_ IOU It- 11111

BRUS CUCH RT Gould Inc., Instrument Systems Division Cleveland, Ohio

H

TT At"11J f EM MA 1 ,' U W N"Mm., IT" gg;tl 7:

---- --- If!, V v- fftt---I Ilk zh TM-W W W" VV I F1 - ii MWWNII .. ... .... .... 44 1 tit N 11

L 41 fit: 7:t TIT-, 113 1 W - t ::Ul tM H K il=l Mitt il fggi - Ila I __

ituffl]J.FFMIKI, R - Lit I AM

311 If=-- 1111 T= I I I [I 11107 113 ..- - 1. 1"111 Im it 11 NEW- Hit

-. :::t it if t If= ME R H _T

U1 MM

-T HE if tLF -91:1111,

4- l i 1 1 1

t;ft 4 111 10 111-! + 11m r-F-4 11 4WI lv 44 M" Ill it it-, Ili q1V fli! Ul W-4, -14 VIF 1 fill I I if

:J "MU IffM MIJ, nil O R W it , lift W 1

010 mt, IR YURf, fl __ IT li-N%, it RIM= I U1_ N", HT 1 a I K _:H IM -11 lk 141 p oil i

'Ili il tilt IM 4le- f 11111 M- N If T-4 2 M rT- 9 IN 1; 0 rT__ 11 _Tj Ir=7 p Ill, IIII fjfi Im

aH i it IU if i

if 777;

ON RT_ FIR IT

t till [W

ti =_4 r I PR MOMMIl

h;L 11411AW-41 1111th- mfftr lit 9ff Mi- fit I tfl

ME VU_ 4 Tzft ItIlIft# f#41411 flff Ill in- it

tj -11 +_ :,4 14.4 I I 91 -- - 1 -ffil lit; UIFF

if -TI - T HR if iI HI ft "N 0 ttf TP-H, F p I 11 14 ui tHil MI WK-A 11 C 41171 All Mill fifl !i Of i 10. J ,' Wit

A4*ft:; il lip V YW4 5, _tI if IN"44 UILIff-1t 4111R IfNllll Hit I #:

if Ll till

T.+ - iiiiTii lii4:.: 151 _4 If lit

IlL f-fiFFIl lk

Figure 3-10. Temperature Cycling 50.2% Power Recorder 2

3-13

Page 23: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

4Hf=i: I1p.. p . I, r

NEDC-2 3677

d-HIr~lmrfrfrrL1rh. ~fttiA 4 ~ I ~ T F41 -,H--- ~ H,+ -+H,-+~~- r 1 TTTTTTW~WTT1T 41.

19I

it14ml2

M,

.1:. I:J --11L, 2111R,-111IF-111 I f

TqT it It t

I +ijLt, lilt 1 1114 s i N111 I LOM

MM -411

MW Ift -1-, 11- :-:111#11 ffw- 11" 11 L, H i j ff K ii i :- 1,; ; L10, 9 IR- - III, T a I---- fill if, T11 Tf I ill 0 1 If-.: If F-M, I i lllo T It 4 111 f =1 H 4 t r, 41-1- 1 If:: u 3W 3 "; till, "- Ittk: tfl -kliN IMM I I iii hi IF 11 A 111 - V Bill 11-H. tEl Jill Itr lfo Hfl I .1-T f 1: ow

tV4 --4 14tt - - fit ...... .. 44 f lit TPR

r !V-0-: ... .... .... ... -'T; WIL41:- il-40 till" 11jot fit W, I

4- TNT T

at AM if"-' F4111 i fil WM fill iii:

:-U: w MM 111111 ow, Itoof-Im , M- i I till 110 1 1

I ol =T- E ... .... .... Kt 111,10-UgHl 11131110,11

strument Systems Division Clev P-Ied i

.... ... .... ...

, UIL7

-1 d Mlll i4 WUT4-,-i r-1, 1 $1 fl M I a t arliuw IWM-Eqff- ifLll 41 if Jo a lilt I 14 I I Rill 1%ii 141 W , -f i i f I t -Mw- Ifffilim It- - :flp M womi Hill 118 N Xlffi- W1,1131 fai q W-41111or a

.... .... ..

it;

--- -- ---- -- --4 l:ff If

7 1 am 4-ififfilliall :4--iTUIP lffffiTiii ,flf t =fill 1 04141 It lot= loi 1011440934, U-L-Wilt, :tIT:/w-VF two ]M AIMUM444 full m ll"M USIT4411111 jJ111 .. .... . loom ..... .... .. - A-AURIV i if 1#4 FIL-4 iupu fFFU it " ll VIM 11HIRM APO - rl I I ill

... .... .... amwfillim ihfl I RU M ... ri

11

ME :Hl MITI' 7,TT

JIN PITliTT11i1il R,

. .... .... .... H H

-T t if -- ! li -.1 ; I ..

awl- [lilt I F M A,; voj i jlljj f".111111 tr,-. Ill FF"TiwFiffilffm VIT rcllllll p till immittwi, A 1111i-j ,-V 411F 1;1114 -L fill[ I

9: 9 $..T J liftL

ifiIII' mi1

. . . .. . .

Figure 3-11. Temperature Cycling 50.2% Power Recorder3

3-14

I

PH a PH v p

IUgh,

ATtwl

........... J :

ITr=t

... .... ...

r

. FM

I

I

I I

rI

MI liff

dil

T7

I

j::. j ::-!IlT;Atl

q

Page 24: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

r I

. . I I . I . I I I . I I . I i . I - . I I . - I . i I . I . I I .. I .. 1, . I - ... - . I - - - - - . 1 .11 - 1 .1 1 .1 i

nnnn;:: ::-I: :;nn:V 'T ::;I in- I;= I =1111W if =:if,::

:-n T-1 N Uri I.- :n. _n: it Rit I it #1# -q 11111 :t fi# tit; 411 111!, n 1: lilivl

.... .... .... .... .... .... .... ..... .... .... frT, 777 tt T17F V 71, 11 it #t ff#WI NO iTI44r: 11 T=4 IM Pit ttit

I tt t t IT 1W it: It Vmtwil W in Itft ii--- MU ';It I - f M

fr t n-1 ti it Hit -n. ;;n4 l till, 71 HIM NEW V-411M

nn

in: :ii

nn pn :: . I i[NI It"L 4 1 HOU RR rzqln TI 4;1114RTIR

:j I: ... .... ... n 4,41413141114t =trtl T.111tti; 111011 4W !it MIMI! MW 114,

- ---- --- t JiF l tit -n nn n n- n:::::--::i: -.n 4i i I, I M .... .... .... ... tt#

...........

-:T

IIIT iq

N ANN

t:::n!: I. i-= It b-n-V

1F

Inn i it J:: it I fltmiliti I

-I = I 1-t Tnz it=;; Hal

n- =n IMM ifi: !it Tli- ffMl 1 1 -9p i-1; ffi 11TTHWIIMII, I t

fff ffjTr5RM i T tff

n fit I 8 VII

nn::n -- -H-g:- tij. -,- ffflllit -- ff i levnd, 0 hio BRUSH ACCUCHART nstri . . . .

n:T- :tt n

_4 In

n Ifff MURIF fi ... .... =it T Hit it;. INW.

I-n .. .... .... . nz- q T ---- ---- --- n=- I:- it! it tff- 41 TT 14, tF

n -q 114Till ij III U Z- M -411114 44 i ilta

I;:: Tffr lit' .... ....

tit, ... I ... ... V .

*+

.

I N .... .... .. 7n

nnI::::.:n

--- ---

-n -.- n: F Bit 11Y

:-n:= +

14 -Ptttil 0HUT, IN O f Te"Ut $11111:10 114H# HIT

:n- ... .... I- V l= -- : lt:::; it 11 _n- :I;:

tti t:;:Ttt 11OW4

i i ,-AlAsq fill .5 w! T fit f11-- tiIll tftjTWWt--Y4 rW tki-494 it i All Ifitt*

ILL IN flimflOW wit RUM 41

it: 11,11MR,

:n=n +

vf I t,: ll I 1'. 111"' N-1 1111111itiv M I it V 11111OW -3 it III It: TIi iii I- ! _: , M i. it

771 ji -i 7-

u-N

J= itl hit it IfTfitijiflia -n:

Ei.-FTEW I -R LE EE M I " i, i 1 1 !$1 Ilf, W-11 Mill II W---, 111410TOT Illp-4 . . . . . . . . . . . A

Figure 3-12. Temperature Cycling 73.6% Power Recorde

3-15

Page 25: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Figure 3-13. Temperature Cycling 73.6% Power Recorder 2

3-16

I

p ::I::::l

M it

.... .... .. WNW:

TIN Il i - - rm"Z__ --H JFF -144W Y IN 1: 4M If V 4 Jill

111- 14' Vi, 11.4' MM 1 Ull ::11 1 1 t it 1;

.... .... R" If Mi =t i .... .. . .... ..

.... .... .... .. flif 914-- f 1 1:111 It Hii tit Tt #=V T7:014i i: # t' ft It j Hit

;it

1-M I it :Ii if

-lat"

I t'- 7 1.

tit 1;

VC M __1J; 11- T'

A: :: * I ' 4 t:: All lilt if - 4 Jill If i I

-NMM V I if I M::VT Il

::11,41 44 "it :. 1 I'_"' -l t .... .... .... ... M." Jim , M1111' 7 111111 T

ullig, + it

M-4 if +

BRUSH ACCUCHART Gould Inc., Instrument Systems Division Cleveland I I N iff En t I I 1 11 W :i: FITIE

..... ..... ..... ..... ----- .... ... p if iiH :7 ,-W, If fit f+f4444t It If: -T. I. If I t fl HISM " 'Ilh: 1 : r tit i I N-I I IT, ill

N- - -1 i If i; if - . iff i fllTqflil_ f tit! 44 V lw it W_ M a It IM 11' Ll R A-110 III- Iffilli f- UP141

]it t f: illlfiluljlk_ im Mt flit 1

flit WHIM Mil Otm MrL ttall

ET if

w7:T + 7::::::::::

_41 I i 1;--- , i 11

Vi- fill A WV=11111: !Pit 44f-j

11H MT:ff ff, Ill "+-: 4 1 liRlijM W' ' V:: 1 f a UN itvrf fit I i i4 jf =_ lfTf H I-11" Ii" WTIIG- R-1* W1111ITIA-41W 11:1 W IMI -111111it -fli iiHiTf1fili T: T MIT +1H ifillfr- I IIILJMItn _ 11

- .... ii if

I ' i It I - i I - t' ;i -, "t .. 1 .11 . W T_

LI ,lg Ill] _1=t i I - -111P Ht

.... .. it T. tit t = I; It at #14

IM I'l I tIff IM

it

I 7

-IT tr

tit

flit Jill 1.

;!it if: I!!! '111 i If- 'L tw ; Nit :.I T

if IM 1111111E lilt ±IT'll I RRO W .-Mili ig ffml fli; It W.1

.... .... .. lilt I tU4Iff+H'f LiAlla" If :l iv v-V : f1ju!; 11! V IF- 1111: jli ill: Irt Pi HIM th, 1111MA1111, 91 fi: t

If Iff I MMMA, r I i T, IW ' 111 A i I M ni i:: i T_ T:: I ::n I lw it;: lilt I; :.N

-41 lilt _P -:=M: I

4E t 1 Wi "11:1H if it Hi

_7- 7 11f iiii jj -11' -, III ItupUlli WIT111 fill tit _'l L_-' 1 M"', i i: 1 M E: M EN fit jllill !!1111-TMIFII

1-4-4-1-- ;

... .... ... = 11Z R an tf- M Sw

IT: -7 fli ROM! amwmin M 11 VW- Eft- fAl TIM

OMIT AM filillillibilffmil lTjW--.QW"H IlTi i -1111111i:410. fildill

A it If IS IFMIlTdi I M R13 likiM =01 ; flil 4,;

VM f Wt!! 1q--lW,---1ft;::-l!lV fill 1.. -1

llh:jIR--

h P11 IIFT qI,1:: iiii H4 !1! i : Ilk lhv !P ii IIIIT : !

,'IMF

Iti I Am 1:1 U.V iia. H lk J,:

ii.:

Page 26: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-236

8 .1 EJ#ii

-in ITT If ti It I I W-W, I Uff I i Mili-M I I'll I I I "A I I I a L IV Miti. 40 llfitT I It

Tq

#

if _kqjj I L

iH

it I

I ti I

iLH THJi iTi F T I I I f It# lit

#00 1 I% It i= N1

WHI" -_F Eli ff t i 107 III(KI jrilltl + It lif ll I, Id _ F It

Iff "f till HIt it

It II-Ig :: . I:MM ,diflP iiiii; Wh it :

M-All 4i i:MtI lttl ftlf fit ;I I It;: till p III

I I :,:--A I, TA I i IF, tit .,I MIM tf 11M MW-1111111 41%ififiliff tHlil I- tl. Ell it fit I I rr' IlRdl 44111 ll Nil vim I 11 1111Vt tM lit till V -lilli- it tit li Iit f i

E li: HIM tLr- IiIIIIIIIIIE"ill"il ,til till 11KR 7:: 71T.

till

iTT-L

lfl#- Iflqll

l 11 1 1

I

AM-

titili

tit

TM I MW

--- ......... .... .. .

4ftill I I Hit I I I WIN 7f I fil V illl:!ii 1= 1:1

it I _A Till it

It t W ff ifllflfftiilll I I Hit I I I Iltilu it 514H f1=7 ff I Eff 1 I411IN V :T it- I lit I _ fMMT.W___ M llfU fill qg' w . Im ain 11MUM M. T- litl;-: It K? "Iff FT M H_ "I, A I V 3WA OI I M-1 I Kf Vl#_ fill MVTF t __AMf;M If jim: Q = ItII [[4.HIIN 1111 Ill I till 11-4 --Ili 11 'a IL VM i-IMi [Fj 1111W+ 11111 M I IM IE 0 MIIIll-I'l I Itif Aill 41 1:I!A

_flj ' MV 9 MI 411 -!it $411 IN It ii] ITM "I il : '414 E _'

!I, till fFtitl I ILIUM 31111 H41 1111 fil VIM V111i

-A!:- 11 till- I I I I Tllr, W I I ii: I till NM I, ME

IMF BRUSH ACCUCHART Gould Inc., Instrument Systems Division Cle"", U3A

it !I:: V Milli

nit J tit: -77 Ile_ I IM, 11134"M I in ultm& UFM

LAri 4 Milli

_ _ jlw ItM 0 II l -tt Ali lit Itill it Il M 401 114 S qO it

l1w, 11 7T E 1177.91JM55 IMI I rr " 111V M lit, I A r-_ 11 fill: 11'_ It A 11 141_22 :-Lit T1 1111 ft

* H- I I ign VIV-1121

IV

IBM1143 IVIIAM a -..if 1..: t M IT M4 ifti.-ill

114 sl t u INOW" I Ulm I

%* ' 6 if

Ft i it T 1444h ill it= 4 114- a N4 at 11 If' i

.... ...... . ELUL at lift Ila itil - 1111 W WN111tr M zV. fllt OFr"' Ul [1 'M IM Oll T i R W_ ARM 14 of MW W [i ill 91 M rr

111I Hit

fM MW Lit V 11i M Mao

Ji JI Fill.

Fit M 9C MIR

7111 il !T q-7i FT; It"It ilia= V Ill IT;iIl RiT ItIt

lifflil 1i

iff

Hog 1114 11 'Iffir _lU

HITT MWOOrki Ili: ililitff .-Ill I' Wit It, W MIJ111W, I lit Ila_

H! tttt

_Rii IM 'nil:

T

n I

+

WNW; It!

Hill

Figure 3-14. Temperature Cycling 73.6% Power Recorder

3-17

Page 27: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

IfT

NEDC-23677

Tr' A I

i 'Ffl

E i i i I, Iii EE 4H Ifif fM iiR Vl M am Mu 1+ R ff TR f N Ma ffiff ME ## -4

If 41 4 U :uMf Mu -R - &M MM .. n -it ."i 4 4 44 Ag M44 94,44

t WM .....

1MOMIMMI, IMM M MMUMMRNPH . . . . . . t i ll

tt:

li"11T --- ----- Hilt Ef

w 4 i u Ot I M illi #= l' i"t 2Tft IV41#ftl# fl OM It ez WfI__W T ff Tr#nf5 TUWff

44 Tt 'I - - MI T4;

M r

M11 um M BRUSH ACCUCHAR dmment Systems Division Cleveland, Onio Frinted in U.ti.k

it; t#tt"

440 V rM, i Hiff i + 7 1 H IT't I

TNVY ffl :qrl AmM u MIT

AIP N 0 um

T -Y- $ ftm

_M = t 1'. 4 4 4 . t +

i++ +++ ttt # it

I itt T ffff Ul 111 444: UfFt 14-Y ?!RPM

Mt"Mm" MITI M. I M

it

IMMUMMM Mg t _T+

V:M " fTR +

INI MR 1 ffffN I mmatNlg 11 11, 'I'll I I, wan 401EIM MM tu M 9 Mom= Ma VVITIOM MINIIII

ttl TT__ F TPPT F44

WT4 U4 =U -111 WitTIT Slim I tat If M M f Ittifil I #4WIT44 MM t I; iiii HE T 41: ---- ---- -

IM 1 91.

Figure 3-15. Temperature Cycling 84.5% Power Recorder 1

3-1 8

ThMUT i Ti iji i i fH- j i

:!iIN

----- ... .... . .. .... ....

HHHH !

M-9.TITTR

T mi

Page 28: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-236

1 .4 014 Q 1 5

it lip +F- - - t.. RM Ir

.... .. ..... . I fl- W I t14 1!.. .... ... :.: q -: IN Itt I V Itlt Mit"M M ilt 3Z I M =I;n fift

11t, IT Iff"HIM 119 IM11 M PRUI 11111fi4 ITHIMMI14 1I

1114 UP. ff"I IN- Ila 11 :!1 Lit jqw-:_ It 111 WWMI _41 1 11:1 F

.... .... .... . .. WIT11,111il tJ1I19It1r14 _ fT i

MOMM Bill in I

. . . . . . . . . . . . i t i i i i . . . . . .

T M .:::I::: Tl -- I"

IN uw 69 TrI :H Mr.

WWI I[:;

f WI: WIN I: I A V I_ , . - -.1 T: ;t - ltr V MWIt v! lar, U-51MIK-Ift- Jill it 9 V III Mil- tot -1

77 iw_:

i4 #tT li, IIJ 41 [it t#l

ilf-I fill 11 ifil Iff r-_ N! It: !I

Nit: E HE

= t -:; ::7-- -----44

.... .... .... .... ... .... f4 -MI-4ittl Tit% 0 OWMAIM:

-a- 4411 k IV IT, 11iTI -A! MO fV: g AEj:.j flM Wbu PRO IM =44 40:V11 LItt - iii;l 414 Mr M, Mill :1

AH, I,, j IM I M T .... .... ..

41 MT MM I"I flit 4t f # _M I I I d

lWiNfl, 111 RIM BRUSH ACCUCHART Gould Inc., Instrurneni Syste!ns )hio Printed in U S.A.

Mall It

A _311111

Tt, It 1, i4mr," Mm- MUM T 1 T, F N..._ v fill &H

IJf 43 U t T = 0 0 111' 3 -titfiffli.11i 1111i -14JIM,

alp

V- I -I!

I I I it

H_ M -11 b., III I! HEIM fl.: - '41 fit til It_ _t' Ut W tL-- tit 'i

n t ....... ... 4,4 4 --- ---- M$V1 tq

11t

ff4MI11RWIW_ JIM fW_

i I 4-4---[

Will! 111M-M

lf 40117-11IN't JIMA

tv, 11 fl: IM POP41 Mill 11 04 1 94n M-1 AMM Ilmll lop I like

IM IM ' "IWIt MM _vMIM7TtIM 1 11. 1 ... .... .... .... --- -T ..........

1-j .. .. I!. lit"

__4 t iL44 IM111111011IMM Ell

B EE Wfllt"NIIP

7-1

....... 4--4- 1 1 1 1 1 1 1

Figure 3-16.; Temperature Cycling 84.5% Power Recorder

3-

Page 29: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

.. . . . . . . . . . . . . . . . . . . . . . . . ....... ....

Ulf M.i.UT if q 1M , HIT

111MIl"04

tT__: tw IT 41; ±ttt TT= fftt : It tit; JITIf #--I## tf 4134 1 ITM ITHIT44 It 114 uu ... .... fir M, -I

.... .... ... . .... .... . . .... .... ...

P_ h , flif, gg :if min If

i i 1 +-4- 1 1 .... .... ....

: I =tt Vr= VIM IrrM+ I ............ A r, "I It

-M O B 11 H ttl 4 :q-T 141i I ;Hli I Ei V V M Tl Jug tit T4;:: ;I I: .... .. .... ... ... HE

Lj 4t Iii: If 1, 4 iff 0E4 T Ifffifliv tM ]4111 11 V

tit

1; IMF If

MI In --MNMQ W [It T V144 A XfFXffl IRIMET i"I'll HIMR-Iff I 1W R_ I w " IMMM 1 ftfll I X I M , _1 14 1 11 i fN R_ 0 1 i Iff f-. t I I I i I FrE,-H, I if 11111;*11111 F fit

,0-1'41 .. .... .... I _01 M"WMIr., HMI-1444 A 41,11MMMtO I I I lu V

ITim $4 AIM Mtn

R Mq _q IL: a .... .... ...

flom two lilt 4, ::lilt

I F F BRUSH ACCUM Gould Inc., Instrument Systems Division Cleveland. Ohio Pint.d in U+S.A.

i i i f I

Um - Iff"

rv 6_7 L b - Y AM ITt 131"Iff M.

9M11 -11 _; U 114 R V I V VORT - ffltfff ININ AJ- =if firli "r.51111 - #W = ,M:11 tit N910 i-N T I Rif V ", S flm NXt INT I tal 1"t L rF I I Ifm a lit im JMIMJ its V 9 Ititt i i MW IN WrIffilifillm. M IM"IM if I- 111: 1114 MIT W_4M 4

1:t RR IT 4

#MIN Him KIM

W.

T r =111i lm Offillirt WI IfiffIf 1 1r, Iff Illm " MI t I:-:- Vt 11111111 :W IN j $11 1 Ulf-IMilm"M irtiq fill 4 V a- 11 1="' 14 011"1 4 $t wn -i wt I I Fl- Enff"lum V tf MWF I inlill t :ll _ MV_ Ifil 1114 W_ M MIM H11 VTM If fff P, g q UR 0 N WRIf IWM Ili ME _. mit I E, I w VE III i1i m uw#:- III fill M11 .. .. ..... .. T

t p tTL! 4" 0 !4 itl 9. 111111i t 4 inm 11% M -M M-1110114 flan tit 11: g

1111 ff TIT 14

il:§ if

We

l:::V _-_ I,-- ::1 :3411 it _14 !!t:j !T;

:,-!I till i I ill, MTHU4 #=tIlf1l tiff II M T? ir: 114; , 44=:t Fit i -, - lilt;! I I t lftih! ITL ITT ##4 f q P it it 111:;: :H: - 177 7-1 Iritilill iM flllfll 1: fif ffl-I I[ to

till li Ili

it- ;pTT4TM I1T TIT: fW11144=4711 M fill

777 7

1AMM11111

1 -4- f

Figure 3-17. Temperature Cycling 84.5% Power Recorder 3

3-20

nsp4n.. I.

Page 30: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

D=> TURBINE TRIP

250 300

FEEDWATER TEMPERATURE (oF)

Figure 3-18. Temperature Cycling N4A(45 0) Nozzle

3-21

160

140 )-

120 F-

100 1--

80 I-

IL

Z/)

<C:

<0

0 D

<I

60 --

40 F-

20 )-

T10

T11

1 1 100 150 200 350 400

I I I II

Page 31: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

= > TURBINE TRIP

200 250 300

FEEDWATER TEMPERATURE (oF)

Figure 3-19. Temperature Cycling N4B (1350) Nozzle

3-22

160

140 1-

120 I-

w

U

<0

w

W 0

xL

1001-

80 --

60 I-

40 I-

I T14

20r I-

01 100

T12

150

T13

350 400

I I

Page 32: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

= > TURBINE TRIP

250 300

FEEDWATER TEMPERATURE (oF)

Figure 3-20. Temperature Cycling N4C (2250) Nozzle

3-23

160

140 I-

120

El

100 )-

4U

IL

-J

O w or

0

w

x

C-)

w

U

w

80 F-

60 1-

El1

40 --

20 F-

T4

T5

0 I 100 150 200

T.) T3

el2

350 400

Page 33: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

= > TURBINE TRIP

T8

I T7

200 250

FEEDWATER TEMPERATURE (oF)

300

Figure 3-21. Temperature Cycling ND (3150) Nozzle

3-24

160

140 1-

120 F-

IL

(r 100

I-2

<0 WW

:) 80 I

< CC

D F

x S 60

F-

El

F-

40 k

T9

20 I-

10 0 150 350 400

Page 34: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

0 = > TURBINE TRIP - -- => APPROXIMATION OF BOUDING CURVE

USED IN FATIGUE ANALYSIS

-I

L - - - -

I

250 300 350

FEEDWATER TEMPERATURE (oF)

I I I I385 252

T T (0F)

Treactor Tfeedwater(oF)

Figure 3-22. Temperature Cycling Bounding Curve

200 175 165

3-25

140

120 1-

100 I-

80 -

IL

WWLL

Uww CL

x

60 I-I I

40 I-

20 I-

o L 100 150 200 400

I I I - - I I

I.

I I I

IIL

Page 35: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Table 3-1

MAXIMUM PEAK-TO-PEAK TEMPERATURE RANGE (AT) IN APPROXIMATELY 4-MINUTE INTERVAL

Prior to Turbine Ro Recorder RTD 1200 Hours 5/13/77 Number Number Tfeedwater Treactor

1 2 3 4 5 6

4 9 10 12 13 14

7 8 9 10 11

1

2

3

SNA Spares SNB

SNC SND

154 0F 154 0F 15140F 154 0F 154 0F 154 0F

154 0F 154 0F 154 0F 154 0F 154 0F 154 0F

154 0F 1 540F 154 0F 154 0F 154 0F

15140F' 154F 154 0F 15140F

539 0 F 5390 F 5390F 539 0 F 539 0F 5390F

5390F 5390F 5390 F 539 0F 5390F 539 0F

5390 F 539 0 F 539 0F 5390F 5390F

5390 F 539 0 F 539 0F 5390F

ll Turbine Trip 1830 Hours 5/13/77

AT Tfeedwater Treactor AT

00F 0 15 26 20

0

5 25 40 12 45

8

0 0

22 47 46

149 0F 149 0F 1149 0F 149 0F 14 90 F 140OF

149 0 F 149 0F 149 0F 149 0F 149 0F 1490 F

14 90F 149 0F 14 90F 149 0F 14 90F

1490 F 149 0 F 1490 F 149 0F

NA *

NA NA NAO NAO NAO

NA NA NAO NA NA NA

NA NA NA NA NA

NA NA* NA NA

1o50 F 20 54

110 38 20

115 75

112 30

113 12

15 15 70

110 85

22.4 0330 H

Tfeedwater

2850 F 2850F 2850 F 285 0F 2850F 2850F

2850F 2850F 2850 F 2850 F 2850F 2850 F

285 0 F 2850 F 2850F 2850F 2850F

285 0 F 285 0F 2850 F 285 0 F

4% Power ours 5/14/7

Treactor

537 0 F 5370 F 5370F 5370F 5370F 5370 F

5370F 5370 F 5370F 5370 F 5370F 5370 F

5370F 5370F 5370F 5370 F 537oF

5370 F 5370F 5370 F 5370F

AT Tfe

00F 0

22 29 44 0

31 62 62 34 49 70

0 0 61 64 82

50.2% Power 1500 Hours 5/15/ edwater Treactor

340 0F 340 0F 340 0F 340 0F 340 0F 340 0F

340O0F 340OF 340 0F 340 0F 340 0F 340 0F

340 0F 340OF 340 0F 340 0F 340OF

340 0F 340 0F 3400F 340 0F

540 0F 540 0F 540 0F 5o40OF 540 0F 540 0F

540O F 540 0F 540 0F 540 0F 5400F 540 0F

540 0F 540 0F 540oF 540 0F 540 0F

5400F 540 0F 5o40OF 540 0F

/7773.6% Power

0930 Hours 5/19/77 Tfeedwater Treactor A

0oF 1

15 32 34

0

32 52 54 49 53 51

0 0

54 55 59

3670 F 3670 F 3670F 3670 F 3670 F 3670 F

3670 F 3670F 367 0F 367 0F 367 0F 3670F

3670 F 3670 F 367 0F 3670 F 3670 F

3670 F 3670 F 3670 F 3670 F

542 0F 542 0F 5420F 542 0F 542 0 F 5420F

542 0F 5420F 5420F 5o42 0F 54o20 F 5420F

542 0F 542 0F 5420F 542 0F 542 0F

542 0F 5420F 542 0F 5o42 0F

AT Tfe

30F 3 14 64 43 4

62 59 76

7 21 61

3 4

59 72 59

84.5% Power 1350 Hours 5/20/77 edwater Treactor A

378 0F 3780F 3780 F 378 0 F 3780 F 3780F

3780F 3780F 378 0F 3780F 378 0F 378oF

378 0F 3780 F 378 0F 378OF 3780F

3780 F 3780 F 3780F 3780 F

543 0F 543 0F 543 0F 543 0F 543 0F 543 0F

543 0F 543 0F 5430F 543 0F 5430F 543 0F

5430F 5430F 543 0F 5430F 543 0F

5430F 5430F 543 0F 543 0F

2oF 3 11 60 33

3

59 60 67 22 10 58

1 1

59 67 48

47 22 48 49

RTD readings have been corrected to the actual temperature with the calibration curve.

*The pressure sensors recorded a reactor pressure of 0.0 psig. Thus the reactor temperature is unknown.

3-26

Page 36: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

raw data (Figure 3-8) will show that the 82oF cycling was infrequent.

Most cycles had peak-to-peak amplitudes substantially less than 820F.

RTD SNA shows that the maximum cycling is restricted to a local region

as well as to one power level.

d. Generally, maximum cycling occurs at X = 0.5 and decreases as X

increases.

e. Cycling is reduced as the feedwater temperature is reduced below

2850F (22.4% power).

f. Generally maximum cycling occurs at 22.4% power.

3.4.2 Time at Temperature

3.4.2.1 Iowa Electric Input

The basic data needed to generate a time temperature map for the feedwater

system were supplied by Iowa Electric specifically for the Duane Arnold plant.

It is tabulated below:

a. Feedwater heaters are on line 100% of the time reactor is operating.

b. There will be 3221 days of outage during the 40-year design life.

c. The startup that was monitored is typical of the 280 slow startups.

d. In addition, there will be 400 fast startups that are similar to

a slow startup, except they take one-half as long.

e. Each shutdown is similar to a startup, except it takes one-tenth

as long.

f. There will be 2 years of operation at 50% power and 2 years at 75%

power.

3-27

Page 37: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

g. Remainder of the 40-year design life will be spent at a power greater

than 75%.

3.4.2.2 Time/Temperature Map

Table 3-2 contains the time/temperature information for the May 1977 startup.

The values in Table 3-2 should be multiplied by

280 +400 ' 280 + 400 =548 2 10

to obtain the map for all startups and shutdowns in the 40-year design life.

The total number of hours of operation at greater than 75% power can be

obtained in the following manner.

H(>75) = 30(548) + 24 40(365) - (2+2) 365 - 3221 - 548(167)]

24J

= 163,000 hours

H(>75) = Hours of Operation at Greater than 75% Power

The number of hours at 50% power plus the number of hours at 75% power can

be calculated in the following manner:

H(50% to 75%) = (2+2) 365 (24) + 96 (548) = 87,600 hours

Thus, the 40-year design life map is tabulated in Table 3-3.

3.5 CRITERIA

Feedwater nozzle cracks are initiated by cyclic stress. The fatigue usage

factor at the blend radius due to stress cycles considered in the reactor pres

sure vessel stress report9 is approximately 0.6. The ASME Section III allowable

value is 1.0.

3-28

Page 38: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Table 3-2

MAY 1977 STARTUP MAP

Treactor - Tfeedwater

500 0F + 250F

450 0F + 250F

Turbine Trip

400 0F + 250F

350 F + 250F

3000F + 250F

250 0F + 25 0 F (~~25% power)

200 F + 250F (50 to 75% power)

1500F + 250F (>75% power)

TOTAL HOURS

NOTE

Treactor

Tfeedwater

Hours of Operation

0

0

1

7

8

21

96

30

167

= Saturation temperature at reactor pressure

= The average temperature of the two feedwater lines

3-29

Page 39: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Table 3-3

40-YEAR DESIGN LIFE TIME/TEMPERATURE MAP

Treactor - Tfeedwater Hours of Operation

500 0 F + 250F 0

450 0F + 250F 0

Turbine Trip 550

400 0F + 25 0 F 3,800

350'F + 250F 2,200

300 0F + 250F 4,400

250OF + 250F 11,500

2000 F + 25 0 F 87,600

150'F + 250F 163,000

0 77,300

TOTAL 350,350

3-30

Page 40: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Fatigue usage on the blend radius was not explicitly calculated in Reference 9. Fatigue usage was calculated for the nozzle and safe end region. The safe end and the weld of the thermal sleeve to the safe end were investigated in detail as it was known that the fatigue usage would be greater there than at the blend radius. The maximum calculated fatigue usage factor was 0.9 and

occurred on the outside surface of the safe end. Based on a survey of latter

stress reports, the fatigue usage factor on the blend radius is approximately 0.6.

Fatigue usage due to rapid thermal cycling was not explicitly included in the

Duane Arnold design. Thus, a usage factor allowance of up to 0.4 remains for rapid thermal cycling.

If the fatigue usage factor due to rapid thermal cycling can be shown to be

less than 0.4 during the reactor design life, then the feedwater nozzle would

not be expected to experience fatigue cracking. If the fatigue usage factor

was shown to be greater than 0.13 per year (5.0 in 40 years), then cracks would

be expected to have occurred before the next refueling outage. If the fatigue

usage factor is greater than 0.4 and less than 5.0, then the analysis is not conclusive.

3.6 ANALYSIS

Fatigue damage due to rapid thermal cycling is evaluated utilizing the Ordered Overall Range (OOR) cycle counting approach of References 10 and 11, in conjunction with the General Electric extrapolation of the ASME Boiler and Pressure Vessel Code Section III fatigue curve for stainless steel.

3.6.1 Cycle Counting Technique

The subject of fatigue under random loading cycling has been extensively researched in connection with automotive, aerospace and highway bridge applications. Several methods for estimating fatigue damage under random cycling are available in the literature. Some of the methods make use of the statistical character of the

cycle pattern, as characterized by mean and standard deviation of the signal.

Others involve a brute force cycle counting approach in which the fatigue damage contribution of each individual cycle is calculated and summed to estimate

3-31

Page 41: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

total fatigue damage. Because the thermal cycling from General Electric tests

does not adhere to any consistent statistical distribution (such as normal or

Gaussian), it was found that statistical approaches could not be conveniently

applied, and it was necessary to resort to a cycle counting approach to evaluate

fatigue damage. The OR approach of References 10 and 11 was selected to per

form the cycle counting.

The 0OR is an abbreviated cycle counting approach, which permits selection

of a small number of load reversals which account for a large fraction of the

fatigue damage. Figure 3-23 illustrates application of the approach to a sim

plified load trace. The first step is to select the largest overall range

of a load (or temperature) trace, from the highest peak to the lowest valley

(points F and U in Figure 3-23). Next a screening level of some percentage

of the largest overall range (50% in Figure 3-23) is selected and ranges with

amplitudes greater than the screening level are counted, keeping track of the

sequence in which the reversals occur. Only reversals which occur in a peak

valley-peak-valley sequence are considered in counting ranges greater than

the screening level.

(Note that in Figure 3-23, the range between reversals H and M is actually

larger than the counted range between M and R, but the former range was not

counted because it was not in the correct sequence and would yield a peak-peak

valley-valley sequence in conjunction with the largest overall range.) The

screening level is then reduced incrementally to zero, and a load spectrum

of screening amplitude versus number (or percent) of cycles greater than the

screening amplitude is produced as illustrated at the bottom of Figure 3-23.

The finer the screening level increments, the more accurate will be the repre

sentation of the actual cycling.

The resulting OOR load spectrum can be used to estimate fatigue damage in con

junction with any fatigue curve and cumulative damage law desired. In many

cases, only the upper portion of the load spectrum is required to obtain a

reasonably accurate damage estimate since higher stress cycles tend to dominate

fatigue damage calculations.

3-32

Page 42: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

A

RESULTING LOAD SPECTRUM:

0 1 1 I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF RANGES WITH AMPLITUDE > SCREENING LEVEL

Figure 3-23. Illustration of Ordered Overall Range (OR) Cycle Counting Approach

3-33

F

NEDC-23677

SAMPLE LOAD TRACE CONTAINING 21 RANGES* OF VARYING AMPLITUDE

LARGEST OVERALL RANGE: PEAK TO PEAK AMPLITUDE = 40 ksi

50% SCREENING LEVEL: 4 RANGES* WITH AMPLITUDE GREATER THAN 20 ksi

15% SCREENING LEVEL: 12 RANGES* WITH AMPLITUDE GREATER THAN 6 ksi

*(NOTE: NO. RANGES= NO. REVERSALS =

2 x NO. CYCLES)M U

100

80

60

40

20

w 0

z z w w

0

LU

LL 0

I

LU

w15%

Page 43: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

3.6.2 Envelope Load Spectrum

Based on General Electric tests, an envelope load spectrum has been developed

(Figure 3-24). This envelope spectrum should be applicable, with a reasonable

degree of conservatism, to any temperature trace of the test program. Two of

the highest Duane Arnold cyclic locations have been compared to the envelope

load spectrum. The results are also shown on Figure 3-24. The high power case

falls on the envelope curve and the low power case falls substantially below the

envelope curve. Thus, fatigue damage predictions based on the envelope curve

will be accurate for high power operation and conservative for low power opera

tion. Inspection of the typical temperature traces (Figures 3-6 through 3-17) will reinforce this conclusion. During high power operation there are many

temperature cycles that approach the maximum peak-to-peak cycle; while during

low power operation, most temperature cycles are small compared to the maximum

peak-to-peak cycle.

3.6.3 Fatigue Evaluation Method

The envelope load spectrum of Figure 3-24 has been changed into a table con

taining the number of cycles at various amplitudes (A) as shown in Table 3-4.

Since the test traces analyzed were approximately 240 seconds long, the envelope

spectra of Figure 3-24 results in discreet numbers of cycles at each amplitude per 240 seconds of cycling, and must be scaled up or down to the actual

cycling duration. In the last column of Table 3-4 the cycling has been scaled

up to indicate the number of cycles at various amplitudes per hour of cycling.

Note that a factor of two has been applied in transferring the envelope spectrum

from Figure 3-24 to Table 3-4 to translate from reversals to cycles (two reversals/cycle).

The last column of Table 3-4 can now be used to compute fatigue damage per

hour of cycling at any peak stress level by summing the damage from 15 cycles

of amplitude equal to 98% of the peak stress level, 3.0 cycles of amplitude

equal to 93% of the peak stress level, etc.

For consistency with ASME code design procedures and General Electric design

requirements, the design fatigue curves of Figure 3-25 were used in performing

the damage calculations. The austenitic stainless steel fatigue curve of Figure

3-34

Page 44: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Screening

Amplitude

A (%)

100

96

90

86

80

70

60

50

40

30

20

10

*At Amplitude = A

3-35

Table 3-4

ENVELOPE SPECTRUM FOR FATIGUE DAMAGE CALCULATON

Total Number*

Number of of Cycles

Cycles A A% (240 sec)

0

98 1

1

93 2

3

88 2

5

83 5

10

75 8

18

65 10

8

55 12

40

45 15

55

35 25 80

25 25

105

15 75

180

Number*

of Cycles

(hr)

15

30

30

75

120

150

180

225

375

375

1125

Page 45: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

DUANE ARNOLD DATA AT 84.5% POWER

O DUANE ARNOLD DATA AT 22.4% POWER

I I I I I I I I10

I i iI I I I I I I II II I I I I I I I 1

100

NUMBER OF RANGES IN 240 sec TRACE WITH AMPLITUDE GREATER THAN A

Figure 3-24. Load Spectra

100

80 b-

O

0

0

60 [-

O

O

0

40 I- 0

20 I-

0

I

10001

Page 46: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

3-25 was used as the Duane Arnold feedwater nozzles are clad. Peak stress

amplitudes were calculated as follows.

Sa = -alternating : -ATpp(%) (Treactor - Tfeedwater 20

Where: - = 375 psi/OF for stainless steel cladding

ATp-p(%) =Peak-to-peak AT (in percent of available

temperature differential)

Treactor - Tfeedwater = Available temperature differential (OF)

Figure 3-26 is a plot of fatigue damage from the above equation for several

values of ATp-p(%).

The damage curve of Figure 3-26 represents a convenient design tool for evalua

tion of the thermal cycling data. The peak-to-peak cycling anplitude in percent

can be obtained from the test data and, in conjunction with the load map of time versus feedwater to reactor temperature differential, can be used to enter

the appropriate damage curve and predict cumulative fatigue usage.

3.6.4 Fatigue Evaluations

The fatigue damage due to the bounding temperature cycling curve (Figure 3-22) and the 40-year design life time temperature map (Table 3-3) can now be calculated using Figure 3-26. The calculation is summarized in Table 3-5. The highest cycling value and associated percent cycling for each 4250 F interval

was assumed constant for the entire interval (Figure 3-22). The cumulative

fatigue usage factor due to rapid thermal cycling in 40 years is 0.2. The

total 40-year fatigue usage factor for all identified cycles is 0.2 plus 0.6

or 0.8, which is less than the ASME Code allowable value of 1.0.

3-37

Page 47: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

100 10 2 10 10 10 106 10 10 10 10

CYCLES

Figure 3-25. GE Extrapolation of ASME Fatigue Curve

3-38

C

U0

I

Page 48: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

1.0

0.1

50% CYCLING

.E

> 40% 0

0

O 0 0

001 -30%

2

0

(9 25%

LL

20%

0.001 17%

15%

0.0001 5000 4000 3000 200'

Treactor - feedwater oF)

Figure 3-26. Fatigue Damage Curve

3-39

1000

Page 49: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Table 3-5

CUMULATIVE FATIGUE DAMAGE

Fatigue Damage

Peak-to- Damage per

Discrete Value Interval Peak Percent per 40-Year

Treactor - Tfeedwater Treactor - Tfeedwater Cycling Cycling 1000 hr Life

375 0F 400 0F + 250F 500F 13% 0.0001 0.0004

3250F 350OF + 25 0F 630F 19% 0.00016 0.0004

2750F 300 0F + 250F 750 F 27% 0.00065 0.0028

252 0F 250 0F + 250F 82OF 33% 0.0019 . 0.0219

175 0F 200 0F + 250F 760F 43% 0.00065 0.0569

175 0F 150OF + 250F 760F 43% 0.00065 0.1060

Turbine Trip* 115 0F NA 0.023 0.0127

TOTAL 0.2011

*Percent cycling is not known for the turbine trip event. Damage during turbine

trip was calculated by assuming a value of percent cycling and using Figure 3-26.

This is exactly correct as figures could be directly plotted as a function of

maximum peak-to-peak cycling directly without the need of obtaining the percent

cycling.

3-40

Page 50: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

The method of analysis has both conservative and nonconservative steps. The

most significant of these are:

Conservatisms:

a. RTD measurements used as metal surface temperature, whereas metal

surface temperature fluctuations are lower than sensor temperature

fluctuations.

b. Fatigue damage curve was generated with a bounding load spectra

C. Fatigue calculation used a bounding temperature cycling curve

d. The highest temperature cycling in each +25 0 F interval of the bounding

curve was used for the entire interval.

Nonconservatisms:

a. A limited number (18) of RTDs were used

b. All locations of the nozzle could not be measured

c. A limited data base (one startup) was used

d. Some temperature cycles are so rapid that the RTDs may not have

reached full value

The RTDs will measure a temperature that closely approximates the metal surface

temperature. Tests performed by General Electric indicate that the recorded

cycling is approximately 10% higher than the actual metal surface cycling.

As shown on Figure 3-24 the Duane Arnold data at high power, where most of

the fatigue damage occurs, falls essentially on the bounding load spectra curve.

The bounding temperature cycling curve and the interval approximation of it

were intentionally used to balance the nonconservatism due to a limited number

of RTDs and the limited data base.

3-41l

Page 51: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

Based on General Electric tests, the locations of the feedwater nozzles that

are expected to experience the highest temperature cycling were instrumented.

It is judged that the probability of other nozzle locations having higher cycling

is small.

The temperature cycling is slow enough so that the RTDs recorded at least 90% of

the maximum cycling.

Therefore, it is judged that the cumulative fatigue usage factor of 0.2 is as

accurate as can reasonably be calculated.

3-42

i

Page 52: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

4.0 REFERENCES

1. Chicago Bridge and Iron Co. Drawing Special Forgings Nozzles N4A through

N4D VPF 2655-238.

2. Chicago Bridge and Iron Co. Drawing Feedwater Nozzle VPF 2655-99.

3. Chicago Bridge and Iron Co. Drawing Thermal Sleeves for Feedwater Nozzles

VPF 2655-100.

4. General Electric Co. Drawing, Reactor Assembly 197R608.

5. General Electric Co. Specification 21A2110, Feedwater Nozzle Instrumentation

Program.

6. General Electric Co. Drawing 768E476, Feedwater Nozzle Instrumentation

Connection Diagram.

7. General Electric Co. Drawing 768E462, Feedwater Nozzle Instrumentation

Installation Kit.

8. General Electric Co. Field Deviation Disposition Requests 1001-1010, Feed

water Nozzle Instrumentation Program - DAEC.

9. DAEC Reactor Pressure Vessel Stress Report VPF 2655-330.

10. H. 0. Fuchs, et al., "Shortcuts in Cumulative Damage Analysis," Society

of Automotive Engineers, Paper No. 730565, 1973.

11. D. V. Nelson and H. 0. Fuchs, "Predictions of Cumulative Fatigue Damage

Using Condensed Load Histories," Society of Automotive Engineers, Paper

No. 750045, February 1975.

4-1/4-2

Page 53: DUANE ARNOLD FEEDWATER NOZZLE TEMPERATURE CYCLING · sparger was assembled to the thermal sleeve with a maximum diametral clearance of 0.004 inch. Thus leakage cannot occur between

NEDC-23677

DISTRIBUTION

Name M/C

N. J. Biglieri 752

J. E. Charnley (3) 747 H. Choe 589

F. E. Cooke 747

M. Costandi (10) 873

C. W. Dillmann 752

A. B. Fife 747

J. D. Gilman 712

D. R. Heising 743

L. K. Holland 150

J. Jacobson 713

I. R. Kobsa 7147

K. R. Miller 712

R. H. Moen 589

J. L. Rash 682

R. R. Roof (6) 126

H. T. Watanabe 682

NED Library (5) 328

VNC Library Vol

1/2