Dual Header Pulse Interval Modulation (DH-PIM) Dr. Nawras Aldibbiat Professor Z Ghassemlooy Optical...
-
date post
21-Dec-2015 -
Category
Documents
-
view
218 -
download
3
Embed Size (px)
Transcript of Dual Header Pulse Interval Modulation (DH-PIM) Dr. Nawras Aldibbiat Professor Z Ghassemlooy Optical...

Dual Header Pulse Interval Modulation (DH-PIM)
Dr. Nawras Aldibbiat
Professor Z Ghassemlooy
Optical Communications Research GroupSchool of Computing, Engineering & Information Sciences,
Northumbria UniversityEmail: [email protected]
Tel: 0191 227 3841

Outline of the Presentation
• Introduction• DH-PIM principles• Power spectral density• Artificial light interference• Slot & packet error probabilities• Optical power & B/W requirements.• Multipath propagation• Conclusions

Introduction
DH-PIM was first introduced in 2000: N. M. Aldibbiat & Z. Ghassemlooy: “Dual header-pulse interval modulation (DH‑PIM) for optical communication systems”, CSNDSP 2000, Bournemouth, UK, pp. 147-152, July 2000.
Why DH-PIM?
Is it ideal for Indoor optical wireless systems?

RX
TX
TX RX
TX
RX
TX RX
(Diffuse)
TX
RX
TX RX
Introduction
Line-of-SiteLine-of-Site
Non-Line-of-SiteNon-Line-of-Site
HybridHybridDirectedDirected Non-directedNon-directed

Pulse Time Modulation Tree
DH-PIM
Pulse Time Modulation
Analogue Digital
Isochronous Anisochronous
DPWM
MPPM
PPM
PCM
DPIWM
DPPM
DPIM
AnisochronousIsochronous
PIWM
PIM
PFM
SWFM
PWM
PPM

Pulse Modulation Symbol Structure
Symbol1
Symbol2
Symbol3
OOK
PPM
DPIM
DH-PIM 2
Time
bT
sT2sT
0 0 0 0 0111 1 11 1
H2H1
Redundantspace
M = 4 bits
L = 2 M = 16 slotsInformation
Information
Info.

DH-PIM symbol structure
H 1
nT sn TT )1(
symbol
Information slots
t
V
n th
v
Guardband
2/sT
snTd
1nT
sg TT )12/(
H 2
symbol
Information slots
t
n th
v
sn TT )1(
Guardband
nT
sT
snTd
1nT
sg TT 1V
0 2
3)(2rect
2
1)(2rect)(
n s
nn
s
n
T
Tth
T
TtVtx
1
00 )1(
n
kksn dnTTT

Symbol Length
minL maxL L
PPM M2 M2 M2
DPIM 2 12 M 2/32 M
DH-PIM 1 12M 2/212 1 M
OOK PPM DPIM DH-PIM2
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 10 0 0
1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 80
50
100
150
200
250
M [slot]
Ave
rag
e s
ymb
ol l
en
gth
[T
s]
PPM DPIM DH-PIM 1DH-PIM 2
Average Symbol Length

Transmission bandwidth
DH-PIM
requires less
bandwidth
compared
with PPM
& DPIM.
Bandwidth normalised to OOK:
3 4 5 6 7 80
4
8
12
16
20
24
28
32
M [slot]
No
rma
lise
d b
an
dw
idth
re
qu
ire
me
nts
DH-PIM1 DH-PIM2
DH-PIM3
DPIM
PPM
)32(
2
M
bDPIMreq R
MB
Mb
PPMreq R
MB
2
M
RB
Mb
req )122( 1

Transmission Packet Rate
2 3 4 5 6 7 8 9 100.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
M [bit]
Nor
mal
ised
pac
ket
tran
smis
sion
rat
e
DH-PIM3
DH-PIM1
DH-PIM2
DPIM
PPM
Breq = 1 MHz
)122( 1
M
reqpkt N
MBR
)32(
2
M
DPIMreqDPIMpkt N
MBR
M
PPMreqPPMpkt N
MBR
2

1 2 3 4 5 6 7 8 9 10
x 106
0
100
200
300
400
500
600
700
800
Breq [Hz]
pa
cke
t tr
an
smis
sio
n r
ate
[p
ack
et/
sec]
M = 5
PPM
DH-PIM3
DH-PIM2
DH-PIM1
DPIM
Transmission Packet Rate - cont.

Transmission Capacity
codes validof no.2max LogRL
LC bT
3 4 5 6 7 8 9 100
2
4
6
8
10
12
M [slot]
No
rma
lise
d t
ran
smis
sio
n c
ap
aci
ty
DH-PIM 1
DH-PIM 2
DH-PIM 3
DPIM
PPM
21
12
122
22
M
Mreq
T
BMC
22
,32
124
M
Mreq
DPIMT
BMC
M
reqPPMT
BMC
2
2
,

DH-PIM system block diagram
TransmitterTransmitter ChannelChannel ReceiverReceiver
M bitsdata out
M bitsdata in
Pre-detectionfilter
OpticalChannel
Optical TX Optical RXDH-PIM
ModulatorDH-PIM
Demodulator
Whitenoise
Clockrecovery

DH-PIM Transmitter
MSB = 0?
No
Yes Enable
DH-PIM
M -bitLatch
Pulsegenerator 2sT
Pulsegenerator sT
d = BDCDelay
sTd 1
Enable
Ena
ble
OpticalSource

DH-PIM Receiver
Matchedfilter
Decisioncircuit
sTt
Clockrecovery
Edgedetector
Slotcounter
Datalatch ( d )
M -bitdata out
Reset
Headeridentifier
DBC
Pre-detection filter
Slotsin
sT1Dealy

Simulation Waveforms (16-DH-PIM1 )
0 2 4 6 8 10 12 14 160
0.5
1
t [Sec]
Inp
ut
da
ta
0 2 4 6 8 10 12 14 160
0.5
1
t [Sec]
Tra
nsm
itte
d D
H-P
IM
0 2 4 6 8 10 12 14 16-0.5
0
0.5
1
t [Sec]
Re
ceiv
ed
DH
-PIM

Simulation Waveforms (16-DH-PIM1 ) - cont.
0 2 4 6 8 10 12 14 16-0.5
0
0.5
t [Sec]
Mat
ched
Filt
er o
utpu
t
0 2 4 6 8 10 12 14 160
0.5
1
t [Sec]
Rec
eive
d D
H-P
IM
0 2 4 6 8 10 12 14 160
0.5
1
t [Sec]
Out
put d
ata

Simulation Model
Transmitterfilter p (t)
Input Mbits Multipath
channelh(t)
DH-PIMencoder X
34 PL
X
RShot noise
n (t)
DH-PIMdecoder
OutputM bits
Matchedfilter r(t)
sTt
Sample
y ic count

Power Spectral Density
oddanoddbothand2
;
evenoreveneitherand2
;0
2;
122
1Re
4sin89
4sin45
4sin4
)(
12
2222
dKT
K
KT
K
T
K
T
GGTTT
V
P
s
s
sM
s
sss
1
)1(2
21
11
M
Tj
Tj
Tj s
s
Ms e
e
eG

Power Spectral Density - cont.
0 1 2 3 410
-8
10-6
10-4
10-2
100
102
F [Hz]
PS
D [
Wa
tts/
Hz]
Predited result Simulated result
8-DH-PIM 2

Power Spectral Density - cont.
DH-PIM1

Power Spectral Density - cont.
DH-PIM2

2 3 4 5 6 7 80
1
2
3
4
5
6
7
8
9
10
M [bit]
PDC
-nor
DH-PIM1
DH-PIM5
DH-PIM4
DH-PIM3
DH-PIM2
DC component of the PSD

2 3 4 5 6 7 80
0.2
0.4
0.6
0.8
1
M [bit]
P sl0t
-nor
DH-PIM1
DH-PIM3
DH-PIM5
Slot component of the PSD

Artificial light interference
• Artificial light (e.g. Fluorescent) induces periodic interference that contain harmonics at low frequencies
• This interference can be reduced by employing a high-pass filter, but …
• this results in baseline wander, which is more severe in modulation schemes that contain high power at DC and low frequencies. Therefore …
• there is a trade-off between the extent of artificial light interference rejection and the severity of baseline wander

Artificial light interference
0 1 2 3 4 5 60
0.2
0.4
0.6
0.8
1
Normalised frequency (f / Rb
)
PS
D (
linea
r un
its)
M = 4 (L = 16)
DH-PIM (alpha=2)
DH-PIM (alpha=1)
DPPM
OOK-NRZ
PSD for OOK, DPPM and DH-PIM (=1 and = 2) for M = 4

Artificial light interference – cont.
Simulation block diagram
1
Transmitterfilter p (t)
Input Mbits Channel
h(t)DH-PIMencoder X
pI Shot noisen (t)
Matchedfilter r (t)
DH-PIMdecoder
OutputM bits
sTt
SampleHPF f(t)
Assumptions:
-a rectangular pulse shape
-an equal average transmitted optical power for all systems

Artificial light interference – cont.
10-5
10-4
10-3
10-2
10-1
100
-4
-2
0
2
4
6
8
10
fc/R
b
Opt
ical
pow
er re
quire
men
ts (d
B)
8-DH-PIM1 (no multipath dispersion)
Rb=10Mbps
Rb=100Mbps
Rb=1Mbps
- 8-DH-PIM1 on non-dispersive channel
- For fc/Rb < 0.01, an additional 5 dB of power is required when Rb is increased from 1 Mbps to 10 Mbps and from 10 Mbps to
100 Mbps.
- for fc/Rb > 0.01, the power requirement starts to increase
more swiftly for 1 Mbps than 10 Mbps and 100 Mbps.

Artificial light interference – cont.
10-5
10-4
10-3
10-2
10-1
100
-3
-2
-1
0
1
2
3
fc/R
b
Opt
ical
pow
er re
quire
men
ts (d
B)
8-DH-PIM1 (R
b=1Mbps)
NDS=0.10
NDS=0.01
NDS=0.05
- 8-DH-PIM1 assuming multipath propagation
-Normalised delay spread (NDS) = RMS delay spread (DT) / Bit rate (RB)
- For fc/Rb < 0.01, the power requirements are constant for all values of NDS with NDS of 0.1 displaying the highest value
- For fc/Rb > 0.01, the power requirements increase exponentially reaching the same value for fc/Rb > 0.5

Artificial light interference – cont.
10-4
10-3
10-2
10-1
100
101
0
1
2
3
4
5
6
7
8
9
fc/Rb
Opt
ical
pow
er p
enal
ty (d
B)
OOK8-DPIM8-PPM8-DH-PIM1
8-DH-PIM2
-Rb = 1Mbps and no multipath dispersion
-DH-PIM1 has marginally higher power penalty than DPIM and PPM but lower than OOK
- For fc/Rb = 0.1: DH-PIM displays far less power penalty than OOK but 1.6 dB and 1 dB additional power penalty compared with PPM and DPIM, respectively. This is because at low frequency region, the PSD of DH-PIM is higher than PPM and DPIM and lower than OOK

Slot/packet error rate
Assumptions:
•The input signal is composed of binary independent, identically distributed bits of ‘1’s and ‘0’s
• The matched filter is sampled at the slot frequency fs
• The channel is a distortion free channel
• No bandwidth limitations imposed by the transmitter and receiver
• The dominant noise source is the background shot noise
• No interference due to artificial light
• Packet length G = 1KB bits
• Equal occurrence of H1 and H2

Slot error rate
for DH-PIM is given by:
for PIM:
ooslote N
PRLMkQ
N
PRLMkQL
LP
2
222
2
222
9
)1(323
9
3234
4
1
o
PIM
o
PIMPIM
PIMPIMslote N
PRLMkQ
N
PRLMkQL
LP
222222
,
)1(221
1
: average transmitted optical power, R: a photodetector responsivity. 0 < k < 1 is the threshold factor.
P
where

Slot error rate Vs. SNROOK
• The higher the M, the better the slot error rate performance.
• Simulated results
match the predicted ones.
-5 -3 -1 1 3 5 7 9 1110
-5
10-4
10-3
10-2
10-1
100
SNROOK [dB]
Slo
t err
or r
ate
M = 3
M = 4
M = 5
DH-PIM (alpha=1)*** Simulated__ Predicted o
OOK N
PRSNR
222
• 12,000 consecutive random bits were used in simulation.
• Slot error rate is shown down to 10-5 due to computational power.

Slot error rate - cont.
• DH-PIM and DPIM offer improved slot error performance compared with OOK, but inferior to that of PPM.
• At slot error rate of 10-9 PIM and DH-PIM ( = 1) display an improvement of ~5 dB over DH-PIM ( = 2).
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
10-8
10-6
10-4
10-2
100
SNROOK
[dB]
Slo
t er
ror
rate
OOK
DH-PIM (alpha=2)
PIM PPM
L=16 slot (M=4 bits)
DH-PIM (alpha=1)

Packet error rate
• For DPIM:
• For DH-PIM:
oopkte N
PRLMkQ
N
PRLMkQL
M
GP
2
222
2
222
9
)1(323
9
3234
4
o
PIM
o
PIMPIMPIMpkte N
PRLMkQ
N
PRLMkQL
M
GP
222222
,
)1(221
G is the packet length in bits.
MLGslotepkte PP /11 The packet error rate is given by

Packet error rate Vs. SNROOK
G = 1KB bits.
• DH-PIM and DPIM offer improved packet error performance compared with OOK, but inferior to that of PPM.
• At packet error rate of 10-6 PIM and DH-PIM ( = 1) display an improvement of ~5 dB over DH-PIM ( = 2).
0 2 4 6 8 10 12 1410
-6
10-5
10-4
10-3
10-2
10-1
100
SNROOK
[dB]
Pac
ket
erro
r ra
te
OOK
DH-PIM (alpha=2)
PIM PPM
L=16 slots (M=4bits)
DH-PIM (alpha=1)

DH-PIM packet error rate - cont.
G = 1KB bits
• The higher the M, the better the packet error rate performance.
• The smaller the , the better the packet error rate performance.
0 2 4 6 8 10 12 1410
-6
10-5
10-4
10-3
10-2
10-1
100
SNROOK
[dB]
Pac
ket
erro
r ra
te
M=4 & alpha=1M=4 & alpha=2M=5 & alpha=1M=5 & alpha=2
DH-PIM

Retransmission
Parameters:ret = 1, 3, 4 and 5 Majority decision scheme retransmission rateM = 2, 3, 4 and 5 Bit resolutionα = 1 and 2 No of slots in the wide pulse of the headerN_bits = 60,000 No of bits in the simulationK = 50% Threshold factorRb = 1 MB/S Bit rateη = 6.4000e-023; One-sided PSD of the noiseI_bg = 200 µAmp Background noise currentR = 0.6 Receiver responsivity.SNR = -10:14 signal-to-noise ratio in dB.
Decoder
OutputM bitsOptical
transmitter
Input Mbits Non-
dispersivechannel h (t)
Encoder X
pIx(t)
Opticalreceiver X
R Shot noisen (t)
Matchedfilter r(t)
sTt
Sample
y(t)
MDS
Simulation block diagram:

Retransmission - cont.
-55 -54 -53 -52 -51 -50 -4910
-6
10-5
10-4
10-3
10-2
10-1
100
Average TX Optical Power [dBm]
Slo
t er
ror
rate
16-DH-PIM1
Ret = 1
Ret = 3
Ret = 5
Ret = 4
• At SER = 10-4
• DH-PIM with Ret = 3 gives an improvement of ~ 1 dBm over standard DH-PIM
• DH-PIM with Ret = 5 gives an improvement of ~ 2 dBm over standard DH-PIM

Retransmission - cont.
-55 -54 -53 -52 -51 -50 -49 -48 -4710
-5
10-4
10-3
10-2
10-1
100
Average TX Optical Power [dBm]
Slo
t er
ror
rate
16-DH-PIM2
Ret = 1Ret = 5
Ret = 3
Ret = 4
• At SER = 10-4
• DH-PIM with Ret = 3 gives an improvement of ~ 1 dBm over standard DH-PIM
• DH-PIM with Ret = 5 gives an improvement of ~ 2 dBm over standard DH-PIM

Optical Power Vs. bandwidth requirements
• The average optical power is calculated at packet error rate of 10-6 for a packet length of 1KByte.
• To minimise the optical power and bandwidth, the parameter combinations are:
DH-PIM (L=16, =1)
DH-PIM (L=64, =2)
DPIM L = 161 2 3 4 5 6 7 8 9
-10
-8
-6
-4
-2
0
2
4
Normalised bandwidth requirements
No
rma
lise
d o
ptic
al-p
ow
er
req
uire
me
nt
[dB
]
DH-PIM (alpha=1)DH-PIM (alpha=2)PIM OOK
L=2
2 2 4
8
16
32
64
128
256
4
8
16
32
64
4
8
16
32
64
100%
50%
33.33%
25%

Multipath Propagation

Multipath Propagation
Calculate prob ofoccurrence &
multiply
'1' detected?
Calculate prob for'1' or '10' or '11' &
multiply
Segment of m slots: { si,1, s i+2, ..., s i+m}
Count No. of 0's
'1' detected at start of full DH-PIM symbol
Start
Leading slot = 0?
Next slot = 1?
Calculate prob ofoccurrence
Acceptable?
Count No. of 0's
Could be H1 or H2
Acceptable?
Set initial prob
Calculate prob ofoccurrence
Hence H 2 & start offull DH-PIM symbol.
Reset to start ofsegment.No Yes
No
No
Yes
At least 3 moreslots?
Invalid segmentprob = 0.
Acceptable?
Calculate no. of 0's
Acceptableheader?
Calculate prob ofoccurrence &
multiply
All done
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
Yes
Select
Completsymbol?
NoYes
Calculate prob ofoccurrence

0 1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8x 10
-6
Ts
Ca
sca
de
d s
yste
m im
pu
lse
re
spo
nse
32-DH-PIM1, Rb = 1 Mbps
DT = 0.001DT = 0.01 DT = 0.1 DT = 0.2
_____ __ __ ___ _ ........
Impulse Response

Diffuse Systems - Eye Diagram
NDS = 0.01
1 2 3 4 5 6 7 80
0.2
0.4
0.6
0.8
1
1.2x 10
-3
NDS = 0.1
1 2 3 4 5 6 7 80
0.2
0.4
0.6
0.8
1
x 10-3

Optical Power Requirements
10-3
10-2
10-1
100
-7
-5
-3
-1
1
3
5
7
9
11
RMS delay spread / T b
No
rma
lise
d o
ptic
al p
ow
er
req
uir
em
en
ts (
dB
)
L = 4
8
16
32
8
16
32
4
DH-PIM1 DH-PIM2
L = 32 ____ .......

10-3
10-2
10-1
100
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
RMS delay spread / T b
No
rma
lise
d o
ptic
al p
ow
er
req
uir
em
en
ts (
dB
)
DH-PIM1DH-PIM2DPIM PPM OOK
L = 32
Optical Power Requirements - cont.

Optical Power Penalty
10-3
10-2
10-1
100
0
2
4
6
8
10
12
RMS delay spread / T b
No
rma
lise
d o
ptic
al p
ow
er
pe
na
lty (
dB
) _____ L = 4 .......... L = 8 --o--o-- L = 16 __ __ L = 32
DH-PIM1 DH-PIM2

10-3
10-2
10-1
100
0
2
4
6
8
10
12
14
RMS delay spread / T b
Op
tica
l po
we
r P
en
alty
(d
B)
DH-PIM1DH-PIM2DPIM PPM OOK
L = 32
Optical Power Penalty - cont.

Conclusions
• Compared with PPM and DPIM, DH-PIM offers:– shorter symbol length
– higher transmission rate
– less bandwidth requirements
– simple slot synchronisation
– built-in symbol synchronisation
• DH-PIM offers improved error performance compared with OOK, but inferior to PPM and similar to DH-PIM

Conclusions - cont.
• The optimum system performance in terms of optical power and bandwidth requirements is achieved at DH-PIM (L=16, =1), DH-PIM (L=64, =2) and DPIM L = 16.
• A trade-off between the extent of artificial light interference rejection and the severity of baseline wander.
• Retransmission of DH-PIM symbols for 3 times or more gives significant improvement to the probability of errors at the expense of reducing the throughput

Final Remarks
• Acknowledgements:– Professor Fary Ghassemlooy (Associate Dean For Research)– Dr. R. McLaughlin (Sheffield Hallam University)
• Two MSc students are working on DH-PIM:– Wasiu Popoola: Equalisation– Olusegun Sanyaolu: Coding
• We’re seeking collaboration with staff or students from Informatics regarding mathematical analysis

THANK YOU