Drugs in the neonate & child - Professor Nick Holford

19
The Elephant, the Mouse & the Child -Paediatric & Neonatal Pharmacology Brian Anderson, PhD, FANZCA, FJFICM Adjunct Professor Anaesthesiology University of Auckland & Auckland Children’s Hospital New Zealand Reading Material β€’ Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349:1157-67. β€’ Koren G. Chapter 60. Special aspects of perinatal and pediatric pharmacology. In Basic & Clinical Pharmacology ed Katzang BG, Appleton & Lange β€’ Anderson BJ, Holford NHG. Mechanism based concepts of size and maturity in pharmacokinetics. Annual Review of Pharmacology and Toxicology 2008; 48: 303-32. β€’ Anderson BJ, Holford NHG. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 2009; 24 (1): 25-36 β€’ Anderson BJ, Meakin GH. Scaling for size; some implications for paediatric anaesthesia dosing. Paediatr Anaesthesia 2002; 12: 205-219 β€’ Bartelink IH, rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45: 1077-1097 Foetal Drug Exposure Adverse Effects β€’ lithium, carbimazole Goitre β€’ tetracycline Abnormal teeth/bones β€’ NSAIDs Closure of ductus arteriosus β€’ ethanol Foetal alcohol syndrome β€’ nicotine Low birth weight, increased mortality β€’ Methadone Withdrawal syndrome THERAPEUTIC ORPHAN Dr Harry Shirkey 1963 β€’Disasters – thalidomide, chloramphenicol, alcohol, iodine – fentanyl, bupivacaine, gastric prokinetics, propofol β€’Incentives (USA) – pediatric exclusivity 1997 β€’ patent extension – final pediatric rule 1998 β€’ rules requiring investigation of new drugs –Pediatric Research Equity Act 2003 β€’ FDA statutory authority to mandate pediatric studies Differences in the young β€’ Size – Smaller β€’ Distances shorter, faster BMR, faster onset time β€’ Maturation – Body composition changing (V) Pharmacokinetics – Drug metabolism immature (CL) – Response to drugs different Pharmacodynamics β€’ Toxicity – Short term (e.g. verapamil and arrest) – Long term (e.g. tetracycline and teeth) Definitions β€’ Neonate – first 6 weeks of life β€’ Infant – 6 weeks -2 years β€’ Child – 2 years + β€’ teenager β€’ adolescent

Transcript of Drugs in the neonate & child - Professor Nick Holford

Page 1: Drugs in the neonate & child - Professor Nick Holford

The Elephant, the Mouse & the Child

-Paediatric & Neonatal Pharmacology

Brian Anderson, PhD, FANZCA, FJFICM

Adjunct Professor Anaesthesiology

University of Auckland & Auckland Children’s Hospital

New Zealand

Reading Material

β€’ Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349:1157-67.

β€’ Koren G. Chapter 60. Special aspects of perinatal and pediatric pharmacology. In Basic & Clinical Pharmacology ed Katzang BG, Appleton & Lange

β€’ Anderson BJ, Holford NHG. Mechanism based concepts of size and maturity in pharmacokinetics. Annual Review of Pharmacology and Toxicology 2008; 48: 303-32.

β€’ Anderson BJ, Holford NHG. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 2009; 24 (1): 25-36

β€’ Anderson BJ, Meakin GH. Scaling for size; some implications for paediatric anaesthesia dosing. Paediatr Anaesthesia 2002; 12: 205-219

β€’ Bartelink IH, rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45: 1077-1097

Foetal Drug Exposure

Adverse Effects

β€’ lithium, carbimazole Goitre

β€’ tetracycline Abnormal teeth/bones

β€’ NSAIDs Closure of ductus arteriosus

β€’ ethanol Foetal alcohol syndrome

β€’ nicotine Low birth weight, increased

mortality

β€’ Methadone Withdrawal syndrome

THERAPEUTIC ORPHAN

Dr Harry Shirkey 1963

β€’Disasters – thalidomide, chloramphenicol, alcohol, iodine

– fentanyl, bupivacaine, gastric prokinetics, propofol

β€’Incentives (USA) – pediatric exclusivity 1997

β€’ patent extension

– final pediatric rule 1998 β€’ rules requiring investigation of new drugs

–Pediatric Research Equity Act 2003 β€’ FDA statutory authority to mandate pediatric studies

Differences in the young

β€’ Size – Smaller

β€’ Distances shorter, faster BMR, faster onset time

β€’ Maturation – Body composition changing (V) Pharmacokinetics

– Drug metabolism immature (CL)

– Response to drugs different Pharmacodynamics

β€’ Toxicity – Short term (e.g. verapamil and arrest)

– Long term (e.g. tetracycline and teeth)

Definitions

β€’ Neonate

– first 6 weeks of life

β€’ Infant

– 6 weeks -2 years

β€’ Child

– 2 years + β€’ teenager

β€’ adolescent

Page 2: Drugs in the neonate & child - Professor Nick Holford

What do we want to know to determine dose?

β€’ Concentration-response relationship (PD)

β€’ Target effect

β€’ Target concentration

β€’ Dose to achieve concentration (PK)

β€’ Covariate effects - age, weight, disease

β€’ Toxicity data

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Drug Concentration

Eff

ect Target Concentration

Target Effect

Toxicity

What do we want to know to determine

dose?

β€’ Concentration-response relationship (PD)

β€’ Target effect

β€’ Target concentration

β€’ Dose to achieve concentration (PK)

β€’ Covariate effects - age, weight, disease

β€’ Toxicity data

Concentration Effect Site

D+R→DR

Disease

EFFECT

(Emax model)

Stimulus

transduction

DOSE

Formulation

Route

PHARMACOKINETICS BIOPHASE PHARMACODYNAMICS

Elimination

metabolites

Covariates Size

Age

Gender

Drug interactions

Pharmacogenomics

Paediatric Differences

β€’ Size

β€’ Growth & development

β€’ Ethics

– Autonomy, beneficence, blood loss, min distress

β€’ Disease spectrum

– Bronchiolitis and bronchodilators

β€’ Potential for future harm

– Stilboestrol - vaginal adenocarcinoma

Growth

Sumpter A. Pediatr Anesth 2011

Separation of

Size usually kg

Maturation

The Major PK Covariates in Children

β€’ SIZE

β€’ AGE β€’ Organ Function

β€’ Body Composition

β€’ Drug interactions

β€’ Pharmacogenetics

β€’ Environmental factors

β€’ Circadian rhythms

Page 3: Drugs in the neonate & child - Professor Nick Holford

Paracetamol clearance –weight or age?

0

5

10

15

20

25

0 10 20 30 40 50 60

Weight (kg)

Cle

ara

nc

e (

L/h

)

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

Age (weeks)

Cle

ara

nce (

l/h

)

Body size is primary

covariate

β€’ 200x weight difference (e.g. 0.5-100 kg)

β€’ Parameters expressed as function of

size

β€’ Common size models

– per kilogram

β€’ Under estimates under 40 kg

– body surface area

β€’ Overestimates under 20 kg

– Allometric

SIZE MODELS

PER KILOGRAM MODEL

BODY SURFACE AREA MODEL

ALLOMETRIC MODEL

PER KILOGRAM MODEL

β€’ Under predicts dose if weight < 47 kg

β€’ Error increases as size decreases

β€’ Explanations for under prediction

fallacious β€’ Morphine – relative big liver

β€’ Fentanyl – increased hepatic blood flow

β€’ Remifentanil - ???

Hypothetical Drug

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11

Age (years)

Cle

ara

nc

e (

L/h

kg

))

per kilogram (l/h/kg)

Anderson BJ. Pediatr Anest 2002;12; 205

Sotolol clearance changes with age

Laer S. J Am Coll Cardiol 46:1322-30

Page 4: Drugs in the neonate & child - Professor Nick Holford

per kilogram model

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100

Weight (kg)

% d

iffe

ren

ce

in

cle

ara

nce

per kilogram

Holford N. Clin Pharmacokinet 1996;30:329

Body Surface Area Model

β€’ Nomogram required – BSA = W(kg)0.425 * H(cm)0.725 * 0.007184

β€’ Original model from only 10 individuals – Du Bois D. Arch Intern Med 1916;17:863

β€’ Works reasonably well 7-100 kg – Can be estimated using Wt2/3

Who among the following was NOT one of

the nine subjects used to derive the

DuBois Formula?

SA = Wt0.425 x Ht0.725

β€’ 1 ΒΎ y; Measured 2 h after death, had rickets

β€’ 12 Β½ y; Well-formed, no signs of puberty

β€’ 18 y; Tall, thin, emaciated from diabetes

β€’ 26 y; Sculptor's model, well-proportioned

β€’ 36 y; Cretin, physical development of 8 yr. old

child

surface area model

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Weight (kg)

% d

iffe

ren

ce i

n c

learan

ce

surface area

Holford N. Clin Pharmacokinet 1996;30:329

Body Mass vs Metabolic Rate (Peters HP. Cambridge 1983) Fractal Geometry

West GB. Science 1999;284:1677

Page 5: Drugs in the neonate & child - Professor Nick Holford

Allometric Theory

CL = CLstd * (WT / WTstd) 3/4

V = Vstd * (WT / WTstd) 4/4

T = Tstd * (WT / WTstd) ΒΌ

West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of

organisms. Science. 1999;284(5420):1677-9.

NOTE Surface area model can be approximated by exponent of 2/3

Tramadol Clearance

Holford S. J Pharmacol Clin Toxicol 2014

Allometric Examples

Booth BP, Rahman A, Dagher R, Griebel D, Lennon S,

Fuller D, et al. Population pharmacokinetic-based

dosing of intravenous busulfan in pediatric patients. J

Clin Pharmacol. 2007;47(1):101-11.

Estimated

Coefficient 0.74

Drover D, Hammer G, Anderson BJ. The

pharmacokinetics of ketorolac after single postoperative

intrnasal administration is adolescent patients. Analg

Anesth 2011: 114 (6): 1270-6

Clearance changes with weight

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Cle

aran

ce

Weight

Allometric 3/4 power

BSA (allometric 2/3 power)

Per kilogram

PAEDIATRIC DOSING

Term 3.5 kg 12%

3 mo 6.0 kg 15%

6 mo 7.5 kg 20%

1 yr 10 kg 25%

3 yr 14 kg 33%

7 yr 22 kg 50%

10 yr 30 kg 60%

OFMFWT

WTCLCL

STD

STDGRP

4/3

CLEARANCE: A Mechanism Based Model

WT =Total Body Weight WTSTD=Standard weight e.g. 70 kg

CLGRP=Group clearance CLSTD=Population standard clearance

Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin

Pharmacokinet. 2008;47(4):231-43.

Size Maturation

Organ Function

Page 6: Drugs in the neonate & child - Professor Nick Holford

Evidence for Allometry in Humans

Anderson BJ, Holford NHG. Mechanism-Based Concepts of Size and Maturity in Pharmacokinetics. Annu Rev Pharmacol Toxico 2008.

2008;48:303-32.

Remifentanil clearance

β€’ Rapid hydrolysis by non-

specific tissue and plasma

esterases

β€’ 2-cmt, first order elimination

β€’ Allometric scaling describes

clearance changes with age

100

120

140

160

180

200

0 100 200 300 400 500 600 700

Postmenstrual age (weeks)

Cle

ara

nce (

L/h

/70kg

)

0

20

40

60

80

100

Cle

ara

nce (

L/h

/kg

)

CL allometric

CL per kilo

Rigby-Jones AE. Brit J Anaesth 2007;99:252

Clearance mirrors infusion rate

Barker N. Pediatr Anesth 2007

Rigby-Jones AE. Brit J Anaesth 2007;99:252

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100 110 120

Age (months)

Rem

ifen

tan

il (

mcg

kg

-1m

in-1)

45

55

65

75

85

95

Cle

ara

nce (

mL

.min

-1.k

g-1)

remifentanil clearance

Effect/infusion mismatch at lower

age range attributable to

inappropriate target RR of 10

breaths/min

Clinical Considerations

β€’ Propofol Infusion

– Adult bolus 1 mg/kg then 10-8-6 mg/kg/h

– Child bolus 1 mg/kg then 15-13-10 mg/kg/h

Adult 10-8-6 Child 10-8-6

Maintenance Dose in Child

𝐢𝐿𝐢𝐻𝐼𝐿𝐷 = πΆπΏπ΄π·π‘ˆπΏπ‘‡ Γ— π‘€π‘’π‘–π‘”β„Žπ‘‘πΆπ»πΌπΏπ·π‘€π‘’π‘–π‘”β„Žπ‘‘π΄π·π‘ˆπΏπ‘‡

34

Allometry alone fails under 10 kg for propofol

Peteers M. CPK 2010

Page 7: Drugs in the neonate & child - Professor Nick Holford

Clearance changes with weight

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Cle

aran

ce

Weight

Allometric 3/4 power

BSA (allometric 2/3 power)

Per kilogram

Maturation

Hypothetical Drug

0

2

4

6

8

10

12

14

16

0 0.25 0.5 1 5 10 12 14 18 20

Age (years)

Cle

ara

nc

e (

L/h

/70

kg

))

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cle

ara

nc

e (

L/h

/kg

)

allometric 3/4 power (l/h/70kg)

per kilogram (l/h/kg)

Anderson BJ. Pediatr Anest 2002;12; 205

OFMFWT

WTCLCL

STD

STDGRP

4/3

Age and Maturation

WT =Total Body Weight WTSTD=Standard weight e.g. 70 kg

CLGRP=Group clearance CLSTD=Population standard clearance

Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin

Pharmacokinet. 2008;47(4):231-43.

Size Maturation

Organ Function

How to Describe Clearance

Maturation? β€’ Theory

– Should be close to zero at conception

β€’ CL will appear during development in utero

– Should reach adult values around age 20

β€’ Observations

– Slow changes after premature birth

– Rapid changes around time of normal

gestation

– Slow change in older children

Which Age?

β€’ Post-natal age (PNA) – Does not account for in utero maturation

β€’ Post-menstrual age (PMA)

– On average 2 weeks longer than biological age

β€’ Post-conception age (PCA)

– The biological age but not widely recorded 0

20

40

60

80

100

0 26 52 78 104

PMA Weeks

% A

du

lt/7

0k

g

Maturation Models

β€’ Linear increase (Linvall & Reith

2005)

– OK for small age ranges e.g.

premature neonates

HillCLHillCL

HillCL

TMPMA

PMAMF

50

β€’ Sigmoid Emax (Tod et al. 2001) – Matches theory and observation

across all ages

β€’ Exponential increase (Anderson 2000)

– Premature and term OK but not adult values

β€’ Asymptotic Exponential (Hayton 2002)

– Term and adult OK but too fast for premature neonates

Page 8: Drugs in the neonate & child - Professor Nick Holford

0

10

20

30

40

50

60

70

0 200 400 600 800

Postmenstrual age (weeks)

Cle

ara

nc

e (

L/k

g/h

)

0

5

10

15

20

25

30

35

40

45

Cle

ara

nc

e (

L/h

/70

kg

)

CL per kilogram

CL allometric1 year

2 year

5 year

10 year

Dexmedetomidine Maturation

Potts A. Pediatr Anesth 2009

β€’ Post-natal age (PNA)

– Does not account for in utero maturation

β€’ Post-menstrual age (PMA)

– On average 2 weeks longer than

biological age

β€’ Post-conception age (PCA)

– The biological age but not widely

recorded

Morphine Clearance

Anand KJS, Anderson BJ, Holford NHG, Hall RW, Young T, Barton BA. Morphine Pharmacokinetics and

Pharmacodynamics in Preterm Neonates: Secondary Results from the NEOPAIN Multicenter Trial. Br J Anaesth

2008.(in press)

CLmax=84.2 L/h/70kg

TM50=58 weeks PMA

Hill=3.92

449 Preterm

23-32 weeks PMA

184 Infants

0-3 years PNA

Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and

its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92(2):208-17.

Morphine infusion

- target concentration 10 mg/L

β€’ Birth 5 mcg/kg/h

β€’ 1 Month 8.5 mcg/kg/h

β€’ 3 Months 13.5 mcg/kg/h

β€’ 1 Year 18 mcg/kg/h

β€’ 2 Year 16 mcg/kg/h

Clearance changes with age

Allometric size model

+

Maturation model

OFMFWT

WTCLCL

STD

STDGRP

4/3

ORGAN FUNCTION

WT =Total Body Weight WTSTD=Standard weight e.g. 70 kg

CLGRP=Group clearance CLSTD=Population standard clearance

Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin

Pharmacokinet. 2008;47(4):231-43.

Size Maturation

Organ Function

Ventilated premature neonates in NICU have reduced morphine

clearance

0

5

10

15

20

25

20 25 30 35 40

Postmenstrual age (weeks)

Cle

ara

nce (

l/h

/70kg

)

CL premature

CL term

POPCL term

POPCL prem

0

20

40

60

80

100

120

140

20 50 80 110 140 170 200

Postmenstrual age (weeks)

Cle

aran

ce (

l/h

/70kg

)

CL premature

CL term

POPCL term

Anand KJS, Anderson BJ, Holford NHG, Hall RW, Young T,

Barton BA. Morphine Pharmacokinetics and

Pharmacodynamics in Preterm Neonates: Secondary

Results from the NEOPAIN Multicenter Trial. Br J Anaesth

2008.(in press)

Page 9: Drugs in the neonate & child - Professor Nick Holford

A PKPD approach to determine dose

TEE

TECTC

max

50 Equation 1

43

STDWT

WTSize

WTSTD=Weight in a standard individual (e.g. 70 kg)

Equation 2

HillHill

Hill

TMPMA

PMAMaturation

50

Hill=Steepness of the maturation function

Equation 3

normal

actual

OF

OFionOrganFunct

OFactual=Current organ function in an individual e.g. GFR=3L/h

OFnormal=Predicted organ function in a healthy individual e.g. GFR=6 L/h

Equation 4

ionOrganFunctMaturationSizeCLCL STD

CLSTD is the CL in an individual with standard covariates (e.g. WT, GFR)

Equation 5

TCCLMDR Equation 6

ALTERED

PHARMACOKINETICS

β€’ Absorption

β€’ Metabolism

β€’ Volume of distribution

β€’ Bioavailability

β€’ Protein binding

Neonatal Absorption

β€’ Skin thickness

β€’ ↑ intragastric pH

– ↑ bioavailability acid-labile compounds e.g. Penicillin G

– ↓ bioavailability weak acids e.g. pentobarbitone

β€’ Delayed gastric emptying

– Tmax delayed

β€’ Reduced transport bile salts

– ↓ entero-hepatic circulation opioids

Absorption & Delivery

Oral Absorption of

Paracetamol

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

Time (hours)

Co

nc

en

tra

tio

n (

mg

/l)

Neonate

Child

Volume of distribution

β€’ Body composition changes

β€’ Vd determines initial plasma concentration

(Cp) after an intravenous dose of a drug

Dose = Cp x Vd

Page 10: Drugs in the neonate & child - Professor Nick Holford

Body Water Vd - Physiological Basis

Tiny - warfarin 10 L

less than ECF, greater than blood, plasma protein binding

Small - gentamicin 18 L approx. ECF

Medium - theophylline 35 L Total Body Water

Large - digoxin 500 L Na+ K+ ATPase binding

Predicting Vd in infants

β€’ Morphine - ↓ Vd in neonates

β€’ Pethidine - ↑ Vd in neonates

Vd determined by

- body composition (muscle bulk, fat content

etc)

- drug properties (lipophilicity, protein binding

etc)

Post Natal Drug Disposition

β€’ Volume of Distribution

– β€œSize” predicted by Wt

– simple L/kg rule

β€’ Water

– β€˜Wet’ at birth ECF 50% of Wt

– adult β€˜dry’ ECF 25% of Wt within 3 months

β€’ Fat

– β€˜Skinny’ at birth Fat 10% of Wt

– adult Fat 20% of Wt within 3 months

Clearance

β€’ Immature hepatic enzymes

glucuronide

β€’ Renal function reduced

aminoglycosides

CYP Maturation

β€’ cytochrome P450 – CYP2E1 surges after birth

– CYP2D6 soon thereafter

– CYP3A4, 2C 1st week

– CYP1A2 last to appear

β€’ Normal maturation unknown

Page 11: Drugs in the neonate & child - Professor Nick Holford

CYP2C9 Maturation (Phase I) Growth

- organ size

- organ blood flow

brain

kidney

liver

heart

Maturation of CYP 2D6 Tramadol as substrate

0%

25%

50%

75%

100%

-26 0 26 52 78

Age (PNA) Weeks

% A

du

lt

CYP2D6 Non CYP2D6 Metabolite

CYP maturation (Phase 1)

β€’ Immature at birth

β€’ Different CYPs mature at different rates

Practical Implication

β€’ Reduce Infusion rates in neonates – Concentration = infusion rate/CL

– Bupivacaine (CYP1A2)

– continuous epidural infusion rates in neonates (0.2

mg/kg/h) are less than children (0.4 mg/kg/h)

GFR Growth Curves Median and 90% Intervals

CLmax=6.84 L/h/70kg

TM50=46.4 weeks PCA

Hill=3.43

928 patients

22 weeks PCA to 32 y

0

25

50

75

100

-26 0 26 52 78

Age (PNA) Weeks

% A

du

lt

GFR

Renal and Metabolic Maturation

0

20

40

60

80

100

0 30 60 90 120 150

Postmenstrual age (weeks)

% A

du

lt

Paracetamol

TM50 52.2 weeks

Hill 3.4

GFR

TM50 47.6 weeks

Hill 3.4 Morphine

TM50 54.2 weeks

Hill 3.92

Dexmedetomidine

TM50 46.5 weeks

Hill 2.78

Propofol

TM50 38.5 weeks

Hill 4.6

Allegaert 2007, Rhodin 2009, Potts 2008, Anand 2008, Anderson 2009

Propofol Metabolism

Glucuronide

CYP2B6, CYP2C9 or

CYP2A6

Page 12: Drugs in the neonate & child - Professor Nick Holford

The kick at birth (GFR)

Anderson BJ. Pediatr Anesth 2011

Foetal circulation

-Increase oxygen

-Increased blood flow

Minimal impact

Caffeine - a long acting stimulant in

neonates

β€’ Good central respiratory

stimulant

β€’ Poor hepatic clearance Immature

P450 CYP1A2

β€’ Immature renal clearance

β€’ T1/2 days in neonate, hours in

adults

Data from DeCarolis MP, Romagnoli C,

Muzil U, et al. Pharmacokinetic aspects of caffeine in premature infants.

Dev Pharmacol Ther 1991;16:117-22.

Impact of Gender

β€’ P-glycoprotein expression, CYP3A4 β€’ Schwartz JB. Clin Pharmacokinet 2003; 42:107-21

β€’ Cummins CL. Clin Pharmacol Ther 2002; 72:474-89.

β€’ Renal Function (Cockcroft and Gault) β€’ Cockcroft DW. Nephron 16:31-41

Post Natal Drug Disposition

β€’ Clearance

– β€˜Size’ predicted by Wt3/4

β€’ Kleiber’s law (or BSA)

Β»Kidney

– 30% of size predicted value at birth

– β€˜Adult’ function within 6 months

Β»Liver

– 20-50% of size predicted value at birth

– Adult’ function within 1 year

Relative Bioavailability

How much drug available?

Varies with age

β€’ Skin thickness

β€’ Gut bacterial colonisation

β€’ Enzyme pathways

β€’ Rectal insertion height

Page 13: Drugs in the neonate & child - Professor Nick Holford

Relative bioavailability of a paracetamol

suppository

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 100 1000

Log Post-gestation age (weeks)

Re

lati

ve

Bio

ava

ila

bil

ity

Anderson BJ. Anesthesiology 2002;96:1336

Dose-concentration variability after paracetamol

elixir 12.5 mg/kg 6 h Anderson Paediatr Anaesth 1998 ; 8: 274

The Major PK Covariates in

Children

β€’ SIZE β€’ AGE β€’ Body Composition β€’ Disease β€’ Drug interactions β€’ Pharmacogenetics β€’ Environmental factors

β€’ Circadian rhythms

Body Composition

β€’ Total body water and ECF are increased in neonates

β€’ Fat is 3% in a 1.5 kg premature neonate and 12% in a term neonate; this proportion doubles by 4-5 months of age.

β€’ β€œBaby fat” is lost when infants start walking and protein mass increases (20% in a term neonate, 50% in an adult)

β€’ Reduced binding proteins e.g. AAG

β€’ Spinal column takes greater proportion body mass

Growth

- organ size

- organ blood flow

brain

kidney

liver

heart

Protein binding - AAG

β€’ Alpha-1 acid glycoprotein reduced in

neonates

β€’ Bupivacaine is bound to AAG

Bolus epidural dose of bupivacaine in

neonates is lower than in children (1.5-2

mg/kg vs. 2.5 mg/kg) because a greater

proportion will be unbound drug and it is

unbound drug that exerts effect Booker P. Br J Anaesth 1996

Page 14: Drugs in the neonate & child - Professor Nick Holford

Spinal Column β€’ Preterm and full-term infants have a much greater

CSF volume relative to weight than a child (4

ml/kg in children < 15 kg) or adult (2 mg/kg)

– this may account in part for the increased dose (mg/kg) of

local anesthetic required in infants to produce a

successful subarachnoid block. Duration of blockade is

shorter in neonates and this may be due to a higher CSF

turnover rate than adults.

β€’ The epidural space in infants has increased

vascularity and a smaller absorptive surface for

local anaesthetics. Epidural fat is spongy and

gelatinous in appearance with distinct spaces

between individual fat globules. With increasing

age, fat becomes more tightly packed and fibrous.

– The absorption half time of epidural levobupivacaine

decreases with age. This slower absorption may

contribute to increased rostral spread of local anaesthetic

and the consequent longer duration of caudal analgesia

observed in infants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1 10 100Ab

so

rpti

on

half

-lif

e (h

)

Log Postnatal age (months)

Disease Processes

β€’ Malignancy ... resistance to muscle relaxants

clearance Vm

β€’ R L cardiac shunts….inhalation agent uptake

β€’ PDA…. Vd aminoglycosides, indomethacin

β€’ intra-abdominal pressure ↓ hepatic blood flow

↓ fentanyl clearance

Formulations & Delivery

β€’ children prefer liquid formulations

β€’ iv may need lots of diluent

β€’ exact dose may be hard to give

β€’ use of iv formulations orally

β€’ Dose splitting

β€’ taste

Paracetamol taste

unpublished (David Herd)

Frequency of Key Phrases

0 1 2 3 4 5 6 7 8 9 10 11

Tastes Like Poo

Gross/Disgusting

Horrible/Terrible

Yuk

Did not like

Sour

OK

Sweet

Liked

Nice

Yummy

Loved it

Number of children

Paracare Parapaed

Formulation time-concentration profile

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10

Time (hours)

Para

ceta

mo

l C

on

cen

trati

on

(m

g/L

)

0

0.5

1

1.5

2

Dic

lofe

nac C

on

cen

trati

on

(m

g/l)

paracetamol suppository

paracetamol elixir

diclofenac suppository

diclofenac enteric-coated tablet

Van der Marel Paediatr Anaesth 2004;14:443-51

Altered Pharmacodynamics

β€’ Bronchodilators (sm muscle↓)

β€’ Warfarin (sensitivity ↑)

β€’ Cyclosporin (immunosuppresion ↑)

β€’ Midazolam (GABBAA receptor ↑)

β€’ Calcium and neonatal heart

β€’ Gastric prokinetics (↓ sensitivity)

Page 15: Drugs in the neonate & child - Professor Nick Holford

Isoflurane MAC changes with age (LeDez, 1987)

Variation in quantal content of the end-plate potential with age in phrenic nerve

hemidiaphragm preparations from young rats (Wareham, 1994)

Sensitivity neuromuscular junction

Quantal release acetylcholine

Vd dose is same

Opioids – PK or PD? (Way WL. Clin Pharmacol Ther 1965;6:454)

Page 16: Drugs in the neonate & child - Professor Nick Holford

Impact of CYP2D6 on Tramadol Clearance Contributors to analgesic variability

Sadhasivam S. Pharmacogenomics 2012; 13:1719-40

Impact Pharmacogenetics

β€’ Limited impact neonates

β€’ Enzyme responsible for β‰₯ 50% CL

β€’ Steep dose-response curve and

Narrow therapeutic window

β€’ Active metabolite formed by enzyme

β€’ CYP 2C9 & celecoxib β€’ Stempak D. Clin Pharmacol Ther 2005

Fishbain DA. Pain Med 2004:5:81

CYP Maturation

β€’ cytochrome P450 – CYP2E1 surges after birth

– CYP2D6 soon thereafter

– CYP3A4, 2C 1st week

– CYP1A2 last to appear

β€’ Normal maturation unknown

N-acetyltransferase activity maturation with age Pariente-Khayat A. Clin Pharmacol Ther 1997;62:377

impossible to determine fast or slow under 1 y

Page 17: Drugs in the neonate & child - Professor Nick Holford

Tramadol M1 metabolite formation clearance (CYP2D6) increases

with postmenstrual age. Rate of increase varies with genotype

expression (Allegaert, 2008)

In reality

β€’ CYP2D6, CYP3A, CYP2C9 - 70%

β€’ CYP1A2, CYP2C19, CYP2E1 - 20%

β€’ NAT 2

β€’ G-6-P dehydrogenase

β€’ CYP2D6 codeine, tramadol, chlorpromazine, propanolol, mexiletine

Gene Chip vs TDM (& Bayesian Forecasting)

β€’ Practical use

β€’ Availability

β€’ Cost

β€’ Use

– Adverse drug reactions

– Active metabolites

– Taylor therapy

Propofol Toxicity in Neonates - an immediate effect

β€’ Neonatal data from neonatologists – Papoff P. Pediatrics 2008; 121:448-9

– Ghanta S. Pediatrics 2007; 119:e1248-e1255

β€’ Concerns BP – Allegaert K. Curr Clin Pharmacol 2009;4:84-6

– Vanderhaegen J. Neonatology 2010;98:57–63

– Welzing L. Pediatr Anesth 2010;20:605-11

Hypotension With Propofol 3

mg/kg

Vanderhaegen J. Neonatology 2010; 98: 57–63

Ketamine and the neonate - a long term effect

Concerns about widespread neuronal

apoptosis and long-term memory deficits

Other long term effects due to impact at critical time:

Thalidomide - phocomelia

Stilboesterol - vaginal carcinoma

Tetracycline - teeth staining

Page 18: Drugs in the neonate & child - Professor Nick Holford

Drugs in breast milk Neonatal concentration

β€’ How much drug in breast milk

(milk/plasma)

– Diffusion, ion trapping, lipid partition

– Maternal concentration

β€’ How much breast milk ingested

β€’ Bioavailability

β€’ Clearance

Phenobarbitone in 3 kg Neonate

β€’ Rate In

– F x MPR x MilkFlow x Maternal Conc

– 1.0 x 0.5 x 18.8 mL/h x 10 mg/L = 0.094 mg/h

β€’ Neonatal Clearance

– FdevCL x CLstd x (Wt/Wtstd) 3/4

– 0.33 x 0.3 L/h x (3/70)3/4 = 0.0093 L/h

β€’ Neonate Conc

– Rate In / Neonatal Clearance = 10.05 mg/L

Fluoxetine in 3 kg Neonate

β€’ Rate In

– F x MPR x MilkFlow x Maternal Conc

– 1.0 x 1.0 x 18.8 mL/h x 10 mg/L = 0.188 mg/h

β€’ Neonatal Clearance

– FdevCL x CLstd x (Wt/Wtstd) 3/4

– 0.33 x 40 L/h x (3/70)3/4 = 1.24 L/h

β€’ Neonate Conc

– Rate In / Neonatal Clearance = 0.15 mg/L

Infant Exposure

MPR CLmat Age Wt (kg) FdevCL CRInfMat DRInfMat

Phenobarbitone 0.5 0.3 Premature 1 0.1 252% 73%

0.5 0.3 Neonate 3 0.33 101% 73%

0.5 0.3 Infant 10 1 45% 73%

Caffeine 0.6 9 Premature 1 0.1 10% 3%

0.6 9 Neonate 3 0.33 4% 3%

0.6 9 Infant 10 1 2% 3%

Fluoxetine 1 40 Premature 1 0.1 4% 1%

1 40 Neonate 3 0.33 2% 1%

1 40 Infant 10 1 1% 1%

Clearance is the key difference between medicines

Dosing During Breast Feeding

β€’ 30-60 min after nursing

β€’ 3-4 h before next feed

Postnatal Adverse Effects

β€’ Neonate

– opioids resp depression; withdrawal

– aspirin bleeding

– diazepam apnoea, poor feeding

β€’ Puberty

– stilboestrol vaginal adenocarcinoma

Page 19: Drugs in the neonate & child - Professor Nick Holford

Summary

-size important - allometric models

satisfactory out of infancy

-other covariates contributing to PK

variability poorly described

-PK maturation over 1st year of life

-PD differences poorly described

-More work required before we can

predict the correct target

concentration

Time for an Aphorism Change

Adults are BIG Children

Children are OLD Babies

Anderson BJ, Holford NHG. Mechanism-Based Concepts of Size and Maturity in Pharmacokinetics. Annu Rev Pharmacol Toxicol.

2008;48:303-32.

Children are not Small Adults