Drops of Twist-Bend Nematic Liquid...

53
Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga SMMM Soft Matter Mathematical Modelling Department of Mathematics University of Pavia, Italy Summary Twist-Bend Nematics Surface Energy Functional Two-Dimensional Drops Mathematical Model 1

Transcript of Drops of Twist-Bend Nematic Liquid...

Page 1: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Drops of Twist-Bend Nematic Liquid Crystals

Epifanio G. Virga

SMMM

Soft Matter Mathematical Modelling

Department of Mathematics

University of Pavia, Italy

Summary

Twist-Bend Nematics

Surface Energy Functional

Two-Dimensional Drops

Mathematical Model

1

Page 2: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Twist-Bend Nematics

A new liquid crystal phase, Ntb for short, has recently been discovered

that had already been predicted some decades ago.

2

Page 3: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Twist-Bend Nematics

A new liquid crystal phase, Ntb for short, has recently been discovered

that had already been predicted some decades ago.

typical material: CB7CB

The simplest molecular structure having core flexibility is a dimer

structure in which two semirigid mesogenic groups are connected by a

flexible chain.

2

Page 4: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Twist-Bend Nematics

A new liquid crystal phase, Ntb for short, has recently been discovered

that had already been predicted some decades ago.

typical material: CB7CB

The simplest molecular structure having core flexibility is a dimer

structure in which two semirigid mesogenic groups are connected by a

flexible chain.

A CB7CB molecule can be viewed as having three parts, each ≈ 1 nm

in length: two rigid end groups connected by a flexible spacer.

2

Page 5: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the ideal gas

constant.

3

Page 6: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the ideal gas

constant.

Second transition, on further cooling, at TNNtb= 103 ± 1 ◦C, with

∆SNNtb/R = 0.31.

3

Page 7: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the ideal gas

constant.

Second transition, on further cooling, at TNNtb= 103 ± 1 ◦C, with

∆SNNtb/R = 0.31.

Both transitions are weakly first-order, with at two-phase coexis-

tence at each transition of approximately 0.1 ◦C.

3

Page 8: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

4

Page 9: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

Letting t = e3 in a Cartesian frame,

m± = sinϑ cos(±qz) e1 + sinϑ sin(±qz) e2 + cosϑ t,

4

Page 10: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

Letting t = e3 in a Cartesian frame,

m± = sinϑ cos(±qz) e1 + sinϑ sin(±qz) e2 + cosϑ t,

helicity

m molecular director

η := curlm± ·m± = ∓q sin2 ϑ

q > 0 twist parameter

p := 2πq

pitch ϑ cone angle

4

Page 11: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

Letting t = e3 in a Cartesian frame,

m± = sinϑ cos(±qz) e1 + sinϑ sin(±qz) e2 + cosϑ t,

m

p

helicity

m molecular director

η := curlm± ·m± = ∓q sin2 ϑ

q > 0 twist parameter

p := 2πq

pitch ϑ cone angle

m

t

p

4

Page 12: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Recent Experimental Evidence

A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.

5

Page 13: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Recent Experimental Evidence

A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.

Walba, M. A. Glaser, J. E. Maclennana & N. A. Clark

(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)

5

Page 14: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Recent Experimental Evidence

A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.

Walba, M. A. Glaser, J. E. Maclennana & N. A. Clark

(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)

measured pitch and cone angle

p ≈ 10 nm ϑ ≈ 20◦

5

Page 15: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Surface Energy Functional

Recently, K.S. Krishnamurthy has observed Ntb drops in their ne-

matic companion phase, with the director n = 〈m〉 uniformly aligned

outside the drop.

6

Page 16: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Surface Energy Functional

Recently, K.S. Krishnamurthy has observed Ntb drops in their ne-

matic companion phase, with the director n = 〈m〉 uniformly aligned

outside the drop.

interfacial energy density

Ws = W0

[

1 + w(m · ν)2]

ν outer unit normal

W0 isotropic surface tension

w ≧ −1 anisotropy dimensionless parameter

w > 0 degenerate tangential alignment

w < 0 homeotropic alignment

6

Page 17: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

outside the drop

The molecular director m must to be continuous across the Ntb /ne-

matic interface and agree with the uniform n outside the drop.

7

Page 18: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

outside the drop

The molecular director m must to be continuous across the Ntb /ne-

matic interface and agree with the uniform n outside the drop.

inside the drop

Inside the drop m is expected to comply, at least locally, with the

heliconical ground state

m = cosϑ t+ sinϑ (cosϕ e1 + cosϕ e2)

ϕ phase varying over a nanoscopic length-scale

ϑ cone angle

7

Page 19: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

outside the drop

The molecular director m must to be continuous across the Ntb /ne-

matic interface and agree with the uniform n outside the drop.

inside the drop

Inside the drop m is expected to comply, at least locally, with the

heliconical ground state

m = cosϑ t+ sinϑ (cosϕ e1 + cosϕ e2)

ϕ phase varying over a nanoscopic length-scale

ϑ cone angle

coarse-graining Ws

〈Ws〉 = W0

{

1 +1

2w sin2 ϑ−

1

2w(

1− 3 cos2 ϑ)

(t · ν)2}

7

Page 20: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√3, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.

8

Page 21: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√3, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the

drop and the continuity of the molecular alignment across the interface,

the degenerate tangential anchoring of t becomes geometrically com-

patible only if the cone angle is allowed to vary along the interface.

8

Page 22: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√3, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the

drop and the continuity of the molecular alignment across the interface,

the degenerate tangential anchoring of t becomes geometrically com-

patible only if the cone angle is allowed to vary along the interface.

elastic mismatch energy

fa =1

2Wa

[

(t · n)2 − c2]2

Wa > 0 elastic constant

ϑ = arccos c ideal cone angle

8

Page 23: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

surface energy functional

Fs = W0

S

{

1 +1

2ω[

(t · n)2 − c2]2}

da

a area measure

ω := Wa

W0

> 0 anisotropy dimensionless parameter

S surface separating the phases

9

Page 24: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

surface energy functional

Fs = W0

S

{

1 +1

2ω[

(t · n)2 − c2]2}

da

a area measure

ω := Wa

W0

> 0 anisotropy dimensionless parameter

S surface separating the phases

boundary condition

t · ν = 0 over S

ν surface normal

9

Page 25: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

surface energy functional

Fs = W0

S

{

1 +1

2ω[

(t · n)2 − c2]2}

da

a area measure

ω := Wa

W0

> 0 anisotropy dimensionless parameter

S surface separating the phases

boundary condition

t · ν = 0 over S

ν surface normal

isoperimetric constraint

As the Ntb phase, like the classical nematic phase, can be regarded

as incompressible, Fs is subject to the constraint that the volume

enclosed by S be fixed.

9

Page 26: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

neglecting distortion energy

Clearly, the t field will also be distorted in the interior of the drop.

We shall hereafter neglect the elastic energy associated with such

a distortion, as we believe that it plays a little role in determining

the equilibrium shape of a Ntb drop, which is mainly driven by the

interfacial energy.

10

Page 27: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Two-Dimensional Drops

K.S. Krishnamurthy has shown that the equilibrium shape of Ntb

drops surrounded by their oriented nematic phase are tactoids with

their pointed corners aligned with the outside director.

11

Page 28: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Two-Dimensional Drops

K.S. Krishnamurthy has shown that the equilibrium shape of Ntb

drops surrounded by their oriented nematic phase are tactoids with

their pointed corners aligned with the outside director.

Two-dimensional drop, 2mm long in a gap 20µm wide

11

Page 29: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

disintegration of large drops

Under heating, the millimeter-size drop breaks into small, tactoid-

shaped drops with corners now on the y axis

12

Page 30: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

13

Page 31: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

each scale division 10µm

13

Page 32: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Mathematical Model

In two space dimension, the drop is bounded by a curve C described

by s 7→ r(s)

F [r] :=

∫ L

0

{

1 +1

2ω[

(t · n)2 − c2]2}

ds

x

y nN

tNtb

C

14

Page 33: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Mathematical Model

In two space dimension, the drop is bounded by a curve C described

by s 7→ r(s)

F [r] :=

∫ L

0

{

1 +1

2ω[

(t · n)2 − c2]2}

ds

s arc-length co-ordinate along C

L (undetermined) length of C

t = r′ ′ denotes s differentiation

x

y nN

tNtb

C

14

Page 34: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

area functional

A[r] := −1

2

∫ L

0

r × t · ezds

ez := ex × ey

15

Page 35: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

area functional

A[r] := −1

2

∫ L

0

r × t · ezds

ez := ex × ey

constrained equilibrium

δF = λδA

λ Lagrange multiplier

15

Page 36: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

area functional

A[r] := −1

2

∫ L

0

r × t · ezds

ez := ex × ey

constrained equilibrium

δF = λδA

λ Lagrange multiplier

equilibrium regular arcs

f ′ + λν = 0

f := 2ω[(t · ex)2 − c2](t · ex)(I− t⊗ t)ex +

(

1 +1

2ω[(t · ex)

2 − c2]2)

t

f line stress

15

Page 37: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

equilibrium corners

JfK = 0

16

Page 38: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

equilibrium corners

JfK = 0

We assume that in equilibrium corners may occur only on the symme-

try axes x or y of C .

x

y

α

β

16

Page 39: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

corner on y

ω ≧ ω(1)c (c) :=

2

(1− c2)(3 + c2)

β = 2arcsin

1

3

(

c2 +

4c4 +6

ω

)

17

Page 40: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

corner on y

ω ≧ ω(1)c (c) :=

2

(1− c2)(3 + c2)

β = 2arcsin

1

3

(

c2 +

4c4 +6

ω

)

corner on x

ω ≧ ω(2)c (c) :=

2

c2(4− c2)

α = 2arccos

1

3

(

c2 + 2−

4(1− c2)2 +6

ω

)

17

Page 41: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

symmetry properties

ω(2)c (c) = ω(1)

c

(

1− c2)

β(c, ω) = α(

1− c2, ω)

18

Page 42: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

phase diagram

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1.0

c

ω

ω(1)c

ω(2)c

III

I

II

I: x-corners II: x- and y-corners III: no corners TP:(

1√2, 87

)

19

Page 43: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

α plot

00.2

0.40.6

0.81

0

2

4

0.4

0.6

0.8

1

c

ω

α/π

20

Page 44: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

β plot

00.2

0.40.6

0.81

0

2

4

0.4

0.6

0.8

1

c

ω

β/π

21

Page 45: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

equilibrium regular arcs

F ∗[y] :=

∫ a

0

{[

1 +1

(

1

1 + y′2− c2

)2]

1 + y′2 + λy

}

dx

y = y(x) Cartesian representation of a quarter of C

y(a) = 0 with a to be determined

x

y nN

tNtb

C

22

Page 46: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form

23

Page 47: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form

x = X(u; c, ω) :=1

2

1√

(1 + u2)5[2−3ω+2ωc2+ωc4+2(2+ωc2+ωc4)u2

+ (2 + ωc4)u4]u

y = Y (u; c, ω) := −1

2

1√

(1 + u2)5[2+ω−2ωc2+ωc4+2(2+2ω−3ωc2+ωc4)u2

+ (2− 4ωc2 + ωc4)u4]

23

Page 48: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form

x = X(u; c, ω) :=1

2

1√

(1 + u2)5[2−3ω+2ωc2+ωc4+2(2+ωc2+ωc4)u2

+ (2 + ωc4)u4]u

y = Y (u; c, ω) := −1

2

1√

(1 + u2)5[2+ω−2ωc2+ωc4+2(2+2ω−3ωc2+ωc4)u2

+ (2− 4ωc2 + ωc4)u4]

x to y aspect ratio

ρ :=X

Yρ(

1− c2, ω)

=1

ρ(c, ω)

23

Page 49: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

ρ plot

00.2

0.40.6

0.8

0

1

2

3

4

1

2

c

ω

ρ

24

Page 50: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

shape gallery

(a) (b)

(c)

(a) I: c =√32 , ω = 3

2 (b) II: c =√32 , ω = 5 (c) III: c =

√32 , ω = 4

7

25

Page 51: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

on the symmetry separatix c = 1√2

(d) (e) (f)

(g)

(d) ω = 47 (e) ω = 8

7 (f) ω = 2 (g) ω = 3

26

Page 52: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

comparison with experiment

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1.0

c

ω

ω(1)c

ω(2)c

III

I

II

bcbc bcbc

27

Page 53: Drops of Twist-Bend Nematic Liquid Crystalshelper.ipam.ucla.edu/publications/po2016/po2016_12966.pdf · 2016-01-29 · Drops of Twist-Bend Nematic Liquid Crystals Epifanio G. Virga

Acknowledgements

Collaboration

K.S. Krishnamurthy

Discussion

O.D. Lavrentovich

G.R. Luckhurst

Soft Matter Mathematical Modelling

Department of Mathematics

University of Pavia, Italy

28